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Electronic Structure Critical Parameters From Finite-Size Scaling
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We present finite-size scaling and phenomenological renormalization equations for calculations of
the critical points of the electronic structure of atoms and molecules. Results show that the method
is efficient and very accurate for estimating the critical screening length for one-electron screened
Coulomb potentials and the critical nuclear charge for two-electron atoms. The method has potential
applicability for many-body quantum systems. [S0031-9007(97)04408-6]

PACS numbers: 31.15.—p, 05.70.Jk

The analogies between quantum mechanical systenmoblems. The general idea of the FSS in classical
and statistical mechanics of classical systems has been tegtistical mechanics [12] is to extract information about
subject of study for many years. The correspondences be-(d + 1)-dimensional lattice model in the neighborhood
tween equilibrium statistical mechanics and quantum fieldf the critical point by systematic numerical studies of
theory are well established [1]. The Hamiltonian limit the samei-dimensional model. We apply the FSS ansatz
was widely used to obtain critical points and critical expo-to study the properties of a quantum Hamiltonian by
nents [2] as well as mean-field phase diagrams for classa systematic finite basis-set expansion using a mapping
cal two-dimensional systems [3]. Recently, considerabldetween the quantum Hamiltonian and the statistical
interest has also been shown in the analogy between theechanics of a classical pseudosystem.
guantum Hamiltonian and the transfer matrix in statistical We can consider, without loss of generality, that the
mechanics. The fact that a non-negative matrix could bguantum HamiltonianH (1) has a well-defined ground-
interpreted as a transfer matrix of a classgstudosystem state energy below a critical poinh < A.. For a
was recently used to study the ground-state properties-independent complete basis set, tith-order approxi-
of a d-dimensional quantum system, using the quantunmation to the spectrum will be given by the eigenvalues
Hamiltonian as the transfer matrix of a hypothetiGal+ of afinite M(N) X M(N) Hamiltonian matrix, withM (N)
1)-dimensional statistical system [4,5]. In atomic andbeing the number of elements of the truncated basis set at
molecular physics, it has been suggested that there are pawder N. Therefore, the leading eigenvalue of the finite
sible analogies between critical phenomena and singularimatrix will be analytical, where the exact solution is non-
ties of the energy [6—8]. In particular, it has been notedanalytical atA = A.. In order to obtain the value of.
that, using a nonlinear variational approach, the energfrom studying the eigenvalues of a finite-size Hamiltonian
curves of the two-electron atoms as a function of the inmatrix, one has to define a sequence of pseudocritical
verse of the nuclear charge resemble the free energy curvparameters\.  Although there is no unique recipe to
as a function of the temperature for the Van der Waals gadefine such a sequence, one obvious possibility, if the
[6]. Recently, Serra and Kais [9,10] have shown that symthreshold is known, is to defing™) as the value in which
metry breaking of the electronic structure configurationghe ground-state energy in théth-order approximation,
for the N-electron atoms and simple molecular systems;é"’)(,\), is equal to the threshold energy,
at the large dimension limit can be studied as mean-field

problems in statistical mechanics. E(()N)(/\(N)) = Er. ()
By virtue of the possibility of taking the lowest ) . i
eigenvalues of a quantum Hamiltonia®l (A, ..., A¢) This approach is analogous to the first order method

of a set of parameter$\;} as the leading eigenval- (FOM) in statistical mechanics which has been used to
ues of a transfer matrix of a classicaseudosystem ;tudy two-dlmens,lona! .cIaSS|caI systems which display a
we present in this Letter a general method for studyindirSt order phase transition at= 1 [11].
the analytical behavior of energies of atoms and molecules AN alternative method to define the sequence of the
near acritical point as a function of the parametef;}. pseudocrltlca_ll values of is to Calculgte the first _and sec-
In this contextcritical means the values d;} for which ond lowest elge/nvalu.es of th® matrix for two different '
a bound-state energy becomes absorbed or degeneraf§€rs,V andN’. This method has the advantage that it
with the continuum. In our examples, we have consideredf NOt necessary to know priori the value of th?\, E\D)regh-
only Hamiltonians with one parametar(k = 1), but, as  °ld energyEr. The pseudocritical parametaf s
in statistical mechanics, the method is general and is nd{€fined as the solution of the following equation:
restrictgd to this condition [2,11]._ . _ E§N>(A(N,Nf)) N EiN’)()l(N,N’)) N’

