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Abstract

We present a data-collapse study for quantum few-body problems. Our data strongly support a recent hypothesis for the
application of the finite-size scaling approach for the calculation of the critical parameters for the few-body Schrodinger¨
equation. We test the data collapse using very accurate calculations of the one-body Yukawa potential. This powerful tool is
used to obtain an estimation of the critical exponents for the lithium-like atoms. q 2000 Elsevier Science B.V. All rights
reserved.

1. Introduction

Ž .The finite-size scaling FSS theory is widely
used in statistical mechanics to study lattice systems,

w xfor analysis of Monte Carlo data, etc. 1,2 . In phase
transition theory, finite size means that a system is
finite in one or more spatial dimensions, and then the
thermodynamic quantities are analytical functions of
the temperature and the microscopic parameters. FSS
tells us how the singularities in the thermodynamic
functions develop at a critical point when the size of

Ž .the system goes to infinity the thermodynamic limit .
Recently, we have shown that this theory is very

useful in studying critical points in quantum few-body
Ž w x.problems for a recent review, see Ref. 3 . In

particular, we used a phenomenological renormaliza-
tion equation to obtain the critical nuclear charges
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w xfor two- and three-electron atoms 4,5 . This equa-
tion was introduced in a phenomenological way in
statistical mechanics and we show that the same
form can be used to study critical behavior of quan-

w xtum systems 3 . In this approach one assumes that
the two lowest eigenvalues of the quantum Hamilto-
nian could be taken as the leading eigenvalues of a
transfer matrix of a classical pseudosystem. More-
over, in a subsequent study we developed a direct
finite size scaling approach to study critical parame-
ters in quantum systems without the need to make
any explicit analogy to classical statistical mechanics
w x6 .

In this Letter, we present for the first time results
which strongly support the hypothesis, or the ansatze¨
we used to obtain critical parameters. This study is
very important in order to complete the analogy
between finite size scaling in classical statistical
mechanics and quantum systems. Using this data
collapse we were able to estimate the critical expo-
nent, n , for the lithium-like atoms.
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2. Finite size scaling and data collapse

In order to show the data collapse for quantum
few-body problems, let us first briefly present the

w xgeneral form of scaling 6 for different quantities of
a given Hamiltonian of the form

HHsHH qVV . 1Ž .0 l

where HH is l-independent and VV is the l-depen-0 l

dent term. A critical point, l , is defined as a pointc

for which a bound state becomes absorbed or degen-
erate with a continuum.

For a given complete orthonormal l-independent
� 4basis set F , the ground-state eigenfunction has then

following expansion

C s a l F , 2Ž . Ž .Ýl n n
n

where n represents the adequate set of quantum
indices. As usual, in order to approximate the differ-

Ž .ent quantities, we have to truncate the series Eq. 2
at order N. Then the Hamiltonian is replaced by a
Ž . Ž . ŽN . Ž .M N =M N matrix HH , with M N being the

number of elements in the truncated basis set at
order N. Using the standard linear variational method,
the Nth-order approximation for the energies is given
by the eigenvalues of the matrix HH ŽN .. In particular,
the ground state is given by

EŽN .s min LŽN . , 3Ž .� 4l i
� 4i

� ŽN .4 ŽN .where L are the eigenvalues of the matrix HH .i

The corresponding eigenfunction are given by

Ž .M N
ŽN . ŽN .C s a l F , 4Ž . Ž .Ýl n n

n

where the coefficients, aŽN ., are the components ofn

the ground-state eigenvector. In this representation,
the expectation value of any operator OO at order N
is given by

N
Ž .N ŽN . ŽN .² :OO l s a l a l OO , 5Ž . Ž . Ž . Ž .Ý n m n , m

n , m

where OO are the matrix elements of OO in then, m
� 4basis set F .n

² :In general, the mean value OO is not analytical at
lsl , and we can define a critical exponent, m ,c OO

by the relation
mOO² :OO l ; lyl . 6Ž . Ž . Ž .cql™lc

w xThe main assumption we have made in Ref. 6 is
the existence of a scaling function for each truncated
magnitude such that

