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Electronic Structure Critical Parameters From Finite-Size Scaling
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We present finite-size scaling and phenomenological renormalization equations for calculations
the critical points of the electronic structure of atoms and molecules. Results show that the meth
is efficient and very accurate for estimating the critical screening length for one-electron screen
Coulomb potentials and the critical nuclear charge for two-electron atoms. The method has potent
applicability for many-body quantum systems. [S0031-9007(97)04408-6]

PACS numbers: 31.15.–p, 05.70.Jk
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The analogies between quantum mechanical syste
and statistical mechanics of classical systems has been
subject of study for many years. The correspondences b
tween equilibrium statistical mechanics and quantum fie
theory are well established [1]. The Hamiltonian limit
was widely used to obtain critical points and critical expo
nents [2] as well as mean-field phase diagrams for clas
cal two-dimensional systems [3]. Recently, considerab
interest has also been shown in the analogy between
quantum Hamiltonian and the transfer matrix in statistica
mechanics. The fact that a non-negative matrix could b
interpreted as a transfer matrix of a classicalpseudosystem
was recently used to study the ground-state properti
of a d-dimensional quantum system, using the quantu
Hamiltonian as the transfer matrix of a hypotheticalsd 1

1d-dimensional statistical system [4,5]. In atomic and
molecular physics, it has been suggested that there are p
sible analogies between critical phenomena and singula
ties of the energy [6–8]. In particular, it has been note
that, using a nonlinear variational approach, the energ
curves of the two-electron atoms as a function of the in
verse of the nuclear charge resemble the free energy cur
as a function of the temperature for the Van der Waals g
[6]. Recently, Serra and Kais [9,10] have shown that sym
metry breaking of the electronic structure configuration
for the N-electron atoms and simple molecular system
at the large dimension limit can be studied as mean-fie
problems in statistical mechanics.

By virtue of the possibility of taking the lowest
eigenvalues of a quantum HamiltonianH sl1, . . . , lkd
of a set of parametershlij as the leading eigenval-
ues of a transfer matrix of a classicalpseudosystem,
we present in this Letter a general method for studyin
the analytical behavior of energies of atoms and molecul
near acritical point as a function of the parametershlij.
In this contextcritical means the values ofhlij for which
a bound-state energy becomes absorbed or degener
with the continuum. In our examples, we have considere
only Hamiltonians with one parameterl sk ­ 1d, but, as
in statistical mechanics, the method is general and is n
restricted to this condition [2,11].

In this Letter, we used thefinite-size scaling(FSS)
ansatz to obtain the critical points for electronic structur
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problems. The general idea of the FSS in classic
statistical mechanics [12] is to extract information abo
a sd 1 1d-dimensional lattice model in the neighborhoo
of the critical point by systematic numerical studies
the samed-dimensional model. We apply the FSS ansa
to study the properties of a quantum Hamiltonian b
a systematic finite basis-set expansion using a mapp
between the quantum Hamiltonian and the statistic
mechanics of a classical pseudosystem.

We can consider, without loss of generality, that th
quantum HamiltonianH sld has a well-defined ground-
state energy below a critical pointl , lc. For a
l-independent complete basis set, theN th-order approxi-
mation to the spectrum will be given by the eigenvalu
of a finiteMsNd 3 MsNd Hamiltonian matrix, withMsNd
being the number of elements of the truncated basis se
order N. Therefore, the leading eigenvalue of the fini
matrix will be analytical, where the exact solution is non
analytical atl ­ lc. In order to obtain the value oflc

from studying the eigenvalues of a finite-size Hamiltonia
matrix, one has to define a sequence of pseudocriti
parameterslsNd. Although there is no unique recipe to
define such a sequence, one obvious possibility, if t
threshold is known, is to definelsNd as the value in which
the ground-state energy in theNth-order approximation,
E

sNd
0 sld, is equal to the threshold energyET ,

E
sNd
0 slsNdd ­ ET . (1)

This approach is analogous to the first order meth
(FOM) in statistical mechanics which has been used
study two-dimensional classical systems which display
first order phase transition atd ­ 1 [11].

An alternative method to define the sequence of t
pseudocritical values ofl is to calculate the first and sec
ond lowest eigenvalues of theH matrix for two different
orders,N andN 0. This method has the advantage that
is not necessary to knowa priori the value of the thresh-
old energyET . The pseudocritical parameterlsN ,N 0 d is
defined as the solution of the following equation:√

E
sNd
1 slsN ,N 0 dd

E
sNd
0 slsN ,N 0 dd

!N

­

√
E

sN 0 d
1 slsN ,N 0 dd

E
sN 0 d
0 slsN ,N 0 dd

!N 0

, (2)
© 1997 The American Physical Society
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whereE
sNd
0 sld and E

sNd
1 sld are the ground state and the

first excited eigenvalues of a sector of given symmetry
theH matrix.

