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Abstract

Considering recent advancements and successes in the development of efficient quantum
algorithms for electronic structure calculations — alongside similarly impressive results us-
ing machine learning techniques for computation — hybridizing quantum computing with
machine learning for the intent of perform electronic structure calculations is a natural
progression. Here we present a hybrid quantum algorithm employing a quantum restricted
Boltzmann machine to obtain accurate molecular potential energy surfaces. The Boltzmann
machine trains parameters within an Ising-type model which exists in thermal equilibrium.
By exploiting a quantum algorithm to optimize the underlying objective function, we ob-
tained an efficient procedure for the calculation of the electronic ground state energy for a
system. Our approach achieves high accuracy for the ground state energy of a simple di-
atomic molecular system such as H2, LiH, H2O at a specific location on its potential energy
surface. With the future availability of larger-scale quantum computers and the possible
training of some machine units with the simple dimensional scaling results for electronic
structure, quantum machine learning techniques are set to become powerful tools to obtain
accurate values for ground state energies and electronic structure for molecular systems.

1 Introduction

Machine learning techniques are demonstrably powerful tools displaying remarkable success in compressing
high dimensional data [1, 2]. These methods have been applied to a variety of fields in both science and
engineering, from computing excitonic dynamics [3], energy transfer in light-harvesting systems [4], molecular
electronic properties [5], surface reaction network [6], learning density functional models [7] to classify phases
of matter, and the simulation of classical and complex quantum systems [8, 9, 10, 11, 12, 13, 14]. The ability
of modern machine learning techniques to classify, identify, and interpret massive data sets showcases their
suitability to provide analyses on the exponentially large data sets embodied in the state space of complex
condensed-matter systems [9] and to speed-up searches for novel energy generation/storage materials [15, 16].
Quantum machine learning [17] — a hybridization of classical machine learning techniques with quantum
computation – is emerging as a powerful approach both allowing speed-ups and improving classical machine
learning algorithms [18, 19, 20, 21, 22]. Recently, Wiebe et. al. [23] have shown that quantum computing is
capable of reducing the time required to train a restricted Boltzmann machine (RBM), while also providing
a richer framework for deep learning than its classical analogue. The standard RBM models the probability
of a given configuration of visible and hidden units by the Gibbs distribution with interactions restricted
between different layers. Here, we focus on an RBM where the visible and hidden units assume binary forms
[24]. Accurate electronic structure calculations for large systems continue to be a challenging problem in
the field of chemistry and material science. Toward this goal — in addition to the impressive progress in
developing classical algorithms based on ab initio and density functional methods — quantum computing
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based simulation have been explored [25, 26, 27, 28, 29, 30]. Recently, Kivlichan et. al. [31] show that using
a particular arrangement of gates (a fermionic swap network) it is possible to simulate electronic structure
Hamiltonian with linear depth and connectivity. These results present significant improvement on the cost of
quantum simulation for both variational and phase estimation based quantum chemistry simulation methods.

Recently, Troyer and coworkers proposed using a restricted Boltzmann machine to solve quantum many-body
problems, for both stationary states and time evolutions of the quantum Ising and Heisenberg models [32].
However, this simple approach has to be modified for cases where the wave function’s phase is required for
accurate calculations [33].

Herein, we propose a three-layered RBM structure in addition to visible and hidden layers, and a new term
correction for the phase of the wave function. We have shown that this model has the potential to solve
complex quantum many-body problems and to obtain very accurate electronic potential energy surfaces for
simple molecules.

2 Restricted Boltzmann Machine

We will begin by briefly outlining the original RBM structure as described by [32]. For a given Hamiltonian,
H, and a trial state, |φ〉, the expected value can be written as:

〈H〉 = 〈|φ|H|φ〉
〈φ|φ〉

=
∑
x,x′〈φ|x〉〈x|H|x′〉〈x′|φ〉∑

x〈φ|x〉〈x|φ〉
(1)

where φ(x) = 〈x|φ〉 will be used throughout this letter to express the overlap of the complete wave function
with the basis function, x.

We can map the above to a RBMmodel with visible layer units σ1
z , σ

2
z ... σ

n
z and hidden layer units h1, h2... hm

if we define x = {σ1
z , σ

2
z ...σ

n
z }, where x is taken to be a combination of the Pauli matrix σz and φ(x) =

√
P (x);

where P (x) is the probability of x. The probability of a specific set x = σ1
zσ

2
z ...σ

n
z as:

P (x) =
∑
{h}

exp(
∑n
i=1 aiσ

i
z +

∑m
j=1 bjhj +

∑n
i=1
∑m
j=1 wijσ

i
zhj)∑

x′ P (x′) . (2)

Within the above ai and bj are trainable weights for unit σiz and hj , wij are trainable weights describing the
connections between σiz and hj (see Figure 1.)