Ž .N n< <² : ² :OO l ; OO l F N lyl 7Ž . Ž . Ž .Ž .OO c

with a unique scaling exponent n .
² :ŽN .Since the OO is analytical in l, then from

l

Ž . Ž .Eqs. 6 and 7 the asymptotic behavior of the
scaling function must have the form

F x ;xym OO rn . 8Ž . Ž .OO

Ž . Ž .Eqs. 7 and 8 have the scaling form as pre-
w xsented in Ref. 6 . For our purposes, it is convenient

to write this in a slightly different form. From Eqs.
Ž . Ž .7 and 8

Ž .N ym rnOO² :OO l ;N 9Ž . Ž .c

for large values of N.
Because the same argument of regularity holds for

the derivatives of the truncated expectation values,
we have that

Ž .Nm² :E OO
yŽ m ym.rnOO;N . 10Ž .mEl

lslc

ŽN . Ž .² :OO is analytical in l, so using Eq. 10 , the
Taylor expansion could be written as

Ž .N ym rn 1rnOO² :OO l ;N G N lyl , 11Ž . Ž . Ž .Ž .OO c

where G is an analytical function of its argument.OO

This equivalent expression for the scaling of a
given expectation value has the correct form for
studying the data collapse in order to test the FSS
hypothesis in quantum few-body Hamiltonians. If the

Ž . Ž .scaling Eq. 7 or Eq. 11 holds, then, near the
critical point, the physical quantities will collapse to
a single universal curve when plotted in the appro-

ŽN . m OO rn 1rn Ž .² :priate form OO N against N lyl .c
ŽAs we have shown in previous works see Ref.

w x.3 , if the Hamiltonian commutes with the total
angular momentum, then we can choose a basis set
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which block-diagonalize, HH ŽN ., and FSS arguments
are valid for the lowest eigenvalue of each block of
the finite Hamiltonian matrix. It is also shown in

w x ŽN .Ref. 7 that the coefficients, a , of the ground-staten
Ž .wavefunction expansion in Eq. 2 obey the same

scaling law with a unique exponent m ;n.a

3. Results and discussions

At this point, in order to check FSS assumptions,
let us show the data collapse for the one-body
Yukawa potential.

eyr
1 2HH l sy = yl . 12Ž . Ž .2 r

The advantage of studying this simple model is
that there exist rigorous theorems which give the

w xexact values for energy-critical a-exponents 8 and
accurate values for the critical screening length and

w xthe universal exponent n 6 for both zero and
non-zero angular momenta. The values of the critical
lengths l , the energy exponents a'm and thec HH

exponents m for the wavefunction expansions area

listed in Table 1 for angular momenta ls0 and
ls1.

As a complete basis set we have used the La-
guerre polynomials and the spherical harmonics, de-

w xtails are given in Refs. 6,7 . We applied the data-
collapse method to the ground-state energy and the
lowest ls1 energy. Results are shown in Fig. 1a for
ls0, and in Fig. 1b for ls1. Data collapse of the
wavefunction coefficients for ls0 are shown in Fig.
2a for ns0 and in Fig. 2b for ns1. In order to
make the plots clear, we show in all figures curves
for only some values of Ns20, 40, 60, 80, 100.

We note that in analogy with statistical mechan-
Ž .ics, each block ls0 and ls1 of the Hamiltonian

Table 1
Critical parameters for the Yukawa potential for ls0 and ls1

l a m nc a

a b c als0 0.8399039 2 1r2 1
a b c als1 4.54098 1 0 1r2

a w xFrom Ref. 6 .
b w xFrom Ref. 8 .
c w xFrom Ref. 7 .

