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Quantum Phase Estimation with Time-Frequency Qudits

in a Single Photon

Hsuan-Hao Lu, Zixuan Hu, Mohammed Saleh Alshaykh, Alexandria Jeanine Moore,
Yuchen Wang, Poolad Imany, Andrew Marc Weiner,* and Sabre Kais*

The Phase Estimation Algorithm (PEA) is an important quantum algorithm
used independently or as a key subroutine in other quantum algorithms.
Currently most implementations of the PEA are based on qubits, where the
computational units in the quantum circuits are 2D states. Performing
quantum computing tasks with higher dimensional states—qudits —has
been proposed, yet a qudit-based PEA has not been realized. Using qudits can
reduce the resources needed for achieving a given precision or success
probability. Compared to other quantum computing hardware, photonic
systems have the advantage of being resilient to noise, but the probabilistic
nature of photon—photon interaction makes it difficult to realize two-photon

controlled gates that are necessary components in many quantum algorithms.

In this work, an experimental realization of a qudit-based PEA on a photonic
platform is reported, utilizing the high dimensionality in time and frequency

for quantum computation has been stimu-
lated by the greater availability of more ca-
pable quantum devices.~'!l The phase es-
timation algorithm (PEA) is a key subrou-
tine of several important algorithms such
as the Shor’s factorization algorithm['2
and the Harrow-Hassidim-Lloyd (HHL)
algorithm for solving linear systems of
equations.’>l PEA has also been de-
veloped to find the ground-state energy
of a molecular Hamiltonian,'®*'71 and
experimentally demonstrated on various
physical platforms.''1820 Currently most
platforms designed for quantum compu-
tation are based on quantum bits, or
qubits, represented by quantum states in

degrees of freedom (DoFs) in a single photon. The controlled-unitary gates
can be realized in a deterministic fashion, as the control and target registers
are now represented by two DoFs in a single photon. This first
implementation of a qudit PEA, on any platform, successfully retrieves any

arbitrary phase with one ternary digit of precision.

1. Introduction

Quantum computation has received enormous attention in re-
cent years with rapid progress in both theoretical and experi-
mental fronts.’ The development of quantum algorithms used
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a 2D Hilbert space. The scalability of
quantum computation requires represent-
ing high-dimensional quantum states with
multiple interacting qubits and realizing
high-dimensional quantum gates with se-
quences of one-qubit and two-qubit elemen-
tary gates. Due to experimental constraints
and environmental noise, both the number
of interacting qubits (width) and the length of the gate sequence
(depth) limit the capability of quantum computing hardware.

As an alternative to qubits, qudits, represented by quan-
tum states in a d-dimensional (with d greater than 2) Hilbert
space, has been proposed. Using qudits as the building block
can potentially reduce both the width and the depth of quan-
tum circuits, and therefore may offer unique advantages over
the conventional qubit systems. Indeed, several benefits of qu-
dits, including higher information coding capacity, stronger non-
locality, and enhanced security, have been proposed.*'~?] Vari-
ous techniques have demonstrated the required hardware to gen-
erate and process qudits by utilizing different degrees of free-
dom (DoFs) in photons, including orbital angular momentum,°!
time-bin,?”! frequency-bin,?*-* and hybrid time-frequency bin
encoding.?l Performing quantum simulation and computa-
tion with qudits have also been proposed,?*3* but the implemen-
tation of a functional quantum algorithm (such as PEA) has not
yet been realized on any qudit-based platform. In this work, we
experimentally realize a proof-of-principle qudit-based PEA on a
photonic platform by encoding two qutrits in a single photon,
where the frequency DoF carries one quitrit as the control regis-
ter, and the time DoF carries another quitrit as the target register.
By working with two DoFs in a photon, the controlled-unitary op-
eration required by the PEA is realized within a single photon,
thus circumventing the undesirable, probabilistic photon-photon
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Figure 1. a) Schematic for a general qubit-based PEA using n-qubit con-
trol and m-qubit target states. H®" is a set of Hadamard gates acting on
n qubits in parallel. U is an unitary operator operating on the target state.
n control-U gates, one for each control rail, are present. QFTT is the inverse
quantum Fourier transform on the n-qubit control register. b) Schematic
for a single-qudit-based PEA. d-point discrete Fourier transform (DFT) is
a Hadamard gate generalized to d-dimensional state (see Equation 1). A
multi-value-controlled-gate (MVCG) applies U to the target when the con-
trol is in the |j) state.

