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ABSTRACT: Cross sections of the electron impact ionization for different atoms are
calculated numerically in the Born approximation as a function of both the incident
electron energy and the nuclear charge Z of the ionized atom. We show that the cross
section for ionization tends to a large magnitude as the nuclear charge of the target atom
tends to its critical value, where the critical nuclear charge is the minimum charge
necessary to bind N electrons. Results show that there is a fundamental difference in the
change of the cross section near the critical point depending on whether the transition
from bound to a continuum state is first order or continuous. The cross section for
ionization and the threshold power law for two and three electrons are discussed.
c© 2000 John Wiley & Sons, Inc. Int J Quantum Chem 80: 575–581, 2000
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Introduction

T he problem of stability of a given quantum
system of charged particles is of fundamental

importance in atomic and molecular physics. When
the charge of one of the particles varies, the system
might go from stable to metastable or to unstable
configurations. Therefore, it is important, for ex-
ample, to calculate the critical nuclear charge for a
given atom, the minimum charge necessary to bind
N-electrons. For the two-electron atoms with the
configuration 1s2, the critical charge was found to
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be Zc ' 0.911. The fact that this critical charge is
below Z = 1 explains why H− is a stable negative
ion [1]. While for the three-electron atoms, the crit-
ical nuclear charge for the ground state was found
to be Zc ' 2, which explains why the He− and He−2

are unstable negative ions [2].
Recently [3, 4] we have found that one can de-

scribe stability of atomic ions and symmetry break-
ing of electronic structure configurations as quan-
tum phase transitions and critical phenomena. This
analogy was revealed [3] by using the large dimen-
sional limit model of electronic structure configura-
tions [5]. Quantum phase transitions can take place
as some parameter in the Hamiltonian of the system
is varied. For the Hamiltonian of N-electron atoms,
this parameter is taken to be the nuclear charge. As
the nuclear charge reaches a critical point, the quan-
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tum ground state changes its character from being
bound to being degenerate or absorbed by a contin-
uum. For larger atoms, we have developed a simple
one-particle model to estimate the nuclear critical
charge for any N-electron atom. This model has one
free parameter, which was fitted to meet the known
binding energy of the neutral atom and its isoelec-
tronic negative ion. The critical charges are found
for atoms up to Rn (N = 86) [6]. This study will at-
tempt to extend this analogy of phase transitions to
the scattering states.

Here we use the one-particle model, which is
very accurate near the critical nuclear charge, along
with the Born approximation to investigate the
change of the electron impact ionization cross sec-
tion as a function of the atomic nuclear charge.
In the following section we review the Born ap-
proximation for the calculation of electron impact
ionization cross section. The third section gives the
one-particle model used to approximate the inter-
action between a loosely bound electron and the
atomic core in a multielectron atom. The calculated
cross section as a function of both the incident elec-
tron energy and the nuclear charge for two-, three-,
and nine-electron atoms is given in the fourth sec-
tion. Finally, we discuss the effect of the order of the
phase transitions, first order or continuous, on the
ionization cross section as a function of the nuclear
charge.

Electron Impact Ionization of Atoms

There are many different methods for the calcula-
tions of the electron impact ionization cross section
for different elements. These calculations included
ionization of neutral atoms as well as detachment
of negative ions by electron impact. These meth-
ods include the convergent close coupling (CCC)
methods [7], the R-matrix methods [8, 9], classical
phenomenological techniques [10], fully quantum
methods [11, 12], and semiclassical methods [13, 14].

In this study we will use the Born approximation
for the evaluation of the ionization cross sections as
a function of the atomic nuclear charge. We expect
the Born approximation to be a good approximation
near the critical nuclear charge since the outermost
electron is loosely bound. We will consider mainly
the electron impact ionization of an atom A with a
continuously variable nuclear charge Z:

e− + A(Z)→ A+(Z)+ 2e−. (1)

In the Born approximation, the scattering ampli-
tude for an incident electron and an atom is given

by

fB = − 1
2π
〈ψkf |V|ψki〉, (2)

where ki and kf are the momenta of the incident
electron before and after the collision, respectively.
The matrix element is that of the energy of interac-
tion between the incident electron and the atom:

V(r, R) = −Z
R
+ 1
|R− r| , (3)

where R is the radius vector of the incident electron,
r is of the atomic electron, the origin of the coordi-
nate system is at the nucleus of the atom. The wave
functions for initial and final states are given by

ψki = eiki·Rφi(r), (4)

ψkf = eikf ·Rφf (r). (5)

Integrating over R reduces the scattering ampli-
tude to the form

fB = 2
K2

〈
φf (r)

∣∣eiK·r∣∣φi(r)
〉
, (6)

where K = kf −ki is the momentum transfer during
the collision.

