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In this review we discuss quantum phase transitions and the mapping between
symmetry breaking of electronic structure con® gurations at the large-dimension
limit and mean-® eld theory of phase transitions. We show that the ® nite size
scaling method can be used for the calculations of the critical parameters of
the few-body Schr Èodinger equation. In this approach, the ® nite size corresponds
to the number of elements in a complete basis set used to expand the exact
eigenfunction of a given Hamiltonian. The critical parameters such as the critical
nuclear charges will be used to explain and predict the stability of atomic and
molecular negative ions. For N-electron atoms with 2 ø N ø 86, results show
that, at most, only one electron can be added to a free atom in the gas phase.
However, doubly charged atomic negative ions might exist in a strong magnetic
® eld.

1. Introduction

A wide variety of physical systems exhibit phase transitions and critical phenom-

ena such as liquid ± gas, ferromagnetic ± paramagnetic, ¯ uid ± super¯ uid and conductor ±

superconductor transitions [1]. Phase transitions can be classi® ed mainly as ® rst-

order and second-order phase transitions. First-order phase transitions are generally

de® ned to be those that involve a non-zero latent heat and radical change in the

structure of the material at the transition points. Second-order phase transitions

are continuous phase changes where the properties of the system do not change
discontinuously at the critical point, but at least one of their rates of change does
[2]. One striking aspect of critical phenomena is the hypothesis of the universal-

ity of the critical exponents [3]. According to this hypothesis, only two quantities

determine the critical behaviour of most systems: the dimensionality of space and

the dimensionality of the order parameter. All systems that have the same values of
these two quantities are said to be members of the same universality class. Systems

in the same universality class have the same critical exponents independent of the

model systems or the details of the forces.

Recently, we have found that one can describe stability and symmetry breaking

of electronic structure con® gurations as phase transitions and critical phenomena.

This analogy was revealed by using the dimensional scaling method and the large-

dimension limit model of electronic structure con® gurations [4]. Large-dimension

models were originally developed for speci® c theories in the ® elds of nuclear physics,
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critical phenomena and particle physics (for reviews, see [5]). Subsequently, with the

pioneering work of Herschbach et al. [6], they found wide use in the ® eld of atomic
and molecular physics [7]. In this method one takes the dimension D of space, as a

variable, solves the problem at some dimension D /= 3 where the physics becomes

much simpler and then uses perturbation theory or other techniques to obtain an

approximate result for D = 3 [6]. For electronic structure of the N-electron atoms, the

pseudoclassical D ® ¥ limit is simple and gives unique geometrical con® gurations
[8]. This provides a rigorous version of the electron-dot formula, Lewis structure,

where the electrons assume ® xed positions relative to the nuclei and each other.

This simple qualitative picture opens the door to establishing a very interesting

connection between symmetry breaking of the large-D limit con® gurations, as the

nuclear charge is varied, and the standard mean-® eld theory of phase transitions
and critical phenomena in statistical mechanics. For atoms [4], the mapping between

symmetry breaking of electronic structure con® gurations and mean-® eld theory of

phase transitions was shown by allowing the nuclear charge to play a role analogous

to temperature in statistical mechanics.

The large-D picture helps to establish a connection to phase transitions. However,

the questions which remain to be addressed are: how to carry out such an analogy
to the N-electron atoms at D = 3 and what are the physical consequences of this

analogy? These questions can be answered by studying the analytical behaviour

of the energies of atoms as a function of the nuclear charge. For the two-electron

atoms, we used the ® nite-size scaling method to obtain the critical nuclear charge.

In this context, critical means the minimum nuclear charge necessary to bind two
electrons [9]. In statistical mechanics, the ® nite-size scaling (FSS) method gives a

way to extrapolate information obtained from a ® nite (or partially in® nite) system

to the thermodynamic limit. In the present approach, the ® nite size corresponds

not to the spatial dimension but to the number of elements in a complete basis set

used to expand the exact eigenfunction of a given Hamiltonian. In this method we
assumed that the two lowest eigenvalues of the quantum Hamiltonian can be taken

as the leading eigenvalues of a transfer matrix of a classical pseudosystem. Using

FSS arguments [10, 11], the phenomenological renormalization (PR) equation [12]

was used to obtain the critical properties of the classical pseudosystem and therefore

of the quantum system. By searching for a ® xed point of the PR equation, the

critical charge is found Zc 0.911, which is in complete agreement with previous
calculations [13]. The fact that this critical charge is below Z = 1 explains why H is

a stable negative ion. For the three-electron atoms, the critical nuclear charge for the

ground state was found to be Zc 2, which explains why He is an unstable ion [14].

The analytical behaviour of the energy as a function of parameters for a given

system has been the subject of study for many years; in particular, the study of the
analytical behaviour of the energy as a function of the nuclear charge Z . Morgan and

co-workers [13] have performed a 401st-order perturbation calculation to resolve the

controversy over the radius of convergence of the = 1/ Z expansion for the ground-

state energy of the helium-like ions. Such high-order calculations were necessary to

study the asymptotic behaviour of the perturbation series and to determine that
the radius of convergence, is equal to c, the critical value of for which the

Hamiltonian has a bound state with zero binding energy. Estimating the critical

charge Zc, is very important in determining whether a negative ion is stable or not.

Almost all elements in the periodic table, except rare gases and a few other atoms,

have stable ground-state negative-ion con® gurations in the gas phase. However, there
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is no experimental or theoretical evidence of any doubly charged atomic negative

ions in the gas phase. Recently [15], with a simple model potential, we estimated
the critical nuclear charge, the minimum charge necessary to bind N electrons, for

N-electron atoms with 2 ø N ø 86. Results show that, at most, only one electron

can be added to a free atom in the gas phase. However, doubly charged atomic

negative ions might exist in a strong magnetic ® eld (109 G or greater) [15].

In the next section we shall review the symmetry breaking at the large-dimension
limit for the N-electron atoms and simple molecular systems. In section 3 the

® nite-size scaling method will be brie¯ y reviewed in classical statistical mechanics.

In section 4, we present a direct FSS approach to study the critical behaviour of

the quantum Hamiltonian without the need to use any explicit analogy to classical

statistical mechanics. This approach assumes an explicit form for the asymptotic
behaviour of the quantum mean values near the critical point. The results of FSS

for the calculations of critical parameters for simple model Hamiltonians as well

as the two- and three-electron atoms will be discussed in section 5. We present a

new classi® cations of atoms according to their type of phase transitions in section

6, and in section 7 we discuss the existence of free doubly charged atomic negative
ions in the gas phase. Finally, we give the conclusions and discuss the possibility of

generalizing this approach to large atomic and molecular systems.

