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Electronic Structure Critical Parameters For the Lithium Isoelectronic Series
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The finite-size scaling method is used to calculate the critical parameters for the lithium isoelectronic
series. The critical nuclear charge, which is the minimum charge necessary to bind three electrons, for
the ground state was found to e = 2. Results show that the analytical behavior of the energy as
a function of the nuclear charge for lithium is completely different from that of helium. Analogy with
standard phase transitions show that for helium, the transition from a bound state to a continuum is
“first order,” while lithium exhibits a “second order phase transition.” [S0031-9007(98)06405-9]

PACS numbers: 31.15.—p, 05.70.Jk

The study of the critical parameters of a quantum Hamil-high order calculations were necessary to study the asymp-
tonian and quantum phase transitions have attracted mudtbtic behavior of the perturbation series and to determine
interest in recent years [1]. These transitions take placthat the radius of convergenc¥;, is equal toi., the criti-
at the absolute zero of temperature, where phase transitiaal value ofA for which the Hamiltonian has a bound state
means that the quantum ground state of the system change#h zero binding energy. Estimating the critical charge,
in some fundamental way as some microscopic paramez,., is very important in determining if a negative ion is
ters change in the Hamiltonian. In atomic and molecustable or not. The fact th&Z. = 0.911 16 < 1 for two-
lar physics, it has been suggested that there are possildéectron atoms explains why the Hs a stable negative
analogies between critical phenomena and singularities adbn. Currently there is not a very reliable numerical esti-
the energy [2—4]. Analogies between symmetry breakingnate of the critical nuclear charge nor the radius of con-
of electronic structure configurations and standard phasesrgence of thd /Z expansion for many electron atoms.
transitions have been established for many electron aton®though there are well established inequalities based on
and simple molecular systems by studying the correspona¢zombinations of mathematical theorems [13] and experi-
ing large dimension limit Hamiltonian [5,6]. mental results, there is not much reliable numerical evi-

Recently, we presented the finite-size scaling (FSS)lence for testing these inequalities [12]. Accurate and
method to calculate the critical parameters for electronidirect estimates of the critical nuclear charges for many
structure [7,8]. In statistical mechanics, the FSS methoélectron atoms are the main driving force for introduc-
provides a way to extrapolate information obtained froming new methods, such as the finite-size scaling method,
a finite system to the thermodynamic limit [9,10]. In our to study the electronic structure critical parameters.
applications, the finite size corresponds to the number of In this Letter we present the first report of an accurate
elements in a complete basis set used to expand the exadtimate of the critical nuclear charge for three-electron
eigenfunction of a given Hamiltonian. In the FSS methodatoms. Using the finite-size scaling method, study of
we assumed that the two lowest eigenvalues of the quarthe analytical behavior of the energy near the critical
tum Hamiltonian could be taken as the leading eigenvaluegoint shows that the open shell system, such as the
of a transfer matrix of a classical pseudosystem. The phdithiumlike atoms, is completely different from that of a
nomenological renormalization equation was used to obelosed shell system, such as the heliumlike atoms. The
tain the critical properties of the system. In this approachransition in the closed shell systems from a bound state
one has to rely on the analogy to classical statistical meto a continuum resemble a “first-order phase transition”
chanics, a more direct finite-size scaling approach withoutvhile for the open shell system, the transition of the
the need to make such an analogy was established byvalence electron to the continuum is a “continuous phase
systematic expansion in a finite (truncated) basis set [11]transition.”

The analytical behavior of the energy as a function of pa- We may now consider the scaled Hamiltonian of the
rameters for a given system has been the subject of studighiumlike atoms, which can be written as
for many years. In particular, the study of the analytical
behavior of the energy as a function of the nuclear charge, () = S J 1 SIS
Z. Morgan and co-workers [12] have performed a 401- ) = Z[_fvi B _} A =
order perturbation calculation to resolve the controversy
over the radius of convergence of the= 1/Z expansion where r;; are the interelectron distances, andis the
for the ground state energy of the heliumlike ions. Suchinverse of the nuclear charge.

i=1 i i<j=1Tij
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As a basis function for this procedure we used the v = — 1 @)
Hylleraas-type functions [14] as presented by Yan and |0g[E§N)()l) /E(()N)()l)]’
Drake [15]

o ik omon and E(()N)(A) and EgN)()l) are, respectively, the ground
Wijkimn (X1, X2, X3) = C A(r{rarsriprasrs state and the first excited eigenvalues of a sector of given
X emalntr)=Briyy () symmetry of theH matrix.