The scattering amplitude in Born approximation
can be further simplified by using the multipole ex-
pansion of the expression eiK·r as

eiK·r = 4π
∑
LM

iLjL(Kr)Y∗LM(K̂)YLM(r̂), (7)

where jL is the spherical Bessel function and YLM is a
spherical harmonic. This leads to the following form
for the scattering amplitude:

fB = 2
K2 Vfi, (8)

where

Vfi =
〈
φf (r)

∣∣∣∣4π∑
LM

iLjL(Kr)Y∗LM(K̂)YLM(r̂)
∣∣∣∣φi(r)

〉
. (9)

Substituting the explicit form of the initial and fi-
nal wave functions and integrating over the volume
element r2 dr d� gives

Vfi =
∑
LM

iL4π
[
Fl

Elf ,nili
(K)
][

CL][Y∗LM(K̂)
]
, (10)

where

Fl
Elf ,nili

(K) =
∫ ∞

0
dr r2Rnili (r)R∗Elf

(r)jL(Kr), (11)

where Rnili and RElf are the initial and final radial
wave functions. These F functions are evaluated in
Ref. [15], while RElf , the continuum wave function

576 VOL. 80, NO. 4 / 5



ELECTRON IMPACT IONIZATION OF ATOMS

for the released electron, is given in Ref. [16], these
continuum wave functions are calculated here nu-
merically using the model potential Vmod given in
the next section by Eq. (14), and CL is the integration
of three spherical harmonics given by

CL =
∫

Y∗lf mf
(r̂)YLM(r̂)Ylimi(r̂) d�

= (−1)mf

[
(2lf + 1)(2L+ 1)(2li + 1)

4π

]1/2

×
(

lf L li
−mf M mi

)(
lf L li
0 0 0

)
. (12)

The integral is different from zero if mf =M+mi

and lf + L+ li is even.
The quantities denoted by

(a b c
d e f

)
are the Wigner

3j-symbols.
Finally, the electron impact ionization cross sec-

tion can be evaluated using the calculated scattering
amplitude fB:

σ = kf

ki

∫ ∣∣ fB(θ ,φ)
∣∣2 d�, (13)

where d� is an element of the solid angle.

One-Particle Model

The present study deals with the electron impact
ionization of a multielectron atom considered as a
function of the nuclear charge. For the movement
of a loosely bound valence electron, we have devel-
oped a simple one particle potential based on the
reliable data for the ionization energy of a negative
ion and a neutral atom, which were calculated or
experimentally measured [6]. This model is realistic
in the vicinity of the critical charge, the minimum
charge necessary to bind N electrons, and effectively
reproduces the nontrivial singularity of the ioniza-
tion energy at the critical charge. The results for the
critical charges agree (within an accuracy of 0.01)
with both the ab initio multireference configuration
interaction calculations of Hogreve [17] and the crit-
ical charges extracted from Davidson’s figures of
isoelectronic energies [18].

For a given atom with N electrons and a nu-
clear charge Z, the potential of interaction, in atomic
units, between the loose electron and an atomic core
consisting of the nucleus and the other N − 1 elec-
trons tends to−Z/r at small r and to (−Z+N−1)/r
at large r. After the scaling transformation r → Zr,
the model potential with two parameters γ and δ

takes the form

Vmod(r) = −1
r
+ γ

r

(
1− e−δr

)
. (14)

In these scaled units, the potential of interaction
between a valence electron and a core tends to −1/r
at small r and tends to (−1+γ )/r with γ = (N−1)/Z
at large r. It is easy to see that the model (14) cor-
rectly reproduces such an effective potential both at
small r and at large r. The transition region between
−1/r behavior and (−1+ γ )/r behavior has the size
of the core that is about 1/δ [6].