interaction.B132353¢] Our qutrit-based implementation is tested
on diagonal 3 x 3 unitary matrices. Eigenphases (i.e., phases as-
sociated with the eigenvalues) representable by one ternary digit
(given by a single control qutrit) are retrieved with 98% fidelity.
For arbitrary eigenphases, we fit their respective photon statistics
to theoretical distributions, and minimize the mean squared er-
ror. The retrieved phases are all within 7.1% error. In the final
section of the paper, we will discuss the possibility of increasing
the dimension and complexity of our future system, and show
the exploitation of qudits can provide certain advantage in this
Noisy Intermediate-Scale Quantum (NISQ) era.

2. Theory

Suppose |y is an eigenstate of a unitary operator U with the
unknown eigenvalue ¢, the phase estimation algorithm can
evaluate the phase (¢) with polynomial resource (in terms of the
number of qudits and gates needed).’”! The PEA procedure is
illustrated in Figure 1a with a target register to represent |y )
and a control register to hold the information on ¢ which is then
extracted by an inverse quantum Fourier transform (QFT).’”]
The dimension of the target register has to match that of |y) to
fully represent the quantum state, while the dimension of the
control register determines the precision of the evaluation of ¢.
In particular, if we use n d-dimensional qudits for the control
register then we can evaluate ¢ with the precision 2z/d". A
Hilbert space of dimension N =2" =d" can be represented
either by m qubits (d = 2) or n qudits (d > 2), therefore using
a qudit-based PEA allows us to achieve the same precision or
represent the same |y) with fewer number of qudits—more
precisely m = nlog,(d) implies a log,(d) reduction of the circuit
width (number of qudits) required. Using qudits may also reduce
the circuit depth by reducing the number of controlled gates
used to realize the controlled- U operation. The quantum circuit
for a qudit-based PEAP® generalizes the two-value controlled- U/
gate for the qubit case to a multi-value-controlled-gate (MVCG)
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that applies (V to the target register when the control register
is in the |j) state (j=0,1,...,d — 1). The functionalities of the
n two-qubit controlled gates utilized in the conventional qubit-
based PEA circuit®! can be realized with a single MVCG having
2" controlled values, thus reducing the depth of our PEA circuit.

Figure 1b shows the schematic of a qudit-based PEA. The DFT
gate here is a d-point discrete Fourier transform (DFT) defined
as DFT@ |j) = % EZ:) 2% |k). The DFT gate can be under-
stood as a qudit generalization of the Hadamard gate to dimen-
sions beyond d = 2.9 When operating on a single qudit, both
the Hadamard gates and the QFT in Figure 1a are reduced to a
single DFT gate. We would like to emphasize that, in this work
we use the “DFT” to denote a single, high-dimensional gate ca-
pable of applying the discrete Fourier transform to a single qudit
state, while the “QFT” denotes the standard quantum algorithm
of applying the discrete Fourier transform to a multi-qubit state.
Different from the DFT, the QFT often requires a sequence of
single-qubit and two-qubit gates to implement. The MVCG then
applies {7 on the target state conditional on the control state |j)
(i-e., i) lw) = [j) UV |y)). Finally, the phase kickback mechanism
in the PEAP’] allows us to evaluate the ¢ by applying an inverse
DFT on the control register, and performing measurements in
the computational basis. The quantum circuit can deterministi-
cally evaluate the eigenphase ¢ for each eigenstate of {7, insofar
as ¢ can be written exactly with the given precision. If the input
state is in superposition of eigenstates instead, performing mea-
surements on the control register will yield probabilistic results,
and one can obtain the correct statistics of ¢.

As a proof-of-concept implementation, here we limit our di-
mension to d = 3 (qutrit) for both the control and target regis-
ters, capable of retrieving the eigenphase of a given 3D unitary
with 27z /3 precision. We introduce the three-point DFT gate in
its matrix form,

1 1 1
L 1 6eri/3 641:i/3 i (1)
3 1 e4lri/3 eZJri/3

DFT® =

And the unitary (U,) of interest in our first demonstration is sim-
ply a Pauli-Z gate generalized to the qutrit space:

1.0 0
U =|oex3 o ()
0 0 e47ri/3

where the eigenphases 0, 2x /3, and 4z /3 can be exactly repre-
sented with a single ternary digit expansion.

