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The finite-size scaling method is used to calculate the critical parameters for the lithium isoelectr
series. The critical nuclear charge, which is the minimum charge necessary to bind three electron
the ground state was found to beZc . 2. Results show that the analytical behavior of the energy a
a function of the nuclear charge for lithium is completely different from that of helium. Analogy wi
standard phase transitions show that for helium, the transition from a bound state to a continuu
“first order,” while lithium exhibits a “second order phase transition.” [S0031-9007(98)06405-9]
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The study of the critical parameters of a quantum Ham
tonian and quantum phase transitions have attracted m
interest in recent years [1]. These transitions take pla
at the absolute zero of temperature, where phase transi
means that the quantum ground state of the system chan
in some fundamental way as some microscopic param
ters change in the Hamiltonian. In atomic and molec
lar physics, it has been suggested that there are poss
analogies between critical phenomena and singularities
the energy [2–4]. Analogies between symmetry breakin
of electronic structure configurations and standard pha
transitions have been established for many electron ato
and simple molecular systems by studying the correspon
ing large dimension limit Hamiltonian [5,6].

Recently, we presented the finite-size scaling (FS
method to calculate the critical parameters for electron
structure [7,8]. In statistical mechanics, the FSS meth
provides a way to extrapolate information obtained from
a finite system to the thermodynamic limit [9,10]. In ou
applications, the finite size corresponds to the number
elements in a complete basis set used to expand the ex
eigenfunction of a given Hamiltonian. In the FSS metho
we assumed that the two lowest eigenvalues of the qua
tum Hamiltonian could be taken as the leading eigenvalu
of a transfer matrix of a classical pseudosystem. The ph
nomenological renormalization equation was used to o
tain the critical properties of the system. In this approac
one has to rely on the analogy to classical statistical m
chanics, a more direct finite-size scaling approach witho
the need to make such an analogy was established b
systematic expansion in a finite (truncated) basis set [11

The analytical behavior of the energy as a function of p
rameters for a given system has been the subject of stu
for many years. In particular, the study of the analytica
behavior of the energy as a function of the nuclear charg
Z. Morgan and co-workers [12] have performed a 401
order perturbation calculation to resolve the controver
over the radius of convergence of thel ­ 1yZ expansion
for the ground state energy of the heliumlike ions. Suc
0031-9007y98y80(24)y5293(4)$15.00
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high order calculations were necessary to study the asym
totic behavior of the perturbation series and to determi
that the radius of convergence,lp, is equal tolc, the criti-
cal value ofl for which the Hamiltonian has a bound stat
with zero binding energy. Estimating the critical charg
Zc, is very important in determining if a negative ion i
stable or not. The fact thatZc ­ 0.911 16 , 1 for two-
electron atoms explains why the H2 is a stable negative
ion. Currently there is not a very reliable numerical es
mate of the critical nuclear charge nor the radius of co
vergence of the1yZ expansion for many electron atoms
Although there are well established inequalities based
combinations of mathematical theorems [13] and expe
mental results, there is not much reliable numerical e
dence for testing these inequalities [12]. Accurate a
direct estimates of the critical nuclear charges for ma
electron atoms are the main driving force for introduc
ing new methods, such as the finite-size scaling meth
to study the electronic structure critical parameters.

In this Letter we present the first report of an accura
estimate of the critical nuclear charge for three-electr
atoms. Using the finite-size scaling method, study
the analytical behavior of the energy near the critic
point shows that the open shell system, such as
lithiumlike atoms, is completely different from that of a
closed shell system, such as the heliumlike atoms. T
transition in the closed shell systems from a bound sta
to a continuum resemble a “first-order phase transitio
while for the open shell system, the transition of th
valence electron to the continuum is a “continuous pha
transition.”

