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Abstract

Phase transitions at absolute zero temperature can take place as some parameter in the Hamil-
tonian of the system is varied. For the Hamiltonian of N -electron atoms, this parameter is taken
to be the nuclear charge. As the nuclear charge reaches a critical point, the quantum ground
state changes its characters from being bound to being degenerate or absorbed by a continuum.
We describe the large-dimension approximation and the �nite-size scaling method to calculate
the critical nuclear charge for which an atom can bind an extra electron to form a stable nega-
tive ion. Results show that, at most, only one electron can be added to a free atom in the gas
phase. The existence of doubly charged atomic negative ions in a strong magnetic �eld will be
discussed. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The isomorphism between quantum theory and classical statistical mechanics makes
many statistical mechanical techniques very important to various di�erent areas of the
physical sciences. Constructing analogies between di�erent systems is a method of
great value to solve new problems in theoretical physics. In particular, we will have
the solution of one model problem if we knew the mapping to another model with a
known solution.
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Fig. 1. The ground state energy (in atomic units) vs. nuclear charge for the two-electron atoms. The dashed
line correspond to the hydrogen atom ground state energy. The non-analytical point is shown by a circle.

Along these lines, one interesting problem in atomic and molecular physics is to
calculate singularities in the ground state energy of a few-body quantum system as
a function of the parameters of the Hamiltonian. For example Fig. 1 illustrates the
behavior of the ground state energy for a two-electron atom as a function of the nuclear
charge. The critical nuclear charge, which is denoted by a circle, is the minimum charge
necessary to bind two electrons. A directly related problem in statistical mechanics,
is the study of phase transitions and critical phenomena which is characterized by
singularities in the free energy. This is an important �eld in statistical mechanics and
many powerful techniques have been developed to calculate and classify singularities
in the di�erent thermodynamics quantities.
This paper is organized as follows: in the next section we show that using a partic-

ular semiclassical limit, the large dimension limit for a quantum few-body system is
equivalent to a mean-�eld calculation of a classical model. This analogy allows us to
describe stability and symmetry breaking of electronic structure con�gurations as phase
transitions and critical phenomena. In Section 3, we use the �nite size scaling method
to calculate critical parameters for three-dimensional problems, and in Section 4 we
discuss the existence of free doubly charged atomic ions in the gas phase. Finally, we
give the conclusions in Section 5.

2. The large dimension limit

In many physical theories, the large-N limit gives a simpli�cation in the analysis of
a wide range of problems and quite often an exact solution can be obtained. Then, the
inverse of the parameter N can be used to obtain an asymptotic expansion for �nite
values of N .
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One of the �rst examples is the spherical model, the exact solution was given by
Berlin and Kac in 1952 [1]. Here the parameter N is the number of components of a
spin in the N -vector model of magnetism [2]. This spherical model remains as a unique
model with exact solution at D = 3 with a critical point with non-classical exponents:
�=−1; � = 1

2 ; 
= 2; �= 5.
In quantum mechanics, we use the spatial dimension D as a free parameter. As Ya�e

showed in the early 1980s [3], the large-D limit is a classical limit in the sense that it
is a limit in which all quantum interference e�ects disappear. One can then show that
the limit D → ∞ is a classical approximation to the ground state energy. This limit is
completely di�erent from the “conventional” ˝ → 0 classical limit, which is good for
large quantum numbers.
The large-D limit was �rst applied to electronic structure problems by Herschbach

and co-workers [4]. They showed that the symmetry breaking solutions can occur in the
ground state electronic con�guration when parameters of the Hamiltonian are varied.
When D → ∞ the radial part of the kinetic energy operator vanishes, the wave

function becomes a �-function and the D=∞ Hamiltonian takes the following simple
form:

H∞ = “centrifugal term” + V ({�i}; {xj}) : (1)

Then the ground state energy is given as the global minimum of the Hamiltonian (1):

E∞({�i}) = min{xj}
H∞({�i}; {xj}) : (2)

An example that shows a symmetry breaking solution is the two Coulomb center
molecule. If the nuclei are located at x = ±R=2 the Hamiltonian at D =∞ takes the
form

H∞ =
1
2�2

− 1− �
r−

− 1 + �
r+

; (3)

where � is the distance of the electron from the symmetry axis, and � is the scaled
di�erence of charge between nuclei [5]. For � = 0 a symmetric solution with x =
0; r− = r+ exists. This solution is stable for R6Rc = 3

√
3
4 .

The numerical study of the �= 0 solutions leads to [5]:
(i) There are no stable solutions with x 6= 0 for R¡Rc.
(ii) There are only two equivalent stable solutions with x 6= 0 for R¿Rc.
With the de�nitions [5],

 ≡ −@E∞(R; �)
@�

; � ≡ 1=R− 1=Rc

1=Rc
: (4)

We can de�ne “critical exponents” as

 (�; �= 0) ∼ (−�)�; � → 0− ;

E∞(�; �= 0) ∼ |�|2−�; � → 0 ;
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�(�= 0;  ) ∼  �sg( );  → 0 ;

@ 
@�

∣∣∣∣
�=0

∼ |�|−
; � → 0 : (5)

We obtain the critical exponents for the H+
2 molecule, which are the same as the

mean-�eld critical exponents

� =
1
2
; �= 0dis; �= 3; 
= 1 : (6)

More complicated systems with two or more free parameters can give rich “phase
diagrams” [6,7].