3. Experimental Results

In this experiment, we leverage the well-established techniques
and fiber-optic components developed for optical communica-
tion and wavelength division multiplexing to create and manipu-
late high-dimensional quantum states for PEA implementation.
Figure 2a provides a schematic of the setup, which can be de-
composed into three stages: state preparation, high-dimensional
controlled operation, and measurement on the control qudit.
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Figure 2. a) Experimental setup. b) Implementation of controlled-phase
gate. See text for details. (PM/IM: Electro-optic phase/intensity modula-
tor; PS: Fourier-transform pulse shaper; CFBG: Chirped fiber bragg grat-
ing; SNSPD: Superconducting nanowire single-photon detector; AWG:
Arbitrary waveform generator. Both radio-frequency oscillators (18 and
27 GHz) are synchronized to the 10 MHz reference clock of the AWG.)

To prepare an equi-amplitude superposition of frequency
qutrit as the control register, we send a continuous-wave (CW)
laser source operating in the C-band through a phase modula-
tor (PM1) driven at 18 GHz, which creates a total number of
~10 frequency bins with a spacing of 18 GHz. Subsequently, a
pulse shaper (PS1) is programmed to filter out all but three equi-
amplitude frequency bins, now with a frequency spacing (Af)
of 54 GHz. Note that since the controlled gate in our proposed
setup is a one-photon operation, the input photon number statis-
tics have no impact on the operation, thus coherent states can be
used instead of true single photons as the input.

To prepare the target quirit state, we employ an intensity mod-
ulator (IM) driven by an arbitrary waveform generator (AWG),
and carve out three narrow time bins each with a 6 ns spacing,
a 24 ns repetition period, and a full width at half maximum of
~0.2 ns which broadens the frequency-bin line-width to 2.2 GHz.
As our unitary matrix of interest (Equation 2) is diagonal, the tar-
get qutrit eigenstates are single time bins. Thus, we choose to
treat each time bin as an independent eigenstate. Each experi-
mental trial can be thought of as three separate measurements
made in quick (6 ns) succession. Considering only one of the time
bins (eigenstates) at a time, the state after the state preparation
stage can be written as

I, o< 2 i)y @ 17), ()
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where 7 = {0, 1, 2} denotes which time bin is chosen to operate.
The controlled gate itself consists of a phase modulator (PM2)
sandwiched between two chirped fiber Bragg grating (CFBG).
The first CFBG has a dispersion of 2 ns nm™! imparting a
frequency-dependent delay which splits each time bin into 3
daughter time bins, each of which corresponds to one frequency
mode [red, green and blue pulses in Figure 2 b]. The spacing
between daughter time bins (At) is 0.9 ns, which is larger than
the time-bin coherence time (~0.2 ns) and its product with the
frequency-bin spacing (54 GHz) exceeds the Fourier transform
limit (i.e., Af At > 1), allowing independent manipulation of the
time and frequency DoFs. Using the AWG, we program the phase
modulator to apply the unitary U/ defined in Equation 2 to time-
bin states conditional on the frequency-bin state |j),. The second
CFBG with an opposite dispersion of —2 ns nm ™! cancels the first
dispersion module and recombines the three daughter time bins
back into a single indistinguishable time bin. After the applica-
tion of MVCG, we can obtain an output state

2 i2zjt
W) & Do i) ® I7), (4)

=0

Note that the phases applied to the time-bin state are now at-
tached to the control register, a process called “phase kickback.”

An ideal three-point inverse DFT gate performs the following
transformation:

DFT!
—— )¢ (5)

2
1 e

V3 s

and thus applying inverse DFT on the control state allows us to
read out the phase based on the detection pattern in the logi-
cal basis. Detection in output state |7), indicates the retrieved
phase ¢ equals to 2z7/3 (27 X 0.7, in ternary expression). Re-
cently a near-deterministic, 3D DFT for frequency-encoded qutrit
has been demonstrated with near-unity fidelity, utilizing a quan-
tum frequency processor circuit*? consisting of two electro-
optic phase modulators and one pulse shaper. Due to equip-
ment availability, we elect to implement a simpler, probabilistici!
version of inverse DFT using a single phase modulator (PM3),
capable of performing the equivalent functions in a multi-shot
fashion. The control state, consisting of three frequency bins
with 54 GHz spacing, is phase-modulated by a 27 GHz sine
waves to create frequency sidebands. We fine-tune the modu-
lation index to 1.843 rad such that each frequency bin projects
onto the central bin |1); with equal probability. We utilize an-
other pulse shaper (PS2) as a bandpass filter to pick out this
overlapped bin, and then route to a superconducting nanowire
single-photon detector (SNSPD) for measurement. Since the
output now consists of projections from all three frequency
bins, the measured counts will reflect the relative phases due to
interference.