We may now consider the scaled Hamiltonian of th
lithiumlike atoms, which can be written as

H sld ­
3X

i­1

∑
2

1
2

=2
i 2

1
ri

∏
1 l

3X
i,j­1

1
rij

, (1)

where rij are the interelectron distances, andl is the
inverse of the nuclear charge.
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As a basis function for this procedure we used th
Hylleraas-type functions [14] as presented by Yan a
Drake [15]

Cijklmns $x1, $x2, $x3d ­ CAsri
1r

j
2rk

3 rl
12rm

23rn
31

3 e2asr11r2de2br3 x1d , (2)

where a and b are fixed parameters,x1 is the spin
function with spin angular moment 1y2

x1 ­ as1dbs2das3d 2 bs1das2das3d , (3)

C is a normalization constant, andA is the usual three-
particle antisymmetrizer operator [15].

We took a ­ 0.9 and b ­ 0.1 in order to obtain
accurate results near the critical chargeZ . 2. Note that
this choice of the parameters is not the best for a lithiu
atom with chargeZ ­ 3 [15].

In order to calculate the matrix elements of the Ham
tonian Eq. (1) we need integrals of the general form

Isi, j, k, l, m, n; a, b; gd ­
Z

d3x1 d3x2 d3x3 e2ar1 e2br2

3 e2gr3 ri
1r

j
2rk

3 rl
12rm

23rn
31 . (4)

For the numerical evaluation of these integrals, we us
an efficient algorithm recently developed by Drake an
Yan [16]. All calculations were performed in quadrupl
precision on an IBM RISCy6000 580. The finite order of
the basis set is allowed to bei 1 j 1 k 1 l 1 m 1 n #

N . The maximum value ofN was taken to beN ­ 8,
which gives a1589 3 1589 Hamiltonian matrix.

In order to obtain the value oflc from studying the
eigenvalues of a finite-size Hamiltonian matrix one ha
to define a sequence of pseudocritical parameters,lsNd.
Although there is no unique recipe to define such
sequence, in this Letter we used two methods: (i) t
first order method (FOM), which can be applied if th
threshold energy is known [7,17]. In this method on
defineslsNd as the value in which the ground state energ
in the Nth-order approximation,E

sNd
0 sld, is equal to the

threshold energyET ,

E
sNd
0 slsNdd ­ ET slsNdd , (5)

and (ii) the phenomenological renormalization (PR) [18
method, where the sequence of the pseudocritical val
of l can be calculated by knowing the first and the seco
lowest eigenvalues of theH matrix for two different
orders,N and N 0. The critical lc can be obtained by
searching for the fixed point of the phenomenologic
renormalization equation for a finite-size system wit
N 0 ­ N 2 1,

jN slsNdd
N

­
jN21slsNdd

N 2 1
, (6)

where the correlation length of the classical pseudosyst
is defined as
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jN sld ­ 2
1

logfEsNd
1 sldyE

sNd
0 sldg

, (7)

and E
sNd
0 sld and E

sNd
1 sld are, respectively, the ground

state and the first excited eigenvalues of a sector of giv
symmetry of theH matrix.

In order to obtain the extrapolated value of the s
quenceslsNd for lithiumlike atoms, we used the genera
algorithm of Bulirsch and Stoer [19]. The extrapolate
value from the PR method was found to belc ­ 0.48 6

0.03 while the FOM method giveslc ­ 0.497 6 0.008.
The results of the pseudocritical inverse charge,lsNd, as a
function of 1yN , for N ­ 3, 4, . . . , 8 are shown in Fig. 1.
In the neighborhood of the critical charge, the ioniza
tion energy for lithiumlike atoms,I ­ ELi 2 EHe, goes
smoothly to zero as a function ofl as shown in Fig. 2.
This behavior is different from that of our previous re
sults [7,8] for the heliumlike atoms where the ioniza
tion energy bends sharply to zero at the helium critic
lsHed

c . 1.0976. The different behavior of the energy a
a function of the Hamiltonian parameter,l, suggests, an
analogy with standard phase transitions in statistical m
chanics, that the transition from a ground bound state
a continuum in the heliumlike atoms resemble first ord
phase transitions, while for lithiumlike atoms, the tran
sition is continuous. To investigate this analogy we e
amined the first and second derivatives of the ionizati
energy as a function ofl.