2. Phase transitions at the large-dimension limit

To study the behaviour of a given system near the critical point, one has to rely on
model calculations which are simple, which capture the main physics of the problem

and which belong to the same universality class. For electronic structure calculations

of atoms and molecules, there are three exactly solvable models: the Thomas ± Fermi

statistical model (the limit N ® ¥ for ® xed N/ Z , where N is the number of

electrons and Z is the nuclear charge); the non-interacting electron model, the limit

of in® nite nuclear charge (Z ® ¥ , for ® xed N); the large-dimension model (D ® ¥
for ® xed N and Z) [16]. Here we shall illustrate the phase transitions and symmetry

breaking using the large-dimension model. In the application of dimensional scaling

to electronic structure, the large-D limit reduces to a semiclassical electrostatic

problem in which the electrons are assumed to have ® xed positions relative to the

nuclei and to each other in the D-scaled space [6]. This con® guration corresponds to
the minimum of an eŒective potential which includes Coulomb interactions as well as

centrifugal terms arising from the generalized D-dependent kinetic energy. Typically,

in the large-D regime the electronic structure con® guration undergoes symmetry

breaking for certain ranges of nuclear charges or molecular geometries [17].

Recently [4], we have shown that symmetry breaking of electronic structure
con® gurations at the large-dimension limit for Hartree ± Fock (HF) two-electron

atoms and the two-electron Coulomb problems is completely analogous to standard

phase transitions. This analogy was shown by allowing the nuclear charge for atoms

and the inverse internuclear distance for the two-electron Coulomb problem to

play a role analogous to temperature in statistical mechanics. These systems exhibit
critical points with mean-® eld critical exponents. In the next section we shall use

the large-dimension limit model for the general N-electron atom to study symmetry

breaking of electronic structure con® gurations leading to ionization. This model is

simple, has an analytical solution for highly symmetric con® gurations [8] and yet

contains a great deal of information about the r̀eal’ atom. This model of the atom
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is just the zeroth-order approximation and can be improved upon by a systematic

perturbation expansion in 1/ D [18].

2.1. N-electron atoms

For the exact solution of the N-electron atom at the D ® ¥ limit, the dimension-

scaled eŒective Hamiltonian can be written as [8]

H ¥ =
1
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S
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(i)
N

N

1

r2
i

Z

N

S
i=1

1
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+

N 1
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Here, ri are the electron-nucleus radii, Z is the nuclear charge, i,j are the cosines of

the angles between electrons i and j , N is the Grammian determinant | i,j | for all

N electrons, and (i)
N is the Grammian determinant for all but the ith electron [8].

The N radii {ri} together with N (N 1)/ 2 cosines of the angles { i,j } between

electrons, are the N (N + 1)/ 2 variational parameters. The large-D limit ground-state
energy is given by the minimum of the eŒective Hamiltonian:

E ¥ (N,Z) = min
{ri ; i,j }

H ¥ (2)

Loeser [8] obtained the totally symmetric solution of equation (2) ri = r and

i,j = " i, j . However, for ® xed values of N , this symmetric solution is not the

unique solution of equation (2) for all values of the charge Z . In general, there

exist many local minima corresponding to diŒerent con® gurations. By studying the

eigenvalues of the Hessian matrix, one can describe the stability of the diŒerent

solutions.

In particular, for small values of N (N ø 13), we found there are two stable

solutions of equation (2). One is the symmetric solution ri = r and i,j = " i, j ; the

second corresponds to one electron at a larger distance from the nucleus than the

other N 1 electrons r1 > ri, i > 1 and 1,i = 1, i,j = , i, j > 1. A coexistence
region exist where both solutions are stable and a ® rst-order critical point is de® ned

by the condition

Esym
¥ (N,Z) = Ens

¥ (N,Z) (3)

When Z decreases, the asymmetric solution with N electrons goes in a continuous

way to the symmetric solution with N 1 electrons. Therefore, the transition from the
neutral atom to the ionized atom is a ® rst-order transition between the symmetric

and the asymmetric con® guration while it is a second-order transition between

the asymmetric N-electron con® guration to the symmetric ionized (N 1 electrons)

atom. This behaviour is shown in ® gure 1 for N = 3. In the HF approximation, there

is no coexistence region between the symmetric and the asymmetric con® guration,

and both transitions are of a continuous type.

In order to present details of the calculation, for simplicity, let us take as an

example the two-electron atoms in the HF approximation. In this approximation ,

there are only two variational parameters r1 and r2; the stability analysis takes a
much simpler form and the results can be obtained analytically.

In the HF approximation at the D ® ¥ limit, the dimension-scaled eŒective

Hamiltonian for the two-electron atom in an external weak electric ® eld E can be
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Figure 1. Energy versus Z at ® xed value of N for the N-electron atom at the large D limit.
The N = 3 symmetric and asymmetric solutions and the N = 2 symmetric solution
are shown. The N = 3 solutions cross at Z 2.29. The symmetric N 1 = 2 solution
merges continuously to the asymmetric N = 3 solution at Z = 2.

written as [19]
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where r1 and r2 are the electron ± nucleus radii and Z is the nuclear charge. The

ground-state energy at the large-D limit is then given by

E¥ (Z, E) = min
{r1 ,r2}

H ¥ . (5)

This condition yields the equations

1

r3
i

+
Z

r2
i

ri

r2
1 + r2

2

3/ 2
= iE, i = 1,2, 1 = 1, 2 = 1. (6)

In the absence of an external electric ® eld, E = 0, Herschbach and co-workers [20]

have found that these equations have a symmetric solution with the two electrons

equidistant from the nucleus, with r1 = r2 = r = 23/ 2/ (23/ 2Z 1). This symmetric

solution represents a minimum in the region where all the eigenvalues of the Hessian

matrix are positive, Z ù Zc = 21/ 2, and the ground-state energy is given by

E ¥ (Z) = Z
1

23/ 2

2

. (7)

For values of Z smaller than Zc, the solutions of the variational equations (6)

become asymmetric with one electron much closer to the nucleus than the other

(r1 /= r2). In order to describe this symmetry breaking, it is convenient to introduce
new variables (r, ) of the form

r1 = r, r2 = (1 )r, (8)

where /= 0 measures the deviation from the symmetric solution.
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By studying the eigenvalues of the Hessian matrix, we have found that the

solution is a minimum of the eŒective potential for the range 1 ø Z ø Zc. We now
turn to the question of how to describe the system near the critical point. To answer

this question, a complete mapping between this problem and critical phenomena in

statistical mechanics is readily feasible with the following analogies:

(a) nuclear charge Z « temperature T ;

(b) external electric ® eld E « ordering ® eld h;

(c) ground-state energy E ¥ (Z,E) « free energy f (T ,h);

(d) asymmetry parameter « order parameter m;
(e) stability limit point (Zc,E = 0) « critical point (Tc, h = 0).

Using the above scheme, we can de® ne the critical exponents ( , , and ) for

the electronic structure of the two-electron atom in the following way:

(Z,E = 0) ( Z) , Z ® 0 ,

E¥ (Z,E = 0) | Z |2 , Z ® 0,

E(Zc, ) sgn( ), ® 0,

¶
¶ E

|E=0 | Z | , Z ® 0,

(9)

where Z Z Zc. These critical exponents describe the nature of the singularities

in the above quantities at the critical charge Zc. The critical exponent determines

the rate of vanishing of the order parameter, which is the asymmetry parameter

. In the absence of external electric ® elds, the value was found to be = 1
2
.