The second parameter of the model potential, δ,
is chosen to make the binding energy −E in the po-
tential, Eq. (14), be equal to the ionization energy of
an atom (or an ion). In our previous study [6], we
have shown that the behavior of the function δ(γ )
near γ = 1 that corresponds to Z = N − 1 can be
approximated by

δ = δ0(γ − γ1)− δ1(γ − γ0)
γ0 − γ1

, (15)

where γ0 = (N − 1)/N, δ0 are parameters corre-
sponding to the neutral atom and γ1 = 1, δ1 are
parameters corresponding to the isoelectronic neg-
ative ion. Ionization energy EI is calculated by solv-
ing the Schrödinger equation with the potential (14)
at γ = (N − 1)/Z and δ determined by Eq. (15).
Results of fitting the parameter δ for elements with
N ≤ 86 is given in our previous study [6]. The para-
meters (γ , δ) used in this study are given in Table I.

Results and Discussion

Using the Born approximation as described
above, we calculated the ionization cross section,
Eq. (13), using the one-particle model potential,
Eq. (14), as a function of the incident energy for

TABLE I
Parameters for the one particle model potential for
different elements and their critical nuclear charges.

N (atom) nl δ0 δ1 Zc Zc
a Zc

b

2 (He) 1s 1.066 0.881 0.912 0.91 0.92
3 (Li) 2s 0.8 0.4 2.0 2.0 2.0
9 (F) 2p 0.239 0.215 7.876 7.87 7.87

a Critical charges from ab initio, multireference configuration
interaction, computations of Hogreve [17].
b Critical charges from Davidson’s figures of isoelectronic en-
ergies [18].

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 577



LADADWA AND KAIS

FIGURE 1. Electron impact cross section, σ , for
ionization of He atom and H− ion as a function of
the electron incident energy: (—) present work;
(•) experimental data are taken from Ref. [8] for He
atom and Ref. [19] for H−.

two-, three-, and nine-electron systems. Figure 1
represents a comparison between our calculated
cross iection and the experimental cross section for
the He atom [8] and the H− ion [19]. The parame-
ters used for the one-electron model potential are
given in Table I. This figure shows that the Born
approximation gives a better agreement with the
experimental cross section for the scattering of an
electron from H− than from the He atom. Figure 2
shows the same trend in comparison between the
calculated cross section and the experimental re-

FIGURE 2. Electron impact cross section, σ , for
ionization of Li atom and Be+ as a function of
the electron incident energy: (—) present work,
(•) experimental data from Ref. [7].

FIGURE 3. Electron impact cross section, σ , for
ionization of Ne+ atom and O− ion as a function of
the electron incident energy: (—) present work;
(•) experimental data are taken from Ref. [20]
for Ne+ and Ref. [19] for O−.

sults for three electron systems [7]. We obtain a
better agreement in the case of the Li atom. Fig-
ure 3 shows the same comparison for nine-electron
atoms. The cross sections for O− is closer to the ex-
perimental data [19] than that for Ne+ [20]. While
the agreement in this case between experiment and
calculation validates the approximations discussed
above, we expect the Born approximation to give
better results for the cross section near the critical
charges (see Table I for the values of the critical
charges).

The effect of varying the nuclear charge on the
calculated cross section is illustrated in Figures 4, 5,

FIGURE 4. Electron impact scaled cross section,
Z2σ , for two-electron atoms, N = 2, as a function of
the electron incident energy E for different values of the
nuclear charge Z: Z = 1, Z = 1.6, and Z = 2.
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FIGURE 5. Electron impact cross section, σ , for
three-electron atoms, N = 3, as a function of the electron
incident energy E for different values of the nuclear
charge Z: Z = 2.2, 3 (multiplied by 50 in order to put on
the same scale) and Z = 4 (multiplied by 100).

and 6 for two, three, and nine electrons, respectively.
The cross section becomes very large, for a fixed
number of electrons, as one approaches the criti-
cal nuclear charge. The critical charges for N = 2,
N = 3, and N = 9 electrons are given in Table I.
Figures 7, 8, and 9 represent the cross section as a
function of both the nuclear charge Z and the inci-
dent energy E. These three-dimensional plots show
clearly the increase of the cross section near the crit-
ical charge Zc.