In virtue of the behavior of the energy curves, w
expect the first derivative of the ionization energy wit
respect tol to develop a steplike discontinuity atlsHed

c for
the heliumlike atoms [7,8] but will remain continuous fo
the lithiumlike atoms. Figure 3 shows the first derivativ
is continuous for lithiumlike atoms as a function ofl.

0.0 0.1 0.2 0.3
1/N

0.42

0.44

0.46

0.48

0.50
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λ(N)

λc

FOM
PR

FIG. 1. lsNd for three-electron atoms as a function of th
inverse of the system orderN. The results are from first
order method (FOM) and the phenomenological renormaliz
tion (PR).
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FIG. 2. Ionization energy,I sNd, for three-electron atoms as
a function of l for N ­ 1, 2, . . . , 8 (N ­ 1 means five basis
functions were used in the calculations andN ­ 8 means 1589
basis functions).

As expected, the second derivative will develop a sha
delta functionlike behavior asN is getting larger for the
heliumlike atoms [7,8], but it is much broader for th
lithiumlike atoms as shown in Fig. 4.

In a previous study, we showed that for the helium
like atoms the critical exponent for the energy,E .
slc 2 lda ; l ! l2

c , is equal to 1,a ­ 1 [7,8]. This re-
sult was in complete agreement with an earlier theorem
Simon and co-workers [20] which proved thatHslcd for
two electron atoms has a square integrable eigenfunct
corresponding to a threshold bound state with zero io
ization potential and an energy critical exponenta ­ 1.
For three electron atoms, we obtained different resul

FIG. 3. The first derivative of the ground state ionizatio
energy as a function ofl for the three-electron atoms for
N ­ 1, 2, . . . , 8.
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FIG. 4. The second derivative of the ground state ionizati
energy as a function ofl for the three-electron atoms fo
N ­ 1, 2, . . . , 8.

the critical exponent was greater than 1. Figure 5 sho
the extrapolated value of the numerically fitted expone
as a function of1yN for N ­ 1, 2, . . . , 8. This value was
found to bea . 1.64 6 0.05. Contrary to the helium
case, where the Hamiltonian has a square integrable eig
function atlsHed ­ lsHed

c , the Hamiltonian for lithiumlike
atoms does not have a square integrable wave functio
the bottom of the continuum.

Finally, the behavior of the correlation lengthjsNd, for
the associated classical pseudosystem [8] as a functio
l is shown in Fig. 6. In this figure, the behavior of th
correlation length is characteristic of a continuous pha
transition using the finite-size scaling method, which go
like an inverse power law insl 2 lcd.

0.0 0.1 0.2 0.3 0.4 0.5
1/N

1.2

1.4

1.6

α(N)

FIG. 5. The exponent,asNd, for the energy of the three-
electron atoms as a function of the inverse of the syst
orderN.
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FIG. 6. The correlation length,jsNd, as a function ofl for the
three-electron atoms forN ­ 1, 2, . . . , 8.

In summary, results show that there is a fundamen
difference in behavior of the energy as a function ofl

for the closed shell heliumlike atoms and the open sh
lithiumlike atoms. The transition in the former betwee
a bound state to a continuum has all the characterist
of first-order phase transition while the latter has
continuous phase transition. Although in atomic physic
only integer values of the nuclear charge have a physic
meaning, this procedure gives a direct method to pred
the stability of atomic negative ions by studying a
isoelectronic series of like atoms. Results show that wh
H2 is a stable negative ion, He2 is not stable since the
critical charge is at the limit of the He atom. Researc
is underway to calculate critical charges for other atom
to verify if one can classify atoms in the periodic tabl
according to their type of phase transition and whether
not there are more than two kinds of phase transitions.
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