By setting 〈H〉 as the loss function of this RBM, we can use the standard gradient decent method to update
parameters via a backpropagation algorithm, effectively minimizing 〈H〉 to obtain the ground eigenvalue. To
perform the calculations, we expand the wave function |φ〉 =

∑n
i=1 φ(xi)|xi〉, where |xi〉 is combinations of

all values of |σ1
zσ

2
z ...σ

n
z 〉.

However, previous prescriptions considering the use of RBMs for electronic structure problems have found
difficulty as φ(xi) can only assume non-negative values. We have thus appended an additional layer to the
neural network architecture to compensate for sign features specific to electronic structure problems.

We propose an RBM with three layers. The first layer, σz, describes the parameters building the wave
function. The h’s within the second layer are parameters for the coefficients for the wave functions and the
third layer s, is to train to represent the signs associated with each basis function.

s(σ1
z , σ

2
z ...σ

n
z ) = 2Sigmoid(

∑
h

log(exp(
m∑
j=1

cjhj +
n∑
j=1

diσ
i
z)))− 1 (3)

Sigmoid functions were employed to describe signs, used for their easier during implementation of back-
prorogation algorithm through the gradient decent method. Due to the Sigmoid function, the s does not
assume the exact values ±1; this issue was solved by application of subsequent Sign function of the signs.
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Figure 1: Left: the original restricted Boltzmann machine (RBM) structure with visible σz
i and hidden hi layers.

Right: Improved RBM structure with three layers, visible, hidden and sign units. ai, wij , bi, ci, di are trainable
weights describing the different connection between layers.

see Supplemental Material for approach. Within this scheme, cj , di are weights of connection between hj
and s and between σiz and s (see Figure 1.) Our final wave function should be |φ〉 =

∑n
i=1 s(xi) φ(xi)|xi〉.

3 Approaches

We employed two quantum approaches to optimize the RBM model: (1) The phase estimation algorithm, and
(2) a direct approach. The standard approach to optimize parameters within an RBM is Gibbs Sampling,
which is not efficient and likely takes many iterations to converge (details in Supplemental Material).

The first quantum algorithm is based on the problem of thermalizing a quantum system with a quantum
computer which has been thoroughly discussed in the literature [34, 35, 36]. Building on this work, Poulin
and Wocjan present a quantum algorithm to prepare the thermal Gibbs state of interacting quantum systems
and evaluating the relevant partition function [37]. The first approach makes use of the phase estimation
algorithm (PEA) to measure the energy of the system according to the Hamiltonian:

H =
n∑
i=1

aiZσz,i +
m∑
j=1

bjZh,j +
n∑
i=1

m∑
j=1

wijZσz,iZh,j , (4)

with Zσz,i is the Pauli matrix σz on |σiz〉 and Zh,j is the Pauli matrix σz on |hj〉. By using this Hamiltonian
we can get the energy which can be used to calculate probability distribution.

In Figure 2 we show the flow chart of our algorithm with two main features: the first, is to perform phase
estimation algorithm; and the second is to calculate and measure probability.

In this algorithm we have a system register (with n+m qubits), energy register (with N qubits ), scratchpad
register comprised of k1 qubits and one final register, all as shown in Figure 3(a). We performed a Hadamard
transform on the initial states |0⊗N 〉 followed by a Quantum phase estimation algorithm (PEA) to record
energies within the energy register. For efficient procedure as shown in the supplementary materials, we
transform the Hamiltonian to H ′ = 2arcsin(e(H/2k1)e−k2), where k1 k2 are the constants to control errors.

To obtain the probability distribution, we perform a controlled-rotation with angles 2arcsin(e(E/2k1)e−k2)
on k1 qubits initiated in |0〉 states. Then we use the CNOT gate to sum up amplitudes in k1 qubits to the
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final register followed by measurement of the final register and first n-qubits in the system register to obtain
the probability distribution associated with σz (details in Supplemental Material).

The algorithm’s complexity scales as O(Nmn); qubits requirements are O(mn/2) and the error works out
to be O(k1e

−k2). If we can set restrictions on w in the parameters, the complexity reduces to O(Nmn), and
the qubit requirements comes to O(m+ n).

Figure 2: The algorithmic flow chart of our quantum algorithm based on the phase estimation algorithm.