In this Letter, we used thdinite-size scaling(FSS) ST PPN = \—w (2)
ansatz to obtain the critical points for electronic structure Ep (AWNY) Ey (AVAND)
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where E" (1) and £\ () are the ground state and the mula Eg = (A, — ) + 0((Ac — 1)) [17]. To carry
first excited eigenvalues of a sector of given symmetry oPut the calculations, we choose the following complete

the H matrix. (nonorthogonal) basis set f6rstates:
This approach for the quantum system is inspired by - a3/? . 6
. o ) = —ar/ap( ,
the phenomenological renormalizatiq®R) [13] method, (x) NIt (ar) (6)

which is based on FSS arguments in statistical mechan- N

ics [12]. Using the PR method, one can obtain the criticaWherea is a fixed parameter antl are the generalized
points by searching for the fixed points of the phenomenolaguerre polynomials of order 1 and degree In this
logical renormalization equation for a finite-size systemcase, the size of thé{ matrix of orderN is M(N) =
The key step is to calculate the correlation lengthof N + 1.

the classical pseudosystem for a given basis set of order Because of parity effectsy’ = N — 2 was taken in
N. The correlation length of the classical pseudosystenEd. (2). The behavior of the ratio between the ground-

is defined as state energy and the second lowest eigenvalue raised to
1 powerN as a function ofA for odd values ofV is shown
Ev(A) = m (3) in Fig. 1(a). Also shown in Fig. 1(a) are the ten highest

(£ (0)/E5” ()]
The PR consists of writing a renormalization equation for
the correlation length of two finite systems of different (@)
ordersN andN’,

EnANND) g (AVN)

= - (4)
N N/

It is easy to see that Eq. (4) is equivalent to Eq. (2). In
general, the best choice fof and N’ is the value which
minimizesN — N'[2], thatis,N' = N — 1, except when
there are parity effects, then one has to tAke= N — 2
[11,14]. As far asVv andN' are finite, the method is an
approximation which can be improved by choosi¥gas
large as possible.

To test the method, two cases with qualitatively differ-
ent behavior near the critical point have been investigated. 0.97
One with long-range interactions is the Hamiltonian 1.05
of two-electron atoms, and the other with a short-range
interaction is the Hamiltonian of a one-electron system
with a screened Coulomb potential. For both systems the (b)
critical point is the value of the parameter entering its
Hamiltonian, the nuclear charge for the first system and
the screening length for the second, where the ground-
state energy becomes degenerate with the lowest en-
ergy continuum. In both cases, the Hamil}onl&ﬁ(A)

commutes with the total angular momentufn There-
fore, we can study independently each sector of the

Hamiltonian, which corresponds to each eigenvalu€ of

In this Letter, only the ground-state results with= 0

were presented; studies of nonzero values of the angular -

momentum will be given elsewhere [15]. i ]
The Hamiltonian for the screened Coulomb potential in

atomic units can be written as 1.10 1.15 1.20 1.25 1.30
1 e*/\r
HN) = -~V - 4, (5) A
2 r FIG. 1. For the screened Coulomb potential: (a) The ratio be-
where C is a constant added to the Hamiltonian in or-tween the ground-state energy and the second lowest eigen-
der to assure that the two lowest eigenvalues will hav&alue raised to a powe¥ as a function ofa for odd values

; ; _ f N =3,5,...,75 as well as the ten highest odd values of
the same sign. It 'S kn.own. that, when the ground Stat% = 57,59,...,75 (inset) in the neighborhood of the critical
energy of this Hamiltonian is expressed as a power S&oint A, = 1.1906. The constanC = I was added to the ra-

ries in A, the expansion is asymptotic and has a zergjo as explained in the text. (b) The second derivative of the
radius of convergence [16] and has the asymptotic forenergy as a function of for odd values ofvV = 1,3,...,75.
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odd values ofN = 57,59,...,75 in the neighborhood of order perturbation calculation in th& expansion and

the critical point. The second derivativBES" /aA2 is  confirm that the radius of convergence is equalito
shown in Fig. 1(b) for odd values of = 1,3,...,75. Using the coefficients presented in Ref. [21], Ivanov [22]
This function develops a discontinuity as a function ofused the Neville-Richardson analysis to obtain a very
A, reflecting the fact that the ground-state energy is a@ccurate value fon, = 1.097 660 79.