3. “Real world”: �nite size scaling

In statistical mechanics, the existence of phase transitions is associated with sin-
gularities of the free energy per particle in some region of the thermodynamic space.
These singularities occur only in the thermodynamic limit, in this limit the volume (V )
and particle number (N ) go to in�nity, with a constant density (� = N=V ). This fact
could be understood by analyzing the partition function. For a �nite system, the parti-
tion function is a �nite sum of analytical terms, and therefore it is itself an analytical
function. It is necessary to take an in�nite number of terms in order to obtain a sin-
gularity. The question of why a �nite system can apparently describe phase transitions
and the relation of this phenomena with true phase transitions in in�nite systems is
the main subject of FSS theory. However, FSS is not only a formal way to understand
the asymptotic behavior of a system when the size goes to in�nity. In fact, the theory
gives us numerical methods capable of obtaining accurate results for in�nite systems
only by studying very small systems.
There are excellent review articles about FSS in statistical mechanics in the litera-

ture [8–10] and here we will develop similar techniques useful for few-body quantum
problems.
Let us consider a Hamiltonian of the general form

H=H0 + V� ; (7)

where H0 is �-independent. We will assume that the Hamiltonian has a bound state
E� for �¿�c which becomes equal to zero (the bottom of the continuum) at � = �c.
One of the most widely used methods to obtain approximated solutions is the linear
variational method [11]. This method uses a complete �-independent basis set {�n},
where n is an appropriate set of quantum numbers. The expansion is truncated at order
N and then the Hamiltonian is replaced by M (N )×M (N ) matrix H(N ), where M (N )
is the number of elements in the truncated basis set.
The N th-order approximations for the ground state energy and the wave function are

given by

E(N )� =min
{i}

{�(N )i } ; (8)
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	(N )
� =

M (N )∑
n

a(N )n (�)�n (9)

and the expectation value of an operator O at order N is given by

〈O〉(N )� =
N∑
n;m

a(N )n (�)∗a(N )m (�)On;m : (10)

In general, an expectation value 〈O〉 will be non-analytical at � = �c. But because
the basis-set is �-independent and N is �nite, as in statistical mechanics, it is easy to
prove that any expectation value truncated at order N is analytical at �= �c [12].
As 〈O〉 is non-analytical at �=�c, we can de�ne an associated critical exponent, �O:

〈O〉� ∼
�→�+c

(�− �c)�O : (11)

As in the FSS ansatz in statistical mechanics, we will assume that there exists a
scaling function for the truncated magnitudes

〈O〉(N )� ∼ 〈O〉�FO(N |�− �c|�) (12)

with a di�erent scaling function FO for each di�erent operator but with a unique scaling
exponent �. Because 〈O〉(N )� is analytical in �= �c

FO(x) ∼ x−�O=� : (13)

Now we de�ne the following function:

�O(�;N; N ′) =
ln(〈O〉(N )� =〈O〉(N ′)

� )
ln(N ′=N )

: (14)

At the critical point, 〈O〉 ∼ N−�O=�; thus one obtains an equation for the ratio of the
critical exponents

�O(�c;N; N ′) =
�O

�
(15)

independent of the values of N and N ′. For three di�erent values N; N ′ and N ′′ the
curves intersect at the critical point

�O(�c;N; N ′) = �O(�c;N ′′; N ) : (16)

The energy-critical exponent � is obtained putting O=H and, �O = �,
�
�
= �H(�c;N; N ′) : (17)

A second equation for � and � is obtained from the Hellmann–Feynman theorem

@E�

@�
=
〈
@H
@�

〉
�
=
〈
@V�

@�

〉
�
: (18)

Then, replacing O by @V�=@� in Eq. (14) together with Eq. (17) we can de�ne the
function

��(�;N; N ′) =
�H(�;N; N ′)

�H(�;N; N ′)− �@V�=@�(�;N; N ′)
: (19)
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The value of the function �� at the critical point �=�c does not depend on the values
of N and N ′ [13]:

�= ��(�c;N; N ′) : (20)

Of course, the ansatz to get an estimation of �c at order N is not unique, an-
other useful technique developed in statistical mechanics by Nightingale [14] is the
phenomenological renormalization. In analogy with classical statistical mechanics, the
equivalent equation for the critical parameters in quantum few-body problems is [15,16](

E(N )1 (�N;N ′
)

E(N )0 (�N;N ′)

)N

=

(
E(N

′)
1 (�N;N ′

)

E(N
′)

0 (�N;N ′)