The second quantum algorithm is based on sequential applications of controlled-rotation operations on qubits
which represent the visible and hidden units. In Figure 4 we provide the algorithmic flow chart two main
features: (1) application of controlled-rotation gates to calculate amplitudes; and (2) the summation of
amplitudes and measure probability.

(a) (b)

Figure 3: (a) The entire quantum circuit for our PEA approach. (b) The complete circuit for our controlled-rotation
gate approach.
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The idea of sequential controlled-rotation gates is to check whether the target qubit is in state |0〉 or state |1〉,
then rotate the corresponding angle (see Figure 3 (b).) In this algorithm is comprised of a system register
(with n + m qubits), three different scratchpad registers (with n,m and nm qubits) and a final register, as
shown in Figure 3 (a). This algorithm uses controlled-rotation gates on all three scratchpad registers and
then sums amplitudes on the final register; followed by measurement of the final register and the first n-qubits
of the system register to obtain the probability distribution associated with σz. The complexity comes to
O(4mn), and the qubits requirement comes to O(4mn) (see Supplemental Material for details.)

Figure 4: The algorithmic flow chart of the quantum algorithm based on sequential controlled-rotations gates.

4 Result and Discussion

We now present the results derived from our RBM for H2, LiH and H2O diatomic. It can clearly be seen that
our three layer RBM yields a very accurate results. Points deviating from the ideal curve are likely due to
local minima trapping during the optimization procedure. This can be avoided in the future by implementing
optimization methods which include momentum or exication, increasing the escape probability from any local
features of the potential energy surface.

Further discussion about our results should mention instances of transfer learning. Transfer learning is a
unique facet of neural network machine learning algorithms describing an instance (engineered or otherwise)
where the solution to a problem can inform or assist in the solution to another similar subsequent problem.
Given a diatomic Hamiltonian at a specific intermolecular separation, the solution yielding the variational
parameters — which are the weighting coefficients of the basis functions —- are adequate first approximations
to those parameters at a subsequent calculation where the intermolecular separation is a small perturbation
to the previous value.

Also noteworthy, to examine the transfer learning facility for these systems we count the number of iterations
necessary to determine each point along the ground state energy curve for the LiH system (see Figure 5
(d)). Except the first point in the Figure 5 (d), calculations initiated with transferred parameters from
previous iterations require 1/10 the iterations for each points and still achieve a good result. We also see
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that the local minimum is avoided if the starting point achieve global minimum.

(a) (b)

(c) (d)

Figure 5: (a), (b), (c) are the results of H2 (n = 2, m = 4 N = 10), LiH (n = 4, m = 8 N = 10) and H2O
(n = 4, m = 8 N = 10) calculated by our three layer RBM compared with exact diagonalized results. (d) is the result
of LiH (n = 4, m = 8 N = 10) calculated by the Transfer Learning method.

Herein, we have demonstrated the ability of our three-layer RBM at solving a class of complex quantum
many-body problems. Additionally, the coupling of machine learning and the phase estimation algorithm
can give an excellent approximate solution for the ground state energy in molecular systems.

For training some of the units in the quantum machine, one can rely on dimensional scaling results for
electronic structure calculations as a zeroth approximation. This approach pioneered by Herschbach [38],
treats the dimensionality of the system as a free parametric and solve the problem at the large-dimensional
limit. At this limit the problem becomes simpler as one could treat it classically by finding the minimum
energy structure of the localized electrons. With the rapid development of larger-scale quantum computers
and the possible training of some machine units with the simple dimensional scaling results for electronic
structure, quantum machine learning techniques are set to become powerful tools to perform electronic
structure calculations and assist in designing new materials for specific applications.
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1 Restricted Boltzmann Machine (RBM)

1.1 Original RBM

We briefly introduce the RBM structure [32] as shown in Figure 1 of the main text. For a Hamiltonian, H,
and a trial wave function, |φ〉, the expectation value can be written as:

〈H〉 = 〈φ|H|φ〉
〈φ|φ〉

=
∑
x,x′〈φ|x〉〈x|H|x′〉〈x′|φ〉∑

x〈φ|x〉〈x|φ〉
=
∑
x |φ(x)|2Eloc(x)∑

x |φ(x)|2 . (1)

Where Eloc(x) =
∑
x′ Hxx′

φ(x′)
φ(x) , Hxx′ = 〈x|H|x′〉 and φ(x) = 〈x|φ〉

If we set x = {σ1
z , σ

2
z ...σ

n
z }, where x is a combination of σz and φ(x) =

√
P (x) where P (x) is the probability of

x; we can map the above to an RBM with visible layer units σ1
z , σ

2
z ... σ

n
z and hidden layer units h1, h2... hm

with the probability of specific basis expansion x = σ1
zσ

2
z ...σ

n
z as:

P (x) =
exp(

∑n
i=1 aiσ

i
z +

∑m
j=1 bjhj +

∑n
i=1
∑m
j=1 wijσ

i
zhj)∑

x′ P (x′) . (2)

Where ai and bj are weights for the units σiz and hj , wij is the weight for the connection between σiz and hj
(see Figure 1 in the main text)

If we select 〈H〉 as the loss function of this RBM. We have:

∂pk〈H〉 ≈ 〈〈Gk(x)〉〉, (3)

Gk(x) = 2Re((Eloc(x)− 〈〈Eloc(x)〉〉)D∗k(x), (4)

andD∗k(x) = ∂pkφ(x)
φ(x) , (5)

where pk is the parameters ai, bj , wij for kth iterations.

We can use the gradient decent method to update the parameters and decrease 〈H〉 to obtain the desired
ground state eigenvalue.

∗kais@purdue.edu

1



1.2 Improved RBM

Based on the original RBM, which has one visible layer for the wave function and a hidden layer, we have
appended an additional layer describing the signs of the basis functions used in the wave function expansion.
Thus, this RBM can be used to perform electronic structure calculations.

The main idea of the RBM above is to calculate the parameters φ(xi) for a state which can be written as:

|φ〉 =
n∑
i=1

φ(xi)|xi〉, (6)

where |xi〉 is combinations of all values of |σ1
zσ

2
z ...σ

n
z 〉. Continual optimization of the RBM yields ki, which

achieves the minimum of the optimization function, 〈H〉. However, when considering electronic structure
problems, the coefficients are insufficient as φ(xi) in the above constructions can only assume a non-negative
values. We, thus, add an additional layer to correct for the sign.

Our RBM has three layers. The first layer, σz, constructs the wavefunction, Eq. 7 below. The third layer, s,
generates the signs associated with the basis functions, and the second layer, h, are parameters for the wave
function and corrected signs.

φ(σ1
z , σ

2
z ...σ

n
z ) =

√
P (σ1

z , σ
2
z ...σ

n
z ) (7)

P (xi) =
∑
{h}

∑
h exp(

∑n
i=1
∑m
j=1 wijσ

i
zhj +

∑m
j=1 bjhj +

∑n
j=1 aiσ

i
z)∑

x′ P (x′) (8)

We use a Sigmoid function for signs as it is simpler during the application of the back-prorogation algorithm
based-on the gradient decent method.

s(σ1
z , σ

2
z ...σ

n
z ) = 2Sigmoid(

∑
h

log(exp(
m∑
j=1

cjhj +
n∑
j=1

diσ
i
z)))− 1 (9)

In our RBM construction, s does not exactly span ±1; we transform s to be the sign of s when we finally
evaluate the ground state energy, where cj , di are weights of connection between hj and s and between σiz
and s (see Figure 1 in the main text).

In our construction, the expectation value can be written as:

〈H〉 =
∑
x,x′〈φ|x〉〈x|Hs(x)s(x′)|x′〉〈x′|φ〉∑

x〈φ|x〉〈x|φ〉
. (10)

1.3 Gradient Descent Method

We use the back propagation algorithm with the gradient decent method to optimize our RBM, yielding the
global minimum corresponding to the ground energy.

pk+1 = pk − α∂pk〈H〉 (11)

Where α is the learning rate, controlling the convergence rate.
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As stated before, we have:
Dai(σz) = 1

2σ
i
z,

Dbi(σz) = 1
2 tanh(θi),

Dwij (σz) = 1
2 tanh(θi)σjz,

Dci(σz) = 1
2 tanh(ci)(1− s(σz)2),

Ddi(σz) = 1
2σ

i
z(1− s(σz)2),

(12)

where θj =
∑
i wijσ

z
i + bj .

We can continue iterating until we achieve a minimum value of the optimization function, 〈H〉.

2 Classical Approach

Here, we consider an RBM with m visible units and n hidden units. The updating procedure follows the
normal RBM procedure as before pk = pk − α∂pk〈H〉.

Using the Gibbs Sampling method we can simulate P (x), which delivers O(mn) for each time sampling. We
then continue through the stepwise procedure outlined below:

• Generate n random number rj ∈ [0, 1).

• Calculate probability for jth h as P (hj = 1|σz) = Sigmoid(2θj). If P (hj = 1|σz) > rj , change hj to 1
otherwise unchanged.

• Generate m random number ri ∈ [0, 1).