constant (Wthh is equa| to the threshold energy) for As a basis function for this procedure we choose the
A > A.. In both Figs. 1(a) and 1(b) only odd values of following trial functions [23,24]:

N are shown since the curves for even valuesvoare

o 1 Cjo_
qualitatively identical. Wi (%1, %) = ﬁ(r{rﬁ (ri+pr2)
In order to obtain the extrapolated value of the se- J i —(Brtar .k
quencesA™ for FOM and theA™WN) for PR, we used + rirge” P, (8)

the general algorithm of Bulirsch and Stoer [18] which is\\hare o and B are fixed parameters and, is the
widely used for FSS extrapolations [2]. The extrapolateqerelectron distance. This set of trial functions, Eq. (8),
values of PR are shown in Fig. 2 and listed in Table . complete for theS states [24]. We tooky = 2 and

Our result forA. is in complete agreement with the ex- 5 _ 0.15. A more complete discussion of the behavior
act value obtained by numerical integration of the radialyf the eigenvalues as functions of these parameters will
Schrédinger equation [19]. be given elsewhere [15]. The finite order of the basis

We may now consider another type of interaction,qet is allowed to beV = i + j + k, so the number of
the long-range Coulomb potential in atoms. The scaleqii,| functions iSM(N) = SN3 + N2 + TN 4 ay
2 8 2 ’

Hamiltonian of a multielectron atom can be written as whereay is 1 (%) it N is even (odd).

_ 1, 1 1 In the neighborhood of the critical point, the ratio
HQ) = Z[ ) Vi ri:| + )‘Z rij’ () between the ground-state energy and the second lowest

. . i = eigenvalue raised to pow@f as a function ofA is shown
whereA is the inverse of the nuclear charge. The ground;, Fig. 3(a) for N = 6,7,...,13. The behavior of the

state Eq(A) has an expansion in powers of with a e (N) o0 . .
nonzero radius of convergence [20], and the behavior';'eco.nd derlvatlv@ Eo /a.’\ as a function ofl is shown_

of the ground state near the thresholdgigA) = (A, — n Flg. 3(b). This function develops a delta funcyon
N+ 0((h — A?)[L7] ¢ like divergency asN — o, as expected when the first

The FSS and PR equations are general and can bdeeﬂ\éﬁ;uv?t:z ((jalitcrzmcl)?f;?ouns r?:gtrf:ggec')f Bulirsch and Stoer
applied to the Hamiltonian of the multielectron atom 9 P

: 2,18], we have found that the results of FOM and
[Eq. (7)]- In this Letter, we performed the test for the[ b . .
special case of two-electron atoms. Several techniquegzar;?t:;(;ﬁt;(ggcsﬁsvrir?g_rggllstle agreement with the
have been used to study the radius of convergence of :
In summary, we have presented a PR method that

Eo(A) for the two-electron atoms ([21] and references. . S . o
therein). Morgan and co-workers [21] performed a 4013 viable for obtaining information about the critical
' 9 P properties of isolated bound states of a large class of

Hamiltonians. In particular, we calculated the critical

1.20 — screening length for a one-electron screened Coulomb
<A potential and the critical charge for two-electron atoms.
i ] The results are in complete agreement with the exact
115 F ooddN | numerical and large-order perturbation calculations. This
: aeven N
X NN ]
& N \\ TABLE |. Comparison of A. for the screened Coulomb
g’_ 1.10 ”A\ o - potential and the two-electron atoms.
~ A \
< K NN - Screened Coulomb He-like atoms
\ N Method  Parity Ae Ac
\
1.05 |- \ \\ 7 FOM, even  1.1906 + 0.0001  1.09766 = 0.00002
| \ \ | Eq. (1) odd  1.1907 = 0.0002
\\ Y
1.00 ) 1 ) L\ 1 ) PR, even 1.1906 = 0.0003 1.0976 = 0.0004
0.00 0.10 0.20 0.30 0.40 Eqg. (2) odd  1.1906 = 0.0005
1/N

Ref. 1.190 606 & 1.097 66079

FIG. 2. AMN~2 for the screened Coulomb potential as a
function of the inverse of the system order for odd and even &rom Ref. [19].
The value of the extrapolatexl. is also shown by an arrow. bFrom Ref. [22].
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() 1.00 T T . I r distances for multielectron atoms and simple molecular
systems.
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