Given a control register in the state « 2}:0 U} (LHS of Equa-
tion 5 when 7 = 0) as the input of the PM3, after frequency
mixing we have maximum photon counts in the overlapped bin
due to constructive interference. The other two orthogonal states
will instead experience destructive interference and thus con-
tribute no photon counts. This operation is equivalent to the
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Figure 3. Experimental results for implementing (a) U, (Equation 2), and
(b) U, (Equation 7). Color of the bars corresponds to number of photon
counts registered after inverse DFT projection onto |0) (blue), [ 1) (red),
and |2)¢ (yellow). Photon counts are recorded over 1 second.

transformation described in Equation 5 for = = 0, namely the pro-
jection onto |0),. We can also tune the delays between the input
photons and the electrical drive on PM3, such that the other two
transformations (Equation 5 for r = 1, 2) can be achieved. Differ-
ent delay settings can be achieved by introducing an additional
pulse shaper prior to frequency mixing, or a radio-frequency
phase shifter to impart the required delay. Here we choose to
lump this function into PS1 in the state preparation stage to
reduce the insertion loss and the complexity of the system. To
avoid any confusion, for the rest of the paper we name the
three delay settings required to realize the equivalent inverse
DFT functions simply as “projection onto |0);, |1); and [2),”,
respectively.

Under each delay setting, we measure the photon counts in
three time bins recorded over 1 second. We note that these time
bins are widely spaced and do not interfere, hence, this measure-
ment can be considered as three independent measurements of
each eigenstate in series. As shown in Equation 4, the phase at-
tached to the control register after the MVCG matches the inverse
DFT transformation described in Equation 5, thus we have

2 2ajr DFT'®I
e iy ® o), — o) @), (6)

J=0

which shows for time-bin |7}, as the input target, ideally we will
only obtain photon counts after projecting the control register
onto |7),. Figure 3a shows the experimental results for estimat-
ing the eigenphase of U,. For each target eigenstate, we stack
three color-coded vertical bars in a single slot to represent the reg-
istered counts for different frequency projections. The total num-
ber of counts remains stable across three successive measure-
ments, and most of the counts for eigenstate |z), are recorded
after projection onto |7),. The results match our prediction, as

all three eigenphases for U, can be represented with exactly one
ternary digit, and thus the phase can be retrieved deterministi-
cally. The fidelity of this measurement, here defined as the ratio
of photon counts registered at the correct output to the total num-
ber of received photons, is 98 + 1%.
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For the second part of the experiment, we reprogram our
MVCG operation by applying a different temporal phase mask
imparted by the AWG to implement another unitary U,:

1 0 0
UZ =1o ei03517r 0 . (7)
0 0 Bi1A04Sn

Note that two of the eigenphases are no longer integer multiples
of 2z /3, or namely, the phase attached onto the control frequency
bins (after phase kickback mechanism) does not match the in-
verse DFT to transform into a single logical state. Figure 3b shows
the measured counts for all eigenstates under different inverse
DFT settings. For the first eigenstate, its corresponding phase is 0
and hence most of the counts are still registered in |0) . The other
two eigenstates, as discussed above, possess phases which cannot
be accurately retrieved given a single ternary digit precision, and
thus the counts are distributed over different projections. Follow-
ing the conventional PEA approach, we report the retrieved phase
(¢) based on the projection with the highest number of counts.
For eigenphases ¢ equal to 0.351z and 1.045x, the correspond-
ing ¢ are 2z/3 and 4x /3, respectively. In the following section,
we will discuss whether more information can be extracted from
the counts distribution shown in Figure 3, given (i) the input state
is already prepared in the eigenstate, and (ii) an ample amount
of counts are registered for further analysis.