The exponent gives the rate of divergence of the second derivative of the energy

with respect to the nuclear charge, which is analogous to the divergence of the

heat capacity near the critical temperature. In this case, = 0dis, the subscript dis,

meaning discontinuity, is necessary in order to distinguish this case from other known

systems where the divergence is logarithmic with = 0 as in the two-dimensional
Ising model. At the critical charge, the external ® eld varies with the power of the

asymmetry parameter . For our example, we have found that, E [9/ (64 21/ 2)] 3

[4]. Thus the response to a small electric ® eld is highly nonlinear with = 3. Finally,

in the standard phase transition, the exponent determines the rate of divergence

of the susceptibility, or more generally, the divergence of the rate of change in the

® eld with the order parameter. We have found that = 1.
The values obtained for these critical exponents are known as classical or mean-

® eld critical exponents with

=
1

2
, = 0dis, = 3, = 1. (10)

Only two of the four are independent because of the two relations between them

known as the Rushbrooke and the Gri� ths laws [2]

+ 2 + = 2, + ( + 1) = 2 (11)

The results of the asymmetry parameter as a function of nuclear charge at

E = 0 is shown in ® gure 2(a). This curve of the asymmetry parameter shown is

completely analogous to curves representing the behaviour of magnetization as a

function of the temperature in mean-® eld models of ferromagnetic systems [2] as

shown in ® gure 2(b).
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(a) (b)

Figure 2. (a) The asymmetry parameter as a function of the nuclear charge Z for the
HF two-electron atom. (b) The asymmetry parameter as a function of the external
electric ® eld for three values of the nuclear charge.

Finally, we consider the eŒect of a uniform magnetic ® eld on the symmetry
breaking and phase transitions of the HF two-electron atoms. In the external

magnetic ® eld, the value of the critical charge will change with the magnetic ® eld

but not the order of the phase transition. By examining the phase diagram for

two-electron atoms in an external magnetic ® eld, we note that, at Z = 1 and critical

® eld Bc = 3
16

3(21/ 2 1)
1/ 2

0.20901, the electrons are con® ned to a quadratic

potential. With higher ® elds B > Bc, there is only a single phase, which is the

symmetric phase [21].

2.2. Simple molecular systems

Symmetry breaking of the molecular electronic structure con® gurations at the

large-dimension limit shows similar phase transitions. For the hydrogen molecular

ion the analogy to standard phase transitions was shown by allowing the inverse

internuclear distance to play a role analogous to temperature in statistical mechanics.
As for the N-electron atoms, to calculate the critical exponents we performed the

following mapping [4]:

(a) inverse nuclear distance 1/ R « temperature T ;

(b) diŒerence between the nuclear charges « ordering ® eld h;

(c) ground-state energy E ¥ (R, ) « free energy f (T , h);

(d) asymmetry parameter Y (¶ E ¥ [R, ])/ ¶ « order parameter m

(¶ f (T ,h))/ ¶ h;

(e) stability limit point (Rc, = 0) « critical point (Tc, h = 0).

The critical exponents are now de® ned as

Y ( , = 0) ( ) , ® 0 ,

E¥ ( , = 0) | |2 , ® 0,

( = 0, Y ) Y sgn (Y ), Y ® 0,

¶ Y
¶

| =0 | | , ® 0,

(12)
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Figure 3. Phase diagram for the HF H2 molecule. Phase A is a pre-ionization phase with an
electron closer to the symmetry axis than the other axis. Phase B is a pre-dissociation
phase with one electron near one nucleus and the other electron near the second
nucleus.

where plays the role of the reduced temperature: (1/ R 1/ Rc)/ (1/ Rc). As for

the two-electron atom, we obtain the same mean-® eld critical exponents [4].

This analogy was used to treat the HF hydrogen molecule at the large-D limit
[22]. Symmetry breaking of the electronic structure con® gurations was also described

as standard phase transitions. The phase diagram in the internuclear distance ±

nuclear charge plane shows three diŒerent stable phases, as in ® gure 3, corresponding
to diŒerent electronic structure con® gurations. This phase diagram was characterized

by a bicritical point where the two continuous phase transition lines join a ® rst-order

transition line. This approach was generalized to examine symmetry breaking for

one-electron molecules. Rich phase diagrams with multicritical points were reported

for both linear and planar one-electron systems. Detailed calculations for H+
2 and

H2+
3 and four-atom molecules have been given in [23].

3. Finite size scaling in statistical mechanics

In statistical mechanics, the existence of phase transitions is associated with
singularities of the free energy per particle in some region of the thermodynamic

space. These singularities occur only in the thermodynami c limit, in this limit the

volume V and particle number N go to in® nity in such a way that the density

= N/ V stays constant. This could be understood by examining the partition

function. For a ® nite system, the partition function is a ® nite sum of analytical
terms, and therefore it is itself an analytical function. It is necessary to take an

in® nite number of terms in order to obtain a singularity in the thermodynamic limit.

In practice, real systems have a large but ® nite volume and particle numbers

(N 1023), and phase transitions are observed. More dramatic even is the case of

numerical simulations, where sometimes systems with only a few number (hundreds,

or even tens) of particles are studied, and c̀ritical’ phenomena are still present. The
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question of why ® nite systems apparently describe phase transitions and the relation

of this phenomena with the true phase transitions in in® nite systems is the main
subject of FSS theory. However, FSS is not only a formal way to understand the

asymptotic behaviour of a system when the size tends to in® nity. In fact, the theory

gives us numerical methods capable of obtaining accurate results for in® nite systems

even by studying the corresponding small systems.

There are many excellent review articles on this subject in the literature [10, 11,

24]. However, in this review article we are going to discuss only the general idea

of FSS in statistical mechanics, which is closely related to the application of these

ideas in quantum mechanics.

In order to understand the main idea of FSS, let us consider a system de® ned in

a d-dimensional volume V of a linear dimension L (V = Ld). Then, the singular part

of the free energy will be a function of the microscopic parameters, the temperature

and also the inverse size of the system L 1. L 1 plays a role of a relevant ® eld,

and phase transitions will occur at L 1 = 0 (in® nite volume or the thermodynamic
limit).

If in the thermodynamic limit L ® ¥ a quantity K develops a singularity as a

function of the temperature T in the form

K (T ) = lim
L® ¥

KL(T ) |T Tc| (13)

and in particular for the correlation length

(T ) = lim
L® ¥ L(T ) |T Tc| , (14)

then the FSS Ansatz assumes the existence of the scaling function FK such that

KL(T ) K (T )FK

L

(T )
, (15)

where FK (y) is an analytical function. Since the FSS Ansatz, equation (15), should

be valid for any quantity which exhibits an algebraic singularity in the bulk, we

can apply it to the correlation length itself. Thus the correlation length in a ® nite

system should have the form [25]

L(T ) L (L1/ |T Tc|). (16)

The special signi® cance of this result was ® rst realized by Nightingale [12], who

showed how it could be reinterpreted as a renormalization group transformation of

the in® nite system. The PR equation for ® nite systems of sizes L and L ¢ is given by

L(T )

L
=

L¢ (T ¢ )
L ¢ (17)

and has a ® xed point at T (L,L¢ ) . It is expected that the succession of points T (L,L ¢ )

will converge to the true Tc in the in® nite size limit.