• Calculate probability for P (σzi |h) = Sigmoid(2γi). If P (σzi = 1|h) > ri, change σzi to 1 otherwise
unchanged.

where θj =
∑
i wijσ

z
i + bj and γi =

∑
j wijhj + ai. And do Ns times, each time is to just sample one σz.

3 Quantum Approach

Here, we have to obtain P (σz) by using a quantum computation approach to get an error-controlled or even
exact result for the probability distribution.

3.1 Phase Estimation Algorithm

Our work — based on the previous work [23, 39] — tries to calculate the probability through application
of controlled-rotation gates Ry(arcsin(eE)) controlled by qubits in the state |E〉. We will not employ the
mean-field approximation in [23], as the parameter wij can not converge to 0 which makes the mean-field
approximation non-convergent.

The standard approach to constructing the controlled-rotation gate of (Ry(arcsin(eE))) cost O(2N ), where
N is the number of qubits holding arcsin(eE). Here we present a construction which is able to write the
probability with only O(Nmn) gates and O(mn) qubits requirements and a controllable degree of error.

The probability for each combination of (σiz, hj) can be written as:
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P (x) = e

∑n

i=1
aiσ

i
z+
∑m

j=1
bjhj+

∑n

i=1

∑m

j=1
wijσ

i
zhj∑

x′ P (x′) , (13)

and we can construct a Hamiltonian:

H =
n∑
i=1

aiZσz,i +
n∑
j=1

bjZh,j +
n∑
i=1

m∑
j=1

wijZσz,iZh,j . (14)

Within the above, the Hilbert space is constructed as ⊗ni=1|σiz〉 ⊗mj=1 |hj〉, Zσz,i is the Pauli matrix σz

on |σiz〉 and Zh,j is the Pauli matrix σz on |hj〉. For specific state |φ〉 = ⊗ni=1|σiz〉 ⊗mj=1 |hj〉 we have
H|φ〉 =

∑n
i=1 aiσ

i
z +

∑m
j=1 bjhj +

∑n
i=1
∑m
j=1 wijσ

i
zhj .

We constructed a new Hamiltonian, H ′, from the original Hamiltonian, H, as:

H ′ = 2arcsin(e(H/2k1)e−k2). (15)

Where k1, k2 are the constants to control the eigenvalue spectrum. arcsin( ) and e( ) can be achieved by
Taylor series expansion in terms of matrices:

H1 = e
1

2k1
(
∑n

i=1
aiZσz,i+

∑m

j=1
bjZh,j+

∑n

i=1

∑m

j=1
wijZσz,iZh,j) × e−k2

= e−k2(1 + ( 1
2k1

(
n∑
i=1

aiZσz,i +
m∑
j=1

bjZh,j +
n∑
i=1

m∑
j=1

wijZσz,iZh,j))) +O(e−k2( H2k1
)2)

H ′ = 2arcsin(H1) = 2H1 +O(H3
1 )

= e−k2(2 + ( 1
k1

(
n∑
i=1

aiZσz,i +
m∑
j=1

bjZh,j +
n∑
i=1

m∑
j=1

wijZσz,iZh,j))) +O(e−k2( H2k1

2
)) +O(H3

1 )

(16)

Now we have the altered Hamiltonian, H ′, and are ready to post probability on each state by the phase
estimation algorithm (PEA). phase estimation algorithm is an algorithm with input a Hamiltonian and an
eigenstate and outputs an eigenvalue, UPEA|φ〉|0〉 = |φ〉|E〉, where E is the corresponding eigenvalue of the
input eigenstate |φ〉. In this algorithm we have a system register (with n+m qubits), energy register (with
N qubits ), scratchpad register (with k1 qubits) and one final register. The steps of our algorithm are as
below:

• Prepare the state:

|Φ〉 = 1√
2m+n

2m+n∑
l=1
|φl〉 ⊗Nk=1 |0k〉 ⊗

k1
l=1 |0l〉|0〉 (17)

where |φi〉 = ⊗nj=1|σjz〉 ⊗mk=1 |hk〉 is the combination with specific σz, h and N is number of digits we
use to do PEA.

• Use our Hamiltonian to do the PEA and we get:

1√
2m+n

2m+n∑
l=1
|φl〉|2arcsin(eE/2k1e−k2)〉 ⊗k1

l |0l〉|0〉 (18)

• Post probability to all the ancillary l qubits by Ry(eE/2k1e−k2) as seen in Figure 3 (b) (of the main
text), yielding:

1√
2m+n

2m+n∑
l=1
|φl〉|2arcsin(eE/2k1e−k2)〉

⊗kl=1 e(
√

1− eE/k1e−2k2 |0l〉+
√
eE/k1e−2k2 |1l〉)|0〉

(19)
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Figure 1: Post probability on ancillary qubit by Rotate-Y gate

The idea of our rotation gate is the control rotate of each digit of the total N number of digits. The
controlled-rotation gate of the ith qubit in the N is CRy(2 2i−1

2N ).