)N ′

; (21)

where E(N )0 and E(N )1 are the ground state and �rst excited energies for a given value
of N .
To illustrate the applications of the FSS Eq. (20) in quantum mechanics, let us study

the exactly solvable one-particle potential, the P�osch–Teller potential

V�(r) =− �

cosh2(r)
: (22)

The three-dimensional (3-d) states are given by the odd states of the 1-d P�osch–
Teller potential. In particular, the 3-d ground state corresponds to the �rst excited 1-d
level. Using the transformation y = tanh(x); −16y61; the Schr�odinger equation for
bound states takes the form[

−(1− y2)
d
dy
(1− y2)

d
dy

− �(1− y2)
]
	n =−En	n (23)

with E¿ 0. The eigenfunctions have a de�ned parity, and we are interested in the
lowest odd eigenfunction. In order to apply FSS we used the following complete (odd)
basis set in the [− 1; 1] interval:

�k(y) =
√
1− y2 sin k�y ; (24)

where k is a positive integer. The matrix elements are calculated analytically using
Mathematica, and the eigenvalues are calculated numerically.
The exact critical value of � is �c = 2 and the exact critical exponent is �= 2 [17].

As we show in Fig. 2, the value �∗ obtained as approximation to �c with one-hundred
functions using the usual approximation E0(�∗) = 0 is �∗ = 3:345. The value obtained
for �c with the same computational e�ort using FSS Eq. (20) with N = 100; N ′ = 98
is �fss = 2:137. In Fig. 3 we show the function �� vs. � for several values of N . Note
that the curves cross at �� ' 2.

4. Many-electron atoms

Since the size of the variational basis set grows exponentially with the increase
of the number of electrons, we choose to follow a simpler path. Recently with
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Fig. 2. The ground state energy vs. � for the P�osch–Teller potential. The solid line corresponds to the exact
solution, and the dashed line corresponds to a N = 100 basis functions expansion. The exact value �c = 2
is also compared with �fss = 2:137 (•) and with �∗ = 3:345 de�ned by E(100)0 (�∗) = 0 (4).

Fig. 3. ��(�; N−2; N ) as a function of � for the P�osch–Teller potential for even values of N=4; 6; : : : ; 98; 100.

Sergeev [18], we used the reliable data for the ionization energy of a negative ion
and a neutral atom, which were calculated or experimentally measured to develop a
simple one-particle potential in order to model the movement of a loosely bound va-
lence electron that is going to dissociate when the charge approaches its critical value.
This model is realistic in the vicinity of the critical charge and e�ectively reproduces
the non-trivial singularity of the ionization energy at the critical charge.
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For a given atom with N electrons and a nuclear charge Z , we considered a spher-
ically symmetric potential of the form

V (r) =−1
r
+



r
(1− e−�r) (25)

with 
=(N − 1)=Z . This model potential is asymptotically correct both at small and at
large distances from the nucleus where the scaled atomic core potential tends to −1=r
and to −(Z −N +1)=(Zr); respectively. In this way, we map an arbitrary atom, which
is characterized by a pair of numbers (N; Z) to the model one-particle system which
is characterized by a pair of parameters (
; �). Results of �tting the parameter � for
elements with N686 is given in our previous study [18].
For the N -electron atom, using theoretical and experimental results, Morgan and

co-workers [19] concluded that the critical charge obeys the following inequality

N − 26Zc6N − 1 : (26)

The numerical results, using the above simple one-dimensional potential, con�rm this
inequality and show that at most, only one electron can be added to a free atom in the
gas phase. However, doubly charged atomic negative ions might exist in a strong mag-
netic �eld. We have found that dianions with closed shell con�gurations such as O−2,
S−2, Se−2, Te−2, and Po−2 became stable at about 1–2 a.u. (1 a:u:=2:35 109 G) [18].

5. Conclusions and perspectives

In this paper, we have shown that one can use ideas and methods from statistical
mechanics to solve problems in the �eld of atomic and molecular physics. In particular,
we established an analogy between mean-�eld theory of phase transitions and symmetry
breaking of electronic structure con�gurations at the large-D limit. We interpreted the
ionization and dissociation as phase transitions phenomena. Moreover, we have shown
that the �nite-size scaling method can be used to obtain critical parameters for quantum
Hamiltonians. This approach was successfully used to obtain the critical charges for
two and three-electron atoms, and simple molecular systems. The knowledge of critical
charges can be used to understand and predict the stability of atomic and molecular
negative ions.
Many electron atoms and molecular systems are challenging from a critical phenom-

ena point of view. Research is still underway to develop a good basis set which can be
combined with the �nite-size scaling method for large-scale calculations. There are also
new calculations underway for atoms and molecules in external �elds, resonance states
of atomic anions, and scattering properties such as electron impact ionization cross
section for atoms. This �eld is still in its infancy and there are many open questions
about the interpretations of the results. In particular: what is the Physical meaning of
the “correlation length”.
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