This approach for the quantum system is inspired
the phenomenological renormalization(PR) [13] method,
which is based on FSS arguments in statistical mech
ics [12]. Using the PR method, one can obtain the critic
points by searching for the fixed points of the phenomen
logical renormalization equation for a finite-size system
The key step is to calculate the correlation lengthjN of
the classical pseudosystem for a given basis set of or
N . The correlation length of the classical pseudosyste
is defined as

jN sld ­ 2
1

lnfEsNd
1 sldyE

sNd
0 sldg

. (3)

The PR consists of writing a renormalization equation f
the correlation length of two finite systems of differen
ordersN andN 0,

jN slsN ,N 0 dd
N

­
jN 0 slsN ,N 0 dd

N 0
. (4)

It is easy to see that Eq. (4) is equivalent to Eq. (2).
general, the best choice forN andN 0 is the value which
minimizesN 2 N 0 [2], that is,N 0 ­ N 2 1, except when
there are parity effects, then one has to takeN 0 ­ N 2 2
[11,14]. As far asN andN 0 are finite, the method is an
approximation which can be improved by choosingN as
large as possible.

To test the method, two cases with qualitatively diffe
ent behavior near the critical point have been investigat
One with long-range interactions is the Hamiltonia
of two-electron atoms, and the other with a short-ran
interaction is the Hamiltonian of a one-electron syste
with a screened Coulomb potential. For both systems
critical point is the value of the parameter entering i
Hamiltonian, the nuclear charge for the first system a
the screening length for the second, where the groun
state energy becomes degenerate with the lowest
ergy continuum. In both cases, the HamiltonianH sld
commutes with the total angular momentum$L . There-
fore, we can study independently each sector of t
Hamiltonian, which corresponds to each eigenvalue of$L .
In this Letter, only the ground-state results with, ­ 0
were presented; studies of nonzero values of the angu
momentum will be given elsewhere [15].

The Hamiltonian for the screened Coulomb potential
atomic units can be written as

H sld ­ 2
1
2

=2 2
e2lr

r
1 C , (5)

where C is a constant added to the Hamiltonian in o
der to assure that the two lowest eigenvalues will ha
the same sign. It is known that, when the ground-sta
energy of this Hamiltonian is expressed as a power s
ries in l, the expansion is asymptotic and has a ze
radius of convergence [16] and has the asymptotic fo
of
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mula E0 . slc 2 ld2 1 Osssslc 2 ld3ddd [17]. To carry
out the calculations, we choose the following complet
(nonorthogonal) basis set forS states:

Cns $xd ­
a3y2

p
8p sn 1 1d

e2ary2Ls1d
n sard , (6)

wherea is a fixed parameter andL
s1d
n are the generalized

Laguerre polynomials of order 1 and degreen. In this
case, the size of theH matrix of orderN is MsNd ­
N 1 1.

Because of parity effects,N 0 ­ N 2 2 was taken in
Eq. (2). The behavior of the ratio between the ground
state energy and the second lowest eigenvalue raised
powerN as a function ofl for odd values ofN is shown
in Fig. 1(a). Also shown in Fig. 1(a) are the ten highes

FIG. 1. For the screened Coulomb potential: (a) The ratio b
tween the ground-state energy and the second lowest eig
value raised to a powerN as a function ofl for odd values
of N ­ 3, 5, . . . , 75 as well as the ten highest odd values o
N ­ 57, 59, . . . , 75 (inset) in the neighborhood of the critical
point lc ­ 1.1906. The constantC ­ 1 was added to the ra-
tio as explained in the text. (b) The second derivative of th
energy as a function ofl for odd values ofN ­ 1, 3, . . . , 75.
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odd values ofN ­ 57, 59, . . . , 75 in the neighborhood of
the critical point. The second derivative≠2E

sNd
0 y≠l2 is

shown in Fig. 1(b) for odd values ofN ­ 1, 3, . . . , 75.
This function develops a discontinuity as a function
l, reflecting the fact that the ground-state energy is
constant (which is equal to the threshold energy) f
l . lc. In both Figs. 1(a) and 1(b) only odd values o
N are shown since the curves for even values ofN are
qualitatively identical.