Finally, in order to extrapolate the information to
the critical charge, we plot in Figure 10 the max-
imum cross section as a function of the nuclear

FIGURE 6. Electron impact cross section, σ , for
nine-electron atoms, N = 9, as a function of the electron
incident energy E for different values of the nuclear
charge Z: Z = 8, Z = 9, and Z = 10.

FIGURE 7. Ionization cross section, σ , for two-electron
atoms as a function of both the nuclear charge Z and the
electron incident energy E.

charge Z for two- and three-electron atoms. This fig-
ure shows a sharp, practically vertical, rise of the
maximum cross section, σmax at the critical charges,
Zc ' 0.912, for two electron atoms N = 2 and
Zc ' 2 and for three electron atoms N = 3. Al-
though the singularity can be well fitted to the form
σmax ∝ (Z − Zc)−3/2, we expect a less trivial sin-
gularity as have been established for the ionization
energy I(Z) for two- and three-electron atoms [21].
For two-electron atoms [1], we have shown, using
the finite size scaling method, that the critical ex-
ponent for the ionization energy, I(Z) ' (Z − Zc)α;
Z → Z+c , is equal to 1, α = 1. For three-electron
atoms [2], we obtained different results, the criti-
cal exponent was greater than 1, α ' 1.64 ± 0.05.
Contrary to the helium case, where the Hamiltonian

FIGURE 8. Ionization cross section, σ , for
three-electron atoms as a function of both the nuclear
charge Z and the electron incident energy E.
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FIGURE 9. Ionization cross section, σ , for
nine-electron atoms as a function of both the nuclear
charge Z and the electron incident energy E.

has a square integrable eigenfunction at Z(He) =
Z(He)

c , the Hamiltonian for lithium-like atoms does
not have a square integrable wave function at the
bottom of the continuum. These results show that
there is a fundamental difference in behavior of
the ionization energy as a function of Z for the
closed-shell helium-like atoms and the open-shell
lithium-like atoms. The transition in the former be-
tween a bound state to a continuum has all the
characteristics of first-order phase transition while
the later has a continuous phase transition. As a re-
sult of this behavior of the ionization energy near
the critical Zc, we expect the cross section to be finite
for helium-like atoms and infinite for lithium-like
atoms.

FIGURE 10. Comparison of the maximum cross
section, σm, as a function of the nuclear charge Z for
two-electron and three-electron atoms.

Conclusions

We have investigated the change of the electron
impact ionization cross section as a function of the
nuclear charge for two-, three-, and nine-electron
atoms. We show, using the Born approximation
along with a simple one-particle model, that the
cross section tends to large values as the nuclear
charge tends to its critical value.

In a previous study for two- and three-
electron atoms, we have used the finite-size scaling
method [22, 23] to study the analytical behavior
of the energy near the critical point. Results for
open-shell systems, such as lithium-like atoms, are
completely different from those of closed-shell sys-
tems, such as the helium-like atoms. The transition
in the closed-shell systems from a bound state to a
continuum resemble a “first-order phase transition”
while for the open-shell system, the transition of the
valence electron to the continuum is a “continuous
phase transition” [1, 2].

Using this analogy, we expect the analytical be-
havior of the cross section to be different in the cases
of two-, and three-electron atoms. Since for two-
electron atoms the transition is of a first order as a
function of the charge, the wave function does ex-
ist and can be normalized at the critical charge Zc.
Although in our numerical calculations the cross
section tends to a large value at Zc, it must be finite.
However, for the three-electron atoms, the transition
is continuous and the wave function is not normal-
izable at the critical charge Zc, so we expect the cross
section to go to infinity at Zc. In this study, the re-
sults for three-electron atoms show a much sharper
rise in the cross section in comparison with two-
electron atoms.

Although one might argue that real atoms cannot
arrange their nuclear charges to be sufficiently close
to the critical values, this approach might shed some
light on the behavior of the cross section near sin-
gular points. Instead of taking the parameter as the
nuclear charge, one can investigate this behavior as
a function of external fields such as electric or mag-
netic fields. Research is underway to investigate the
analytical behavior of the cross section as a function
of external parameters.
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