• We can continue to do the CNOT gates controlled by all l qubits on the last qubit:

1√
2m+n

2m+n∑
l=1
|φl〉|2arcsin(eE/2k1e−k2)〉

(
√

1− eEe−k1k2 |Ψ〉|0〉+
√
eEe−k1k2 ⊗k1

l=1 |1l〉|1〉)

(20)

We perform a CNOT gate on the last qubits controlled by all k1 qubits.

• If we measure the last qubits and get |1〉 we then measure the first n qubits to obtain the probability
distribution of σz.

Thus, the constants k1 and k2 are chosen to maintain H/2k1 ∈ (−1, 1) and eH/2k1e−k2 ∈ (0, 1). k1 is also
a integer. The error above after CNOT gate controlled by l qubits can be written as O(k1e

−k2( H
2k1

)2) +
O(k1H

3
1 ) = O(k1e

−k2eH/2k2) = O(k1e
−k2). We also employ Grover’s Search Algorithm to increase the

probability we get the last qubit as |1〉.

The complexity of our method is O(Nmn+N2 + k1N + k1) = O(Nmn+Nk1) where O(Nmn) comes from
the recording of the Hamiltonian on eigenstates in PEA (because our Hamiltonian is diagonal, we can use
O(Nmn) gates to finish PEA). O(N2) comes from Inverse Quantum Fourier Transform, O(k1N) comes our
posting probability on all l qubits and and O(k1) comes from final CNOT gate. We have k1 = O(mn/2)
because k1 is a upper bound of |H|/2 where |H| = O(mn). The complexity comes to O(Nmn); qubits
requirement comes to O(m+ n+N + k1) = O(mn/2) and error should be O(k1e

−k2). If we set restrictions
on w in the parameters, we would have k1 = O(m + n) as now |H| = O(m + n). The complexity comes to
O(Nmn), and the qubit requirement comes to O(m+ n+N + k1) = O(m+ n).

3.2 Directly Post Probability Approach

We can also directly write probabilities. In this algorithm we have a system register (with n + m qubits),
three different scratchpad registers (with n,m and nm qubits) and one final register

We first apply Hadamard gates to system register, which will give us a superposition of all possible σz and
h with the same possibility.
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Then the next step is to write P (σz, h) to each possible σz and h. As we discussed in the classical part, we
have:

P (σz, h) = e

∑
i
aiσ

i
z+
∑

j
bjhj+

∑n

i=1

∑m

j=1
wi,jσ

i
zhj . (21)

Our method is to apply the terms of P (σz, h) one-by-one. First, we start at the application to ai. For σiz we
add an ancillary qubit which has an initial state of |0〉. Then we add two controlled-rotation gates to σiz and
the ancillary qubits, denoted by CRai,1 + CRai,2.

CRai,1 = Aσiz ⊗Ry(2arccos(
√
e−aie−|ai|)) +Bσiz ⊗ I

CRai,2 = Bσiz ⊗Ry(2arccos(
√
eaie−|ai|)) +Aσiz ⊗ I

(22)

Aσiz =
[
1 0
0 0

]

Bσiz =
[
0 0
0 1

]
The operation is to rotate the ancillary qubit differently according to different input state of σiz. If the input
of σiz is |0〉, CRai,1 will rotate the ancillary qubit by arccos(

√
e−aie−|ai|) and CRai,2 will do nothing. If the

input of σiz is |1〉, CRai,2 will rotate the ancillary qubit by arccos(
√
eaie−|ai|) and CRai,1 will do nothing.

For bj , we also have two controlled-rotation gates. For hj , we add an ancillary qubit is initialized as |0〉. We
then add two controlled-rotation gates to hj and to the ancillary qubits, denoted as CRbi,1 + CRbi,2.

CRbj ,1 = Ahj ⊗Ry(2arccos(
√
e−bje−|bj |)) +Bhj ⊗ I

CRbj ,2 = Bhj ⊗Ry(2arccos(
√
ebje−|bj |) +Ahj ⊗ I)

(23)

Ahj =
[
1 0
0 0

]

Bhj =
[
0 0
0 1

]
The operation is to rotate the ancillary qubit differently according to different input state of hj . If the input
of hj is |0〉, CRbj ,1 will rotate the ancillary qubit by arccos(

√
e−bje−|bj |) and CRbj ,2 will do nothing. If the

input of hj is |1〉, CRbj ,2 will rotate the ancillary qubit by arccos(
√
ebje−|bj |) and CRbj ,1 will do nothing.