The ® nite-size scaling theory combined with transfer matrix calculations had
been, since the development of the PR in 1976 by Nightingale [12], one of the most

powerful tools for studying critical phenomena in two-dimensional lattice models.

For these models the partition function and all the physical quantities of the system

(free energy, correlation length, response functions, etc.) can be written as a function

of the eigenvalues of the transfer matrix (see for example [26]). In particular, the
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free energy takes the form

f (T ) = T ln 1, (18)

and the correlation length is

(T ) =
1

ln 2/ 1

, (19)

where 1 and 2 are the largest and the second largest eigenvalues of the transfer
matrix. In this context, critical points are related with the degeneracy of these

eigenvalues. For the ® nite transfer matrix, the Perron ± Frobenius theorem [27] asserts

that the largest eigenvalue is isolated (non-degenerated) and phase transitions can

occur only in the limit L ® ¥ where the size of the transfer matrix goes to in® nity

and the largest eigenvalues can be degenerated. It is important to note that in the
Perron ± Frobenius theorem all the matrix elements are positive.

For quasi-one-dimensional systems of size L, it is possible to calculate all the

eigenvalues of the ® nite transfer matrix, and therefore, using scaling Ansatz such as

PR (equation (17)) it is possible to obtain critical parameters and critical exponents

for bidimensional systems. The transfer matrix with FSS theory was successfully

applied to the study of a wide variety of two-dimensional lattice systems such as
magnetic models [28], modulated phases [29], polymer models [30, 31], percolation
[32, 33], long-range interactions [34], etc.

Now, we have a method to calculate singularities in the eigenvalues of certain

class of in® nite square matrix by studying the eigenvalues of systematic approxi-

mations with ® nite matrices. In order to apply these ideas to quantum few-body
problems, we can use one of the widely used approximation methods in quantum

mechanics, the variation method [35], to obtain the necessary approximations to the

(in® nite) exact Hamiltonian matrix by ® nite matrices. This is the subject of the next

section.

4. Finite size scaling in quantum mechanics
In quantum mechanics, when using variation methods, one encounters the same

® nite-size problem in studying the critical behaviour of a quantum Hamiltonian

H( 1, , k) as a function of its set of parameters { i}. In this context, critical

means the values of { i} for which a bound state energy is non-analytic. In many
cases, as in this study, this critical point is the point where a bound-state energy

becomes absorbed or degenerate with a continuum. In this case, the ® nite size

corresponds not to the spatial dimension but to the number of elements in a

complete basis set used to expand the exact wavefunction of a given Hamiltonian.

In order to apply FSS to quantum mechanics problems, let us consider the

Hamiltonian of the form

H = H0 + V , (20)

where H0 is the -independent term and V is the -dependent term. We are

interested in the study of how the diŒerent properties of the system change when

the value of varies. In this study, a critical point c will be de® ned as a point for
which a bound state becomes absorbed or degenerate with a continuum.

Without loss of generality, we shall assume that the Hamiltonian (20) has a

bound state E for > c which becomes equal to zero at = c. As in statistical

mechanics, we can de® ne some critical exponents related to the asymptotic behaviour

of diŒerent quantities near the critical point. In particular, for the energy we can
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de® ne the critical exponent as

E
® +

c

( c) . (21)

For general potentials of the form V = V , Simon [36] showed that the critical

exponent is equal to one if and only if H( c) has a normalizable eigenfunction

with eigenvalue equal to zero. The existence or absence of a bound state at the
critical point is related to the type of the singularity in the energy. Using statistical

mechanics terminology, we can associate ®̀ rst-order phase transitions’ with the

existence of a normalizable eigenfunction at the critical point. The absence of such

a function could be related to c̀ontinuous phase transitions’.

In quantum calculations, the variation method is widely used to approximate the

solution of the Schr Èodinger equation. To obtain exact results, one should expand

the exact wavefunction in a complete basis set and take the number of basis
functions to in® nity. In practice, one truncates this expansion at some order N . In

the present approach, the ® nite size corresponds not to the spatial dimension, as in

statistical mechanics, but to the number of elements in a complete basis set used

to expand the exact eigenfunction of a given Hamiltonian. For a given complete

orthonormal -independent basis set { n}, the ground-state eigenfunction has the
following expansion:

= S
n

an( ) n, (22)

where n represents the set of quantum numbers. In order to approximate the diŒerent

quantities, we have to truncate the series (22) at order N . Then the Hamiltonian
is replaced by the M(N) M(N) matrix H(N) , with M(N) being the number of

elements in the truncated basis set at order N. Using the standard linear variation

method, the Nth-order approximation for the energies are given by the eigenvalues

{ (N)
i } of the matrix H(N) ,

E (N) = min
{i}

{ (N)
i }. (23)

The corresponding eigenfunctions are given by

(N)
=

M(N)

S
n

a(N)
n ( ) n, (24)

where the coe� cients a(N)
n are the components of the ground-state eigenvector. In

this representation, the expectation value of any operator / at order N is given by

á / ñ (N) =

N

S
n,m

a(N)
n ( ) a(N)

m ( ) / n,m, (25)

where / n,m are the matrix elements of / in the basis set { n}. In general, the mean

value á / ñ is not analytical at = c, and we can de® ne a critical exponent / by
the relation

á / ñ
® +

c

( c) / . (26)

In statistical mechanics, the singularities in thermodynamic functions associated with

a critical point occur only in the thermodynamic limit. In the variation approach,
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singularities in the diŒerent mean values will occur only in the limit of in® nite basis

functions.
As in the FSS Ansatz in statistical mechanics [32], we shall assume that there

exists a scaling function for the truncated magnitudes such that

á / ñ (N) á / ñ F / (N | c| ), (27)

with a diŒerent scaling function F / for each diŒerent operator but with a unique

scaling exponent .
Now we are in a position to obtain the critical parameters by de® ning the

following function

/ ( ; N,N ¢ ) =
ln á / ñ (N) / á / ñ (N ¢ )

ln N ¢ / N
. (28)

At the critical point, the mean value depends on N as a power law, á / ñ N / / ,

thus one obtains an equation for the ratio of the critical exponents:

/ ( c; N,N ¢ ) =
/

, (29)

which is independent of the values of N and N ¢ . Thus, for three diŒerent values

N,N ¢ and N ¢ ¢ the curves de® ned by equation (28) intersect at the critical point

/ ( c; N, N ¢ ) = / ( c; N ¢ ¢ , N). (30)

In order to obtain the critical exponent , which is associated with the energy,

we can take / = H in equation (29) with / = ,

= H( c; N, N ¢ ). (31)

By using the Hellmann ± Feynman theorem (see for example [37]) we obtain

¶ E

¶
=

¶ H
¶

=
¶ V

¶
. (32)

Taking / = ¶ V / ¶ in equation (29) gives an equation for ( 1)/ , which
together with equation (31) give the exponents and .

