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Quantum criticality and stability of three-body Coulomb systems
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We present quantum phase transitions and critical phenomena of three-body Coulomb systems with charges
(Q, q, Q) and masses (M , m