In order to obtain the extrapolated value of the se-
where o and g are fixed parametersy; is the spin  quencesx™ for lithiumlike atoms, we used the general
function with spin angular moment/2 algorithm of Bulirsch and Stoer [19]. The extrapolated

_ . value from the PR method was found to be = 0.48 *+
X = aDp)al) = fha2)ad), @) (.03 while the FOM method gives, — 0497 + 0.008.
C is a normalization constant, anl is the usual three- The results of the pseudocritical inverse chanﬁ@?, asa
particle antisymmetrizer operator [15]. function of 1/N, for N = 3,4,...,8 are shown in Fig. 1.
We took ¢« = 0.9 and B8 = 0.1 in order to obtain In the neighborhood of the critical charge, the ioniza-
accurate results near the critical chaffje= 2. Note that tion energy for lithiumlike atoms] = E;; — Ey., gO€s
this choice of the parameters is not the best for a lithiunsmoothly to zero as a function of as shown in Fig. 2.

atom with chargeZ = 3 [15]. This behavior is different from that of our previous re-
In order to calculate the matrix elements of the Hamil-sults [7,8] for the heliumlike atoms where the ioniza-
tonian Eqg. (1) we need integrals of the general form tion energy bends sharply to zero at the helium critical

A(CHe) = 1.0976. The different behavior of the energy as
1G],k l,m,n;a, B;7y) =f &xy dPxyd’x3 e e B2 a function of the Hamiltonian parameter, suggests, an
_ analogy with standard phase transitions in statistical me-
X e Yriryrkrl ey . (4)  chanics, that the transition from a ground bound state to

) ) ] a continuum in the heliumlike atoms resembile first order
For the numerical evaluation of these integrals, we useg ase transitions, while for lithiumlike atoms, the tran-

an efficient algorithm recently developed by Drake andtion is continuous. To investigate this analogy we ex-

Yan [16]. All calculations were performed in quadruple gmined the first and second derivatives of the ionization
precision on an IBM RISZ6000 580. The finite order of energy as a function of.
the basis setis allowed tobet j + k + [+ m + n = In virtue of the behavior of the energy curves, we
N. The maximum value o was taken to0 b&V =8,  aypect the first derivative of the ionization energy with
which gives al589 X 1589 Hamiltonian matrix. respect to to develop a steplike discontinuity af'e) for

In order to obtain the value of. from studying the e heljumlike atoms [7,8] but will remain continuous for

eigenvalues of a finite-size Hamiltonian matrix one hashe |ithjumlike atoms. Figure 3 shows the first derivative
to define a sequence of pseudocritical paramew,‘l@, is continuous for lithiumlike atoms as a function af
Although there is no unique recipe to define such a

sequence, in this Letter we used two methods: (i) the
first order method (FOM), which can be applied if the

threshold energy is known [7,17]. In this method one 0.52 ' ' ' ' '
definesA") as the value in which the ground state energy i 1
in the Nth-order approximationE(()N)(A), is equal to the 0.50 %=—____ -
threshold energ¥r, | \\\ \H\A\A\A\_
E(()N)(/\(N)) = Er(A™), (5) " 0.48 + AN —
and (ii) the phenomenological renormalization (PR) [18] I |
method, where the sequence of the pseudocritical values 0.46 - N
of A can be calculated by knowing the first and the second L e i
lowest eigenvalues of thé{ matrix for two different A FOM
orders,N and N'. The critical A. can be obtained by 0.44 = oPR 7
searching for the fixed point of the phenomenological r 1
renormalization equation for a finite-size system with 0.42 s ! s ! s
N =N — 1, 0.0 0.1 0.2 0.3
™) _ gya(A) N
N TN -1 (6)  FIG.1. A™ for three-electron atoms as a function of the

. . inverse of the system ordeW. The results are from first
where the correlation length of the classical pseudosystegtder method (FOM) and the phenomenological renormaliza-
is defined as tion (PR).
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FIG. 4. The second derivative of the ground state ionization
energy as a function of\ for the three-electron atoms for
N =12,...,8.

FIG. 2. lonization energyJ(M, for three-electron atoms as
a function of A for N = 1,2,...,8 (N = 1 means five basis

functions were used in the calculations avid= 8 means 1589

basis functions).

the critical exponent was greater than 1. Figure 5 shows
As expected, the second derivative will develop a sharphe extrapolated value of the numerically fitted exponent
delta functionlike behavior a& is getting larger for the as a function ofi/N for N = 1,2,...,8. This value was
heliumlike atoms [7,8], but it is much broader for the found to bea = 1.64 + 0.05. Contrary to the helium

lithiumlike atoms as shown in Fig. 4. case, where the Hamiltonian has a square integrable eigen-
In a previous study, we showed that for the helium-function atA®) = A(H¢), the Hamiltonian for lithiumlike
like atoms the critical exponent for the energy,=  atoms does not have a square integrable wave function at

(Ae =A% A— A_,isequalto 1@ = 1[7,8]. Thisre- the bottom of the continuum.

sult was in complete agreement with an earlier theorem of Finally, the behavior of the correlation lengg"), for
Simon and co-workers [20] which proved thdtA.) for  the associated classical pseudosystem [8] as a function of
two electron atoms has a square integrable eigenfunction is shown in Fig. 6. In this figure, the behavior of the
corresponding to a threshold bound state with zero ioneorrelation length is characteristic of a continuous phase
ization potential and an energy critical exponent= 1.  transition using the finite-size scaling method, which goes
For three electron atoms, we obtained different resultdjke an inverse power law i — A.).
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FIG. 3. The first derivative of the ground state ionization FIG. 5. The exponenta™), for the energy of the three-
energy as a function of\ for the three-electron atoms for electron atoms as a function of the inverse of the system
N=12,...,8. orderN.
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