The FSS equations are valid only as an asymptotic expression, N ® ¥ but,

with a ® nite basis set, unique values of c, and can be obtained as a succession

of values as functions of N,N ¢ and N ¢ ¢ . The relation between N,N ¢ and N ¢ ¢ was

extensively studied in FSS in statistical mechanics [11], and it is known that the
fastest convergence is obtained when the diŒerence between these numbers is as

small as possible. In this study we took N = 1, and when there are parity eŒects

we used N = 2. In order to obtain the extrapolated values for (N), (N) and (N) at

N ® ¥ we used the algorithm of Bulirsch and Stoer [38] with N ¢ = N + N and

N ¢ ¢ = N N . This algorithm was also studied in detail and gives very accurate

results for both statistical mechanics problems [39] as well as electronic structure
critical parameters [9, 14, 40].

5. Numerical calculations
To illustrate the applications of the FSS method in quantum mechanics, two cases

with qualitatively diŒerent behaviours near the critical point have been reviewed:

one with short-range exponential potentials and one with long-range Coulomb

interactions.
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5.1. Short-range potentials

There are many rigorous results known about the critical behaviour of short-

range one-body potentials. Klaus and Simon [41] consider a family of Schr Èodinger

operators, Ñ 2+ V , with the coupling constant and short-range potential V . Their

results address two general questions: is the eigenvalue E( ) analytic at = c, and
what is the leading order of the expansion in ( c) ?

These two questions were analysed in detail for the Hamiltonian of the screened

Coulomb potential in previous studies [42, 44]. Here, we shall summarize our main

results using the FSS equations for this model.

In scaled atomic units the Hamiltonian can be written as

H( ) =
1

2
Ñ 2 exp ( r)

r
. (33)

This Hamiltonian has bound states for large values of , and the exact value of
the critical exponent is = 2 for states with zero angular momentum and = 1

for states with non-zero angular momentum [41].

We used FSS in order to obtain the pseudocritical (N) , (N) and (N). For

l = 0 the energy curve goes smoothly to zero as a function of but the second-
derivative function develops a discontinuity in the neighbourhood of the critical

point c 0.8399 [42]. This behaviour is diŒerent from that of l = 1 results, where

the energy curve bends sharply to zero at the critical point c 4.5409. As one

should expect, there is a discontinuity in the ® rst derivative as a function of [42].

For the case l = 0, the eigenfunction is not normalizable at = c. It is interesting

to note that for the H Èulten Hamiltonian, another potential with an exponential

decay and exact solution for the ground state [44], the expansion coe� cients of the

wavefunction have the asymptotic form

an( ) ® +
c

( c)
1/ 2 (34)

independent of the basis set and the value of of n. It seems that this result is general

and suggests that there is a unique critical exponent for the expansion coe� cients.

We assume that, with /= 1, there is a unique critical exponent a de® ned by

an( ) ® +
c

( c) a . (35)

Assuming that this is a universal behaviour for the coe� cients {an} it is straight-

forward to show using the Hellmann ± Feynman theorem that a = ( 1)/ 2.

To verify these results, numerical studies show that the curves of the leading

coe� cients a(N)
0 and a(N)

1 as functions of bend to zero at c and in the limit of

N ® ¥ both a0 and a1 take the value zero for all below c. Our conjecture is that
the exact value of n is equal to ( 1)/ 2 for all n, and in particular for = 2, = 1

2
.

That is is a ùniversal exponent’ for the coe� cients independent of the value of n

or the basis set [43].

In order to test the method in an exactly solvable problem, we apply FSS to the
P Èosch ± Teller Hamiltonian

H( ) =
1

2
Ñ 2 ( + 1)

cosh2(r)
, (36)

where we wrote ( + 1) instead of as is usual in the literature. The exact value

of the ground state is [44] E0 = ( 1)2 for > 1, then the exact value of the

exponent is two.
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Figure 4. The exact ground state of the P Èosch± Teller potential in comparison with the
N = 100 basis functions expansion. The exact value c = 1 is also compared with

(100) = 1.045 (· ) and with de® ned by E(100)
0 ( ) = 0 ( ).

For this potential, we used a Fourier-like orthonormal basis set with appropriate

boundary conditions for y Î (0, 1), where y = tanh (r). In this basis set we obtained

an analytical expression for the matrix elements of the Hamiltonian. In ® gure 4 we

compare the exact ground state with the variational approximation obtained from
the truncated expansion at N = 100 basis set functions. This approximate eigenvalue

crosses the bottom of the continuum (E = 0) at 1.4. The FSS Ansatz reduces

the error by an order of magnitude for the same value of N = 100, (100) 1.045.

5.2. Long-range potentials

For the two-electron Coulomb problem, that is a long-range two-body potential,

the ground state is degenerate with the continuum with critical exponent = 1 and
has a normalizable eigenfunction at the critical point [45]. The critical point is the

minimum value of the nuclear charge necessary to bind two electrons and is about

0.911 16.

To carry out the FSS procedure, one has to choose a convenient basis set to

obtain the two lowest eigenvalues and eigenvectors of the ® nite Hamiltonian matrix.

As basis functions for the FSS procedure, we choose the following basis set functions
[46± 48]:

ij k,l (x1, x2) =
1

21/ 2 { ri
1 rj

2 exp [ ( r1 + r2)] + rj
1 ri

2 exp [ ( r1 + r2)] } rk
12 Fl ( 12, ),

(37)

where and are ® xed parameters, r12 is the interelectronic distance and Fl ( 12, ) is

a suitable function of the angle between the positions 12 of the two electrons and the
Euler angles = ( , , ). This function Fl is diŒerent for each orbital block of the

Hamiltonian. For the ground state F0( 12, ) = 1 and F1( 12, ) = sin( 12) cos( )

for the 2p2 3P state. These basis sets are complete for each l subspace [47, 48]. The

complete wavefunction is then a linear combination of these terms multiplied by

variational coe� cients determined by matrix diagonalization.
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(a) (b)

Figure 5. (a) The ratio of the ground-state energy to the second-lowest eigenvalue, for
two-electron atoms, raised to a power N as a function of for several values of N.
(b) Second derivative of the ground-state energy for the two-electron atoms as a
function of for several values of N.

For the ground state the trial function must be symmetric under exchange of

electrons. The trial function for the excited P state is antisymmetric, because under

the transformation 1 2 the angle transforms to ® so that F1 ® F1.

In the truncated basis set at order N , all terms are included such that N ù i+ j + k,

so the number of trial functions M(N) is

M(N) = 1
12

N3 + 5
8
N2 + 17

12
N + aN , (38)

where aN is 1 (7
8
) if N is even (odd).