In order to obtain the extrapolated value of the s
quenceslsNd for FOM and thelsN ,N 0d for PR, we used
the general algorithm of Bulirsch and Stoer [18] which
widely used for FSS extrapolations [2]. The extrapolat
values of PR are shown in Fig. 2 and listed in Table
Our result forlc is in complete agreement with the ex
act value obtained by numerical integration of the rad
Schrödinger equation [19].

We may now consider another type of interactio
the long-range Coulomb potential in atoms. The scal
Hamiltonian of a multielectron atom can be written as

H sld ­
X

i

"
2

1
2

=2
i 2

1
ri

#
1 l

X
i,j

1
rij

, (7)

wherel is the inverse of the nuclear charge. The groun
state E0sld has an expansion in powers ofl with a
nonzero radius of convergence [20], and the behav
of the ground state near the threshold isE0sld . slc 2

ld 1 Osssslc 2 ld2ddd [17].
The FSS and PR equations are general and can

applied to the Hamiltonian of the multielectron atom
[Eq. (7)]. In this Letter, we performed the test for th
special case of two-electron atoms. Several techniq
have been used to study the radius of convergence
E0sld for the two-electron atoms ([21] and reference
therein). Morgan and co-workers [21] performed a 40

FIG. 2. lN ,N22 for the screened Coulomb potential as
function of the inverse of the system order for odd and evenN.
The value of the extrapolatedlc is also shown by an arrow.
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order perturbation calculation in thel expansion and
confirm that the radius of convergence is equal tolc.
Using the coefficients presented in Ref. [21], Ivanov [22
used the Neville-Richardson analysis to obtain a ver
accurate value forlc ­ 1.097 660 79.

As a basis function for this procedure we choose th
following trial functions [23,24]:

Cijks $x1, $x2d ­
1

p
2

sri
1r

j
2e2sar11br2d

1 r
j
1ri

2e2sbr11ar2ddrk
12 , (8)

where a and b are fixed parameters andr12 is the
interelectron distance. This set of trial functions, Eq. (8)
is complete for theS states [24]. We tooka ­ 2 and
b ­ 0.15. A more complete discussion of the behavio
of the eigenvalues as functions of these parameters w
be given elsewhere [15]. The finite order of the basi
set is allowed to beN $ i 1 j 1 k, so the number of
trial functions is MsNd ­

1
12 N3 1

5
8 N2 1

17
12 N 1 aN ,

whereaN is 1 s 7
8 d if N is even (odd).

In the neighborhood of the critical point, the ratio
between the ground-state energy and the second low
eigenvalue raised to powerN as a function ofl is shown
in Fig. 3(a) for N ­ 6, 7, . . . , 13. The behavior of the
second derivative≠2E

sNd
0 y≠l2 as a function ofl is shown

in Fig. 3(b). This function develops a delta function
like divergency asN ! `, as expected when the first
derivative is discontinuous but finite.

Using the extrapolation method of Bulirsch and Stoe
[2,18], we have found that the results of FOM and
PR methods forlc are in complete agreement with the
“exact” results as shown in Table I.

In summary, we have presented a PR method th
is viable for obtaining information about the critical
properties of isolated bound states of a large class
Hamiltonians. In particular, we calculated the critica
screening length for a one-electron screened Coulom
potential and the critical charge for two-electron atoms
The results are in complete agreement with the exa
numerical and large-order perturbation calculations. Th

TABLE I. Comparison of lc for the screened Coulomb
potential and the two-electron atoms.

Screened Coulomb He-like atoms
Method Parity lc lc

FOM, even 1.1906 6 0.0001 1.097 66 6 0.000 02
Eq. (1) odd 1.1907 6 0.0002

PR, even 1.1906 6 0.0003 1.0976 6 0.0004
Eq. (2) odd 1.1906 6 0.0005

Ref. 1.190 606 6a 1.097 660 79b

aFrom Ref. [19].
bFrom Ref. [22].
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FIG. 3. For the two-electron atoms: (a) The ratio between th
ground-state energy and the second lowest eigenvalue rai
to a powerN as a function ofl for N ­ 6, 7, . . . , 13. (b)
The second derivative of the energy as a function ofl for
N ­ 6, 7, . . . , 13.

method assures that the fixed point obtained by solvi
the PR equations is indeed a critical point, which mea
that the system has a different behavior above and bel
the critical point. Also, this method is efficient for the
problems considered in this Letter and can be appli
to the general Hamiltonian of multielectron atoms an
molecules with no other requirements than knowing th
matrix elements in a given basis set. Currently, there is
definitive estimate oflc other than for the He-like atoms
[21]. Research is underway to estimate and exami
the underlying structure of the critical parameters [15
such as the critical charges and the critical internucle
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distances for multielectron atoms and simple molecu
systems.
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