Fig. 1. Data collapse for the energy of the Yukawa potential for:
Ž . Ž .a the ground state with a s2 and n s1; and b the lowest
ls1 level with a s1 and n s1r2

matrix could be interpreted as a transfer matrix of a
classical pseudo-system. Within this analogy, the
lowest eigenvalue is associated with the free energy
and the critical point as a first-order phase transition
for as1 2 or as a continuous phase transition for
a)1. As a result of this analogy, we can use scaling
laws from statistical mechanics to be applied to the
classical pseudo-system. In particular, for continuous
phase transitions we can calculate the spatial dimen-

2 Note that the a exponent is related to the statistical mechan-
ics a exponent for the specific heat by the relation a s a y2.sm sm
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Fig. 2. Data collapse for the coefficients of the ground-state
wavefunction expansion of the Yukawa potential with m s1r2a

Ž . Ž .and n s1 for: a the first coefficient a ; and b the second0

coefficient a .1

sion, d, of the pseudo-system using the hyperscaling
Ž w x.relation see, e.g., Ref. 9

4yasdn , 13Ž .
where d is the spatial dimension of the pseudo-sys-
tem. Then for as2 and ns1 it gives a spatial
dimension ds2. For ls1 there is a first-order
phase transition, therefore the relation between the n

exponent and the spatial dimension of the pseudo-
w xsystem is ds1rn 10 , which gives again ds2.

The excellent collapse of the curves gives a strong
support to the FSS arguments in quantum mechanics.

Now, let us use the data-collapse method to ob-
tain numerical values for critical parameters for the

lithium-like atoms. The scaled Hamiltonian has the
w xform 5

3 31 1
1 2HH l s y = y ql , 14Ž . Ž .Ý Ýi2 r ri i jis1 i-js1

where r are the interelectron distances, and l is thei j

inverse of the nuclear charge.

Fig. 3. Data collapse for the ionization energy of the three-elec-
Ž . Ž .tron atom with a s1.64 with: a n s1.2; b n s0.8; and2 3

n s0.6.4



( )P. Serra, S. KaisrChemical Physics Letters 319 2000 273–277 277

Recently, by using a phenomenological renormal-
w xization approach 5 , we have obtained numerical

evidence to support the exact value of the inverse
critical charge being l s0.5 and the energy expo-c

nent having a value as1.64"0.05. The basis set
w xand details of the calculations are given in Ref. 5 .

For the data collapse we also need the value of
the critical exponent n . In order to test the FSS
assumption and to calculate the n exponent, the
value of n is varied until a good data collapse is
obtained. Now we can use the hyperscaling relation
Ž Ž ..Eq. 13 to get an estimate of the exponent n .
Using the value of as1.64, we obtain three differ-
ent values of n for ds2, 3 and 4, which are respec-
tively n f1.2, n f0.8 and n f0.6.2 3 4

We applied data collapse to the ionization energy
of the three-electron atom in its ground state

I l sELi l yEHe l , 15Ž . Ž . Ž . Ž .3 0 0

where EHe is the ground-state energy of the two-0

electron atom. The calculation was done with the
Hylleraas basis set with Ns3, 4, PPP , 8, which
means up to 1589 Hylleraas functions. Numerical
values of the basis set parameters are given in Ref.
w x5 . The helium-like atom ground-state energy was
calculated with more than ten digits, so it can be
considered to be exact for the lithium-like atoms
calculation.

The curves for I are shown in Fig. 3a for n s3 2

1.2, Fig. 3b for n s0.8 and Fig. 3c for n s0.6.3 4

These figures show clearly that the value n s0.8 is3

the only one that gives a unique curve for all N. Our
estimate for the lithium exponent is ns0.8"0.1.

In summary, we have presented a data collapse
for quantum few-body problems. The results support
the hypothesis for the direct application of the finite
size scaling approach for the calculation of critical

parameters for the Schrodinger equation. Also, the¨
data collapse can be used to obtain numerical values
for the critical parameters. Results for the lithium-like
atoms show that one can use the data collapse to
estimate the n exponent. The method is general and
can be used to obtain critical parameters for other
Hamiltonians.
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