The asymptotic behaviour (large N) of the system is independent of the param-

eters of the trial functions. The values of the parameters were adjusted in order to

get a faster convergence of the PR equation. We found numerically that = 2 and
= 0.15 are good choices for the ground state while = 0.5 and = 0.05 are better

for the triplet state.

By diagonalizing the ® nite Hamiltonian matrix, one can obtain the lowest two

energy eigenvalues as a function of the order of the truncated basis set: E (N)
0 and

E (N)
1 . Using the PR equation, one can look for its ® xed point by taking the ratio

of these two eigenvalues raised to a power N as a function of . Figure 5(a) shows

the crossing points, which are the ® xed points of the PR equation, for N = 6, 7,

8, . . . ,13. The values of the ® xed points as functions of N can be extrapolated to the
limit N ® ¥ by using the Bulirsch and Stoer [38] algorithm, which is widely used

for FSS extrapolation [11]. The extrapolated values of c using the PR equation is

c = 1.0976 0.0004. This result is in excellent agreement with the best estimate of

c = 1.097 660 79 [49]. By examining the behaviour of the ground-state energy as a

function of , one notes that, when the value of N approaches the limit N ® ¥ ,
the true ground state energy bends over sharply at c to become degenerate with

the lowest continuum at E0 = 1
2
. This behaviour can be seen in the ® nite order

approximation where, the larger the value of N , the more the energy curve bends

toward a constant energy. By virtue of this behaviour, we expect the ® rst derivative

of the energy with respect to to develop a step-like discontinuity at c and the
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second derivative to develop a delta-function-like behaviour as N becomes larger,

as shown in ® gure 5(b).

The behaviour of the ground-state energy and its ® rst and second derivatives

resemble the behaviour of the free energy at a ® rst-order phase transition. For the

two-electron atoms, when < c the nuclear charge is large enough to bind two
electrons, and this situation remains until the system reaches a critical point c,

which is the maximum value of for which the Hamiltonian has a bound state

or the minimum charge necessary to bind two electrons. For > c, one of the

electrons jumps to in® nity with zero kinetic energy.

Having presented our results for the critical behaviour of the ground-state

energy of the helium isoelectronic sequence, we may now consider other excited

states, namely the 2p2 3P state. We have performed a variational study of this level

using the basis set de® ned above. As for the ground state, we obtained the lowest

two eigenvalues which correspond to the block l = 1. The energy behaviour of this
triplet state is very similar to that found for the ground state. The curves start to

bend over sharply to a constant value as N becomes larger. The true excited state

energy, in the limit N ® ¥ , bends over sharply at P
c to become degenerate with the

lowest continuum at EP
T = 1

8
.

Taking the l = 1 block as a transfer matrix of a pseudoclassical system, like the

l = 0 case, we can apply the PR equation to the present sector in order to obtain a

sequence of pseudocritical as a function on N : { (N,N ¢ )
P } . The extrapolated value

of this sequence gives P
c = 1.0058 0.0017. As far as we know the only estimate of

c for this triplet state is that given by Br Èandas and Goscinski [50]. By applying a

Darboux function Ansatz [51, 52] to the En values of Midtdal [53] for n up to 27,

they found that c 1.0048, which is in good agreement with our results.

Stillinger [54] discussed another family of long-range potentials that can be

solved exactly. For the ground state of the potential V (r) = 3/ 32r2 + b/ 8r1/ 2 c/ 8r,

he showed that there exists a normalizable eigenfunction at the critical point and

the critical exponent is = 1. More recently, the FSS has been used to study the
potential

V (r) =
1

r
+

r1/ 2
, (39)

with results qualitatively very similar to the results of the two electron atoms [40].

We have found that the energy curves as a function of and bends over sharply at

c to become degenerate with the continuum [43].

6. Phase transitions and classi® cations of atoms

Using the FSS method, study of the analytical behaviour of the energy near

the critical point shows that the open-shell system, such as the lithium-like atoms,

is completely diŒerent from that of a closed-shell system, such as the helium-like

atoms. The transition in the closed shell systems from a bound state to a continuum

resemble a ®̀ rst-order phase transition’ while, for the open-shell system, the transition
of the valence electron to the continuum is a c̀ontinuous phase transition’.

To see the main diŒerence, we ® rst brie¯ y review the calculations for three

electron atoms (see [14] for more details). The scaled Hamiltonian of the lithium-



Quantum critical phenomena and stability of atomic and molecular ions 113

like atoms, which can be written as

H( ) =

3

S
i=1

1

2
Ñ 2

i

1

ri

+

3

S
i<j =1

1

rij

, (40)

where rij are the interelectron distances and is the inverse of the nuclear charge.
As basis functions for this procedure we used the Hylleraas [47]-type functions as

presented by Yan and Drake [55]

ij klmn(x1,x2,x3) = CA { ri
1 rj

2 rk
3rl

12 rm
23 rn

31 exp [ (r1 + r2)] exp [ r3] c 1 } (41)

where and are ® xed parameters, c 1 is the spin function with spin angular moment
1
2

given by

c 1 = (1) (2) (3) (1) (2) (3), (42)

C is a normalization constant and A is the usual three-particle antisymmetrizer

operator [55]. We took = 0.9 and = 0.1 in order to obtain accurate results near

the critical charge Z 2. All numerical evaluation of the necessary integrals needed

to calculate the matrix elements has been made using an e� cient algorithm recently
developed by Drake and Yan [56]. The ® nite order of the basis set is allowed to be

i + j + k + l + m + n ø N . The maximum value of N was taken to be N = 8, which

gives a 1589 1589 Hamiltonian matrix [14].

The extrapolated value of the sequences (N) for lithium-like atoms has been done

by using the general algorithm of Bulirsch and Stoer [38]. From the PR method,

c was found to be 0.48 0.03. In the neighbourhood of the critical charge, the

ionization energy for lithium-like atoms, I = ELi EHe, goes smoothly to zero as

a function of [14]. This behaviour is diŒerent from that of our previous results
[9, 40] for the helium-like atoms where the ionization energy bends sharply to zero
at the helium critical point (He)

c 1.0976. The diŒerent behaviour of the energy as

a function of the Hamiltonian parameter suggests an analogy with standard phase

transitions in statistical mechanics, that the transition from a ground bound state to

a continuum in the helium-like atoms resemble ®̀ rst-order phase transitions’, while

for lithium-like atoms the transition is continuous. To investigate this analogy we
examined the ® rst and second derivatives of the ionization energy as functions of .

By virtue of the behaviour of the energy curves, we expect the ® rst derivative

of the ionization energy with respect to to develop a step-like discontinuity at
(He)
c for the helium-like atoms [9, 40] but to remain continuous for the lithium-

like atoms. Figure 6(a) shows that the ® rst derivative is continuous for lithium-like

atoms as a function of . As expected, the second derivative will develop a sharp

delta-function-like behaviour as N becomes larger for the helium-like atoms [9, 40]

but it is much broader for the lithium-like atoms as shown in ® gure 6(b).