For wij , we have a single controlled-rotation gate with one ancillary qubit, denoted as CRwij ,1 + CRwij ,2 +
CRwij ,3 + CRwij ,4.

CRwij ,1 = Aσiz,hj ⊗Ry(2arccos(
√
ewije−|wij |)) + (Bσiz,,hj + Cσiz,,hj +Dσiz,,hj

)⊗ I

CRwij ,2 = Bσiz,,hj ⊗Ry(2arccos(
√
e−wije−|wij |)) + (Aσiz,,hj + Cσiz,,hj +Dσiz,,hj

)⊗ I

CRwij ,2 = Cσiz,,hj ⊗Ry(2arccos(
√
e−wije−|wij |)) + (Aσiz,,hj +Bσiz,,hj +Dσiz,,hj

)⊗ I

CRwij ,2 = Dσiz,,hj
⊗Ry(2arccos(

√
ewije−|wij |)) + (Aσiz,,hj +Bσiz,,hj + Cσiz,,hj )⊗ I

(24)

Aσiz,,hj =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
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Bσiz,,hj =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



Cσiz,,hj =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0



Dσiz,,hj
=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


The operation is to rotate the ancillary qubit differently according to different input state of σiz and hj .
If the input of σiz and hj is |00〉, CRwij ,1 will rotate the ancillary qubit by arccos(

√
ewije−|wij |) and left

controlled-rotation gates will do nothing. If the input of σiz and hj is |01〉, CRwij ,2 will rotate the ancillary
qubit by arccos(

√
e−wije−|wij |) and left controlled-rotation gates will do nothing. If the input of σiz and hj is

|10〉, CRwij ,3 will rotate the ancillary qubit by arccos(
√
e−wije−|wij |) and left controlled-rotation gates will

do nothing. If the input of σiz and hj is |11〉, CRwij ,4 will rotate the ancillary qubit by arccos(
√
ewije−|wij |)

and left controlled-rotation gates will do nothing.

Finally, we have the states as 1√
2m+n

∑
σz,h |σz〉|h〉(

√
P (σz, h)/maxP |1〉+

√
1− P (σz, h)/maxP |0〉), where

maxP = em×max|ai|+n×max|bj |+mn×max|wij |, where the ancillary qubit is the qubit used to store the sum of
probabilities. The measurement step begins with measuring the last ancillary qubits, if it is |1〉, we can then
measure |reg1〉 which has the distribution P (σz). The qubit requirement is O(4mn), and the complexity is
O(4mn).

4 Increase Amplitude

Our results for both algorithms are:

1√
2m+n

∑
σz,h

|σzi 〉|hj〉(p1|ψ1〉|0〉+ p2|ψ2〉|1〉), (25)

where |ψ1〉 |ψ2〉 are ancillary qubits states and perpendicular to each other; and p1 and p2 are probabilities.

The Lemma from [40] states:

Let U and V be unitary matrices on µ + n qubits and n qubits, respectively, and let θ ∈ (0, π/2). Suppose
that for any n-qubit state |ψ〉:

U |0µ〉|ψ〉 = sin(θ)|0µ〉V |ψ〉+ cos(θ)|φ⊥〉 (26)

where |φ⊥〉 is an (µ + n)-qubit state that depends on |ψ〉 and satisfies
∏
|φ⊥〉 = 0, where

∏
= |0µ〉〈0µ| ⊗ I.

LetR = 2
∏

- I and S = −URU†R. Then for any l ∈ Z:

SlU |0µ〉|ψ〉 = sin((2l + 1)θ)|0µ〉|V ψ〉+ cos((2L+ 1))|φ⊥〉 (27)
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5 Electronic Structure Hamiltonian

Here we present the details of transforming original electronic structure Hamiltonian to a Hamiltonian con-
sisting entirely of Pauli matrices. We use Hydrogen molecule, H2, as an example.