4. Discussion

When the input target register of a PEA circuit is an eigenstate
with a corresponding eigenphase ¢, the probability for the qutrit
output control state to collapse to |n), where n = {0, 1, 2}, is

2

(@)

i nlr . (23
C(n, ¢) = %ll +¢@=73) 4 gHE=T)

All three C(n, ¢), for n={0,1,2}, are plotted in Figure 4. Ob-
serve that for each ¢, the ordered set {C(0, ¢), C(1, p), C(2, ¢)}
is unique. Now let E,, E;, and E, be the measured, normalized
(X E, = 1) photon counts projected, respectively, onto [0}, |1)f,
and |2) - The phase we estimate from our measurement, denoted
$, is the phase which minimizes the mean squared error between
the measured and theoretical probabilities:

2.
min ;m - C(n, ) (9)

The estimated phases for U, (Equation 2) and U, (Equation 7)
are shown in Table 1. The results for U, are plotted in Figure 4
alongside the three C(n, ¢) curves of Equation 8. The largest er-
ror in ¢ is 7.1%, and the error is less than 3% in all other cases.
Our photonic system’s ability to execute large number of trials
enables this statistical approach to phase estimation. Agreement
between estimated and true phase can be used to quantify error in
the experimental setup; however, because the statistical approach
requires an eigenstate input, it should not be viewed as a stan-
dalone method for determining an unknown phase. To obtain
a more precise phase estimate, where the input need not be an
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Figure 4. The three curves represent the probability of the control qutrit
collapsing to bin |n)¢ for n = {0(blue), 1(red), 2(yellow)} for any eigen-
phase corresponding to the eigenstate input of a PEA circuit. The nor-
malized experimental photon counts for all three eigenstates of U, are fit-
ted to—and plotted at—the estimated phase () which minimizes mean
squared error (Equation 9). ¢ is denoted by the position of the markers and
the black dashed line; the location of the true phase (¢) for each eigenstate
is noted with a green dashed line. The curves are described by Equation 8;
the plotted values can be found in Table 1.

47r/3 57r/3 2m

Table 1. Normalized photon counts and comparison of true phase ¢ and
experimentally estimated phase ¢’ for each eigenstate of U; (Equation 2)
and U, (Equation 7). Photon counts normalized from results in Figure 3.

U,
Eigenstate 10), 1), 12),
E, 19948 + .0004 .01017 +.0004 .0122 + .0005
E, .0023 +.0002 .9805 +.0009 .0120 + .0005
E, .0029 + .0002 .0094 + .0004 .9758 +.0010
True Phase, ¢ 0 27 /3 4n /3
Est. Phase, ¢ 1.972x 612x 1.394x
Error, 10101 1.4% 2.7% 3.0%

YUy
Eigenstate 10), 1) 12),
E, .878 +.002 .316 +.003 .143 +.002
E, .032 +.001 .530 +.003 .318 +.003
E, .090 +.002 .154 +.002 .539 +.003
True Phase, ¢ 0 3511x 1.0457%
Est. Phase, ¢ 1.859x 377= 1.0457z
Error, 171 7.1% 13% 0.0%

eigenstate and the phase is not restricted to a value representable
by a single ternary digit, an iterative PEA, explained below, must
be implemented.

The next steps for our qudit-based PEA are (i) implementing
arbitrary unitaries (i.e., non-diagonal) in addition to increasing
the qudit dimension (d > 3); and (ii) increasing the digits of pre-
cision for evaluating the phase. For Step (i) we choose to work
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with frequency and time DoF in photons, since we can take ad-
vantage of their inherent high dimensionality to encode more
quantum information in a single qudit. For example, our group
has recently demonstrated a two-photon four-party GHZ state by
encoding two 32 dimensional qudits in each photon.?! In addi-
tion, the recipe of constructing high-dimensional quantum gate,
though still relatively limited, has been proposed and experimen-
tally realized on both time-bin and frequency-bin platforms. Scal-
able processing of time-bin qudits has been proposed using a
cascade of electro-optic phase modualtor and coded fiber Bragg
grating pairs.*?l Quantum state tomography of time-bin quqarts
(d = 4) has also been realized with cascaded Mach-Zehnder in-
terferometers fabricated on planar light-wave circuit.*! And fi-
nally, our group has been involved in the design and construc-
tion of a quantum frequency processor®#4 consisting of a se-
ries of phase modulators and pulse shapers, found capable of
implementing qudit transformations with favorable component
requirements. Though eventually to implement a general MVCG
operation still demands careful design and perhaps exploitation
of other DoFs to realize the controlled operation, the basic for-
mula is ready to be explored.