In previous studies, we showed that for the helium-like atoms the critical exponent

for the energy E ( c ) , ® c , is equal to one: = 1 [9, 40]. This result was

in complete agreement with earlier theorem of Simon [36], which proved that H( c)

for two-electron atoms has a square integrable eigenfunction corresponding to a
threshold bound state with zero ionization potential and an energy critical exponent

= 1. For three-electron atoms, we obtained diŒerent results; the critical exponent

was about two. Contrary to the helium case, where the Hamiltonian has a square

integrable eigenfunction at (He) = (He)
c , the Hamiltonian for lithium-like atoms does

not have a square integrable wavefunction at the bottom of the continuum.
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(a) (b)

Figure 6. (a) First derivative of the ground state energy for the three-electron atoms as a
function of for several values of N. (b) Second derivative of the ground state energy
for the three-electron atoms as a function of for several values of N.

Results from the two- and three-electron atoms show that there is a fundamental

diŒerence in the behaviour of the energy as functions of for the closed-shell

helium-like atoms and the open-shell lithium-like atoms. The transition in the

former between a bound state and a continuum has all the characteristics of a
® rst-order phase transition while the latter has the characteristics of a continuous

phase transition.

7. Doubly charged negative atomic ions

Singly charged negative ions in the gas phase are of fundamental importance

in atomic and molecular physics and have attracted considerable experimental and

theoretical attention over the past few decades [57 ± 61]. With the advancement of
spectroscopic and theoretical methods, new atomic ions have been found to be stable

such as Ca and Sr with small electron a� nities [62, 63] (about 40 meV). However,

the existence of free doubly charged atomic negative ions has remained a matter of

some controversy [61]. In the 1960s and 1970s, there were several experiments which

claimed the detection of doubly charged atomic ions, but most of these observations

have been shown to be artefacts, and no evidence of atomic dianions was observed
[64, 65]. Theoretically, Lieb [66] formulated an upper bound for the maximum

number Nc of electrons, that can be bound to an atomic nucleus of charge Z :

Nc ø 2Z . This inequality gives the ® rst proof that H2 is not stable, which is in

agreement with experiments [65] and many ab initio studies [59]. There are many ab

initio and density functional calculations [58] of the electron a� nities, the minimum
energy required to detach from a negative ion its extra electron to form a neutral

atom plus an electron at rest, of elements in the periodic table. However, there is no

conclusive evidence that stable atomic dianions exist in the gas phase.

In this section, we introduce a simple model Hamiltonian which allows us to

calculate the critical nuclear charges for almost all elements in the periodic table.

Analysis of electron-electron correlations in a negative atomic ion shows that one

of the electrons is held much farther away from the nucleus than the other electrons
[67, 68]. For example, from the accurate wavefunction of the hydride ion H , we
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can see that H is composed primarily of an electron bound weakly to the ® eld of

a polarized hydrogen atom [60].

This physical picture suggests that near the critical nuclear charge the weakly
bound electron can be fairly represented by a one-particle model with an eŒective

interaction potential. This model should approximate both the short-range potential

of a negative ion core with Z = N 1 electrons and the partially screened long-

range Coulomb potential for Z /= N 1. In atomic units and with the scaling

transformation r ® Zr, where r is the radial distance of the weakly bound electron

from the nucleus, the model potential can be represented as

V (r) =
1

r
+

r
[1 exp ( r)] (43)

where = (N 1) , = 1/ Z and the free parameter is chosen to make the binding
energy E in the potential equal to the ionization energy of an atom (or an ion) which

is known from theory [69, 70] or experiments [58, 71]. The potential of interaction

between the weakly bound electron and the ion core tends to 1/ r at small r and

to ( 1 + )/ r at large r. It is easy to see that the model potential (43) correctly

reproduces such an eŒective potential at both small r and large r. The eigenvalues of
the potential (43) were found by numerical integration of the Schr Èodinger equation.

The eigenvalues can be easily calculated for any quantum numbers n and l and any

parameters and .

Results of ® tting the parameter to the well known accurate ab initio energies
[69] of the isoelectronic series for elements with 2 ø N ø 18 show that depends on

almost linearly. The behaviour of the function ( ) near = 1, which corresponds

to Z = N 1, can be fairly well approximated by a linear dependence of the form

=
0( 1) 1( 0)

0 1

, (44)

where 0, and 0 are parameters that correspond to the neutral atom, and 1 and 1 to

the isoelectronic negative ion (if the negative ion does not exist, we used parameters
that correspond to the positive ion). The ionization energy EI is calculated by solving

the Schr Èodinger equation with the potential (43) at = (N 1) and determined by

equation (44). In essence, our method consists of extrapolation of the binding energy

from two data points = 0 = (N 1)/ N (neutral atom) and = 1 = 1 to the

region of 1. For example, let us consider the ground state and the excited state
1s2s 3S of helium isoelectronic ions. We reproduce the ionization energy curve as a

function of Z using only the energies of helium and H as described above within

an accuracy of 5 10 4 in atomic units in comparison with the exact calculations
[13]. Since the 1s2s 3S state is unstable for Z = 1, we used the ionization energies

of Li+ (instead of H ) and helium to perform the extrapolation. The accuracy of

extrapolation for 1s2s 3S state is better than 10 5. Our goal is to use this model to
estimate the critical charge, the minimum charge necessary to bind N electrons, to

any atom. The critical charge can be found from the following equation:

EI(Zc) E (N,Zc) E(N 1, Zc) = 0, Zc =
1

c

, (45)

where EI is the extrapolated ionization energy. Results for the critical charges, shown

in table 1, for atoms with 2 ø N ø 18 are in good agreement (mostly within an

accuracy of 0.01) with both the ab initio multireference con® guration interaction
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Table 1. Critical nuclear charges for N-electron atoms

Atom N nl 0 1 Zc Z a
c

He 2 1s 1.066 0.881 0.912 0.91
Be 4 2s 0.339 0.258 2.864 2.85
C 6 2p 0.255 0.218 4.961 4.95
N 7 2p 0.242 0.213 5.862 5.85
F 9 2p 0.239 0.215 7.876 7.87

Ne 10 2p 0.232 0.211 8.752 8.74
Mg 12 3s 0.162 0.130 10.880 10.86
Si 14 3p 0.128 0.112 12.925 12.93
P 15 3p 0.123 0.110 13.796 13.78
S 16 3p 0.124 0.111 14.900 14.89
Cl 17 3p 0.120 0.109 15.758 15.74
Ar 18 3p 0.117 0.108 16.629 16.60
Kr 36 4p 0.0704 0.0661 34.614
Xe 54 5p 0.0466 0.0442 52.590
Hg 80 6s 0.0359 0.0338 78.650
Rn 86 6p 0.0333 0.0317 84.518

a Critical charges from the ab initio multireference con® guration interaction computations
of Hogreve [72].

calculations of Hogreve [72] and the critical charges extracted by us from the ® gures

of isoelectronic energies in [70].