We treat the Hydrogen molecule in a minimal STO-6G basis. By considering the spin functions, the four
molecular spin orbitals in H2 are:

|χ1〉 = |Ψg〉 |α〉 =
|Ψ1s〉1 + |Ψ1s〉2√

2(1 + S)
|α〉 (28)

|χ2〉 = |Ψg〉 |β〉 =
|Ψ1s〉1 + |Ψ1s〉2√

2(1 + S)
|β〉 (29)

|χ3〉 = |Ψu〉 |α〉 =
|Ψ1s〉1 − |Ψ1s〉2√

2(1− S)
|α〉 (30)

|χ4〉 = |Ψu〉 |β〉 =
|Ψ1s〉1 − |Ψ1s〉2√

2(1− S)
|β〉 , (31)

where |Ψ1s〉1 and |Ψ1s〉2 are the spatial-function for the two atoms respectively, |α〉, |β〉 are spin up and spin
down and S = 1〈Ψ1s|Ψ1s〉2 is the overlap integral. The one and two-electron integrals are giving by

hij =
∫
d~rχ∗i (~r)(−

1
2∇−

Z

r
)χj(~r) (32)

hijkl =
∫
d~r1d~r2χ

∗
i (~r1)χ∗j (~r2) 1

r12
χk(~r2)χl(~r1) (33)

Thus, we can write the second-quantization Hamiltonian of H2:

HH2 = h00a
†
0a0 + h11a

†
1a1 + h22a

†
2a2 + h33a

†
3a3 + h0110a

†
0a
†
1a1a0 + h2332a

†
2a
†
3a3a2 + h0330a

†
0a
†
3a3a0

+ h1221a
†
1a
†
2a2a1 + (h0220 − h0202)a†0a

†
2a2a0 + (h1331 − h1313)a†1a

†
3a3a1

+ h0132(a†0a
†
1a3a2 + a†2a

†
3a1a0) + h0312(a†0a

†
3a1a2 + a†2a

†
1a3a0)

(34)

By using Bravyi-Kitaev transformation [41], we have:

a†0 = 1
2σ

3
xσ

1
x(σ0

x − iσ0
y) a0 = 1

2σ
3
xσ

1
x(σ0

x + iσ0
y) a†1 = 1

2(σ3
xσ

1
xσ

0
z − iσ3

xσ
1
y) a1 = 1

2(σ3
xσ

1
xσ

0
z + iσ3

xσ
1
y)

a†2 = 1
2σ

3
x(σ2

x − iσ2
y)σ1

z a2 = 1
2σ

3
x(σ2

x + iσ2
y)σ1

z a†3 = 1
2(σ3

xσ
2
zσ

1
z − iσ3

y) a3 = 1
2(σ3

xσ
2
zσ

1
z + iσ3

y).
(35)

Thus, the Hamiltonian of H2 takes the following form:

HH2 = f01 + f1σ
0
z + f2σ

1
z + f3σ

2
z + f1σ

0
zσ

1
z + f4σ

0
zσ

2
z + f5σ

1
zσ

3
z + f6σ

0
xσ

1
zσ

2
x + f6σ

0
yσ

1
zσ

2
y

+ f7σ
0
zσ

1
zσ

2
z + f4σ

0
zσ

2
zσ

3
z + f3σ

1
zσ

2
zσ

3
z + f6σ

0
xσ

1
zσ

2
xσ

3
z + f6σ

0
yσ

1
zσ

2
yσ

3
z + f7σ

0
zσ

1
zσ

2
zσ

3
z .

(36)

We can utilize the symmetry that qubits 1 and 3 never flip to reduce the Hamiltonian to the following form
which just acts on only two qubits:

HH2 = g01 + g1σ
0
z + g2σ

1
z + g3σ

0
zσ

1
z + g4σ

0
xσ

1
x + g4σ

0
yσ

1
y = g01 +H0 (37)
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g0 = f0 g1 = 2f1 g2 = 2f3 g3 = 2(f4 + f7) g4 = 2f6 (38)

g0 = 1.0h00 + 0.5h0000 − 0.5h0022 + 1.0h0220 + 1.0h22 + 0.5h2222 + 1.0/R
g1 = −1.0h00 − 0.5h0000 + 0.5h0022 − 1.0h0220

g2 = 0.5h0022 − 1.0h0220 − 1.0h22 − 0.5h2222

g3 = −1.0h00 − 0.5h0000 + 0.5h0022 − 1.0h0220

g4 = 0.5h0022

(39)

Where {gi} depends on the fixed bond length of the molecule.

Similar to H2 and other molecules, next we treat LiH molecule with 4-electrons in a minimal basis STO-6G
and use the Jordan-Wigner transformation. Using the technique defined above [42] we can reduce the locality
to a Hamiltonian with 558 terms on 8 qubits. And same as H2O, we also took the technique in [43] to reduce
the number of qubits, finally we have 444 terms on 8 qubits [44].
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