For Step (ii), our current setup uses a single control qudit to es-
timate the phase with 2z /d precision (in this experiment, d = 3).
To achieve higher precision phase estimation we can either in-
crease the number of control qudits or implement an iterative
PEA.®I The iterative PEA is the more viable approach for pho-
tonic systems, as it avoids the difficulty in manipulating and in-
teracting multiple photon qudits. Using only one d-dimensional
qudit as the control register, the iterative PEA can evaluate the
phase with 2z /d" precision by running n iterations of a modified
single-qudit PEA algorithm. Here each iteration requires a modi-
fied MVCG and an additional quantum gate. For the k™ iteration
out of all n iterations, the U gate becomes U*, where x = d"h,
and therefore the modified MVCG applies (U*) to the target qu-
dit when the control qudit is |j). As our current approach ap-
plies Ui directly (i.e., not cascading U j times), implementing the
MVCG with () is no more challenging than the MVCG with
Ui, For the additional quantum gate, on the k* iteration the con-
trol qudit undergoes an R, -rotation of the angle 8 = — Zl: %
where each ¢, is the phase determined by the i** iteration prior to
the k™ iteration. Our successful implementation of the controlled
gate in this paper demonstrates all the capability needed for im-
plementing the arbitrary (diagonal) R,-rotation. We note the two
operations needed to achieve a standard iterative PEA can also be
used to implement a Bayesian phase estimation approach known
as rejection filtering phase estimation (RFPE).?%) RFPE is robust
to noise and promises a speed up over standard iterative PEAs by
gaining information about multiple bits (for us, dits) of the phase
at a time. For the standard (non-Bayesian) PEA, qudits provide a
log, (d) reduction in the number of iterations needed to estimate
a given phase with success rate identical to the qubit case. As with
qubit systems, an arbitrarily high success rate can be achieved via
multiple trials for some (or all) iterations. As our photonic sys-
tem provides photon statistics easily, a low-error iterative PEA or
RFPE is a natural next step. Using an iterative PEA avoids cum-
bersome multi-photon gates for the control qudit; however, we
note that multiple target qudits may be needed to accommodate
a unitary U of a high dimension M. To be precise, the number
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of target qudits m must be > log,(M), thus U becomes a multi-
photon gate when log,(M) > 1. Our ability to implement a high-
dimensional {J scales polynomially with the qudit dimension 4
and exponentially with the number of target qudits m.

Combining Step (i) and (ii), we provide the outlook for a po-
tential high-dimensional single-photon PEA system capable of
implementing any arbitrary (non-diagonal) unitary U. Extending
to higher dimensions, we prefer frequency as the target register
as we have developed a more concrete recipe to construct high-
dimensional gates with favorable resource requirement.*!l The
state preparation will be similar to that of Figure 2, in which the
number of frequency bins should match the dimension of U. The
dimension of the control (time) qudit d, on the other hand, can be
significantly smaller and arbitrarily chosen as the desired preci-
sion of the phase retrieval can be achieved with the introduction
of iterative PEA. As described in the previous paragraph, each
iteration provides an additional d-digit of precision in phase es-
timation. To implement the MVCG for the k™ iteration out of all
n iterations, we could introduce a Mach—Zehnder-based switch
to route d time bins to ¢ different optical paths, in each of which
we place a quantum frequency processor programmed to apply
a high-dimensional frequency operation (U*} to the target qudit
for the j* path (i.e., when the control qudit is |j},). The additional
R,-rotation on the control qudits required for the iterative PEA
amounts to an overall phase shift at each path, and can be ab-
sorbed in the quantum frequency processor design as well. Fi-
nally, we can recombine all paths and utilize a cascaded interfer-
ometer treel?’] to realize the d-dimensional DFT gate for projec-
tive measurement.

In conclusion, this work has successfully demonstrated the
first implementation of the PEA on a qudit-based photonic plat-
form. This experiment utilized the high dimensionality of the
time and frequency DoFs on a single photon to realize the 2-qudit
MVCG gate, circumventing the inherently probabilistic photon—
photon interactions. Although limited to a proof-of-principle
model with arbitrary-phase diagonal unitaries, this work is a first
physical demonstration of a qudit-based PEA. Future improve-
ments to our PEA include higher-dimensional qudits (4 > 3), ar-
bitrary (non-diagonal) unitaries, and statistical estimation of the
phase via large ensemble measurements.
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