Our computations of critical charges were extended to atoms up to N = 86.

In table 1 are listed the con® gurations, the parameters and critical charges for
selected atoms [15]. Here, we used experimental ionization energies from atomic

data tables [71]. Our goal here is to perform a systematic check of the stability

of atomic dianions. In order to have a stable doubly negatively charged atomic

ion, one should require the surcharge Se(N) N Zc(N) ù 2. Figure 7 shows

the strong correlation between the surcharge Se(N) and the experimental electron

a� nity EA(N 1). We have found that the surcharge never exceeds two. The
maximal surcharge Se(86) = 1.48 is found for the closed-shell con® guration of radon

and can be related to the peak of electron with a� nity of the element N = 85.

Experimental results for negative ions of lanthanides remain unreliable. Since the

electron a� nities of lanthanides are relatively small, 0.5 eV or less [58, 73], we expect

that the surcharges will be small (around one). The results for the surcharges clearly
excluded the existence of any stable doubly negatively charged atomic ions in the

gas phase and con® rms the previous speculations that, at most, only one electron

can be added to a free atom in the gas phase. The second extra electron is not bound

by a singly charged negative ion because of the repulsive potential surrounding the

isolated negative ion. This conclusion can be reached by examining the asymptotic
form of the unscaled potential

V (r) =
Z N + 1

r
. (46)

For the doubly charged negative ions, N = Z + 2, and this potential becomes
repulsive.

Proceeding from the fact that free dianions do not exist in the gas phase, it is

natural to ask under which conditions, if any, one could have stable dianions. One
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Figure 7. Experimental electron a� nity, EA(N 1) compared with the calculated surcharge
Se(N) N Zc as functions of the number N of electrons.

possibility is to place these atoms in a strong magnetic ® eld. In the presence of a

constant magnetic ® eld, the critical charge decreases since the atom becomes more

stable. Results for the critical magnetic ® eld Bc, the minimum ® eld necessary to
obtain the surcharge Se = 2, for selected atoms have been listed in [15]. We have

found that dianions with closed-shell con® gurations such as O2 , S2 , Se2 , Te2

and Po2 became stable at about 1± 2 au (1 au = 2.35 109 G). However, dianions

with an external s electron such as Ne2 , Ar2 and Kr2 do not exist at any magnetic

® eld strength B. This can be attributed to the fact that, because of the diŒerent
symmetries of s and p orbitals, the average á 2 ñ for a p electron will be smaller than

that for an s electron and as a result the shift in the ionization energy will be larger

in the presence of a magnetic ® eld for an atom with a weakly bound p electron.

Although it is not feasible to obtain such dianions in the laboratory, because of the

strong magnetic ® eld, they might be of considerable interest to models of magnetic
white dwarf stellar atmospheres.

Our model Hamiltonian (43) is simple, captures the main physics of the loose

electron near the critical charge, reproduces the correct asymptotic behaviour of the

potential, gives very accurate numerical results for the critical charges in comparison

with accurate ab initio calculations for atoms with 2 ø N ø 18 and is in full
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agreement with the prediction of the statistical theory of the Thomas ± Fermi ± Von

Weizsacker model of large atoms. In this theory, it was proved that Nc, the maximum
number of electrons that can be bound to an atom of nuclear charge Z , cannot

exceed Z by more than one [74].

Over the past few years, there has been an ongoing experimental and theoretical

search for doubly charged negative molecular dianions [61]. In contrast with atoms,

molecular systems can hold many extra electrons because the extra electrons can stay
well separated [75]. However, such systems are challenging from both theoretical

and experimental points of view. Our approach might be useful in predicting the

stability of molecular dianions.

8. Discussion

In this review, we established an analogy between the mean-® eld theory of
phase transitions and symmetry breaking of electronic structure con® gurations in

the large-D limit. In this context, symmetry-breaking solutions in both HF and

exact solutions of N-electron atoms require new interpretations. The mapping of

this problem to standard phase transitions allows us to treat the nuclear charge in

an analogous fashion to the temperature in statistical mechanics.

Moreover, we have shown that the FSS method can be used indirectly to obtain
critical parameters for quantum Hamiltonians by taking the lowest eigenvalues of

a quantum Hamiltonian as leading eigenvalues of a transfer matrix of a classical

pseudosystem. This approach was successfully used to obtain the critical charges for

two- and three-electron atoms. However, we also presented a direct FSS approach

to study the critical behaviour of quantum Hamiltonians without the need to make
any explicit analogy to classical statistical mechanics. The critical parameters can be

calculated by a systematic expansion in a ® nite basis set.

In this paper, we show that there are fundamental diŒerences between short-

range and long-range potentials. For the ground state of the Yukawa potential; the

critical exponent = 2, the wavefunction is not normalizable at = c, the energy
curves go smoothly to zero as a function of and the second derivative develops

a discontinuity in the neighbourhood of the critical point. This type of behaviour

resembles a c̀ontinuous phase transition’. For the ground state of two-electron

atoms; the critical exponent = 1, the wavefunction is normalizable at = c, the

energy curves bend over sharply at c to become degenerate with the continuum

and the ® rst derivative develops a step-like discontinuity at c. This resembles a
®̀ rst-order phase transition’.

For the N-electron atoms, Morgan and co-workers [13] concluded that, although

experiment has yet to ® nd a stable doubly negative atomic ion, the critical charge

obeys the following inequality:

N 2 ø Zc ø N 1 (47)

Our numerical results, using a simple one-dimensional potential, con® rmed this

inequality and show that, at most, only one electron can be added to a free atom in

the gas phase. Research is under way to generalize this simple approach to molecular
dianions.

Molecular systems are challenging from the critical phenomena point of view.

In order to apply the FSS method, one needs to have a complete basis set. Modern

quantum chemistry computations are generally carried out using only three types of

basis set: Slater orbitals, Gaussian orbitals and plane waves, the last being reserved
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primarily for extended systems in solid state. Each of these has their advantages

and disadvantages . Evaluation of molecular integrals (e.g. four-centre integrals) are
very di� cult and time consuming with Slater basis functions. These integrals are

relatively easy to evaluate with Gaussian basis functions. Research is still under

way to combine the FSS method with the molecular Gaussian basis functions. Our

initial results for simple one- and two-electron molecules indicate the feasibility of

this approach.

This is the ® rst review article about the analogy between symmetry breaking and
phase transitions and critical phenomena for electronic structure problems in atomic

and molecular physics. The ® eld is still in its infancy and there are many open

questions about the interpretations of the results. What exactly does correlation

length mean for electronic structure of atoms and molecules? How do we compute

the critical exponents and what do they mean? Why for the three-electron atoms
and the screened Coulomb potential do the related classical pseudosystems display

a continuous phase transition whereas for the two-electron atoms it displays a ® rst-

order transition? Do these quantum phase transitions really exist? There is a need to

examine all these questions and the underlying structure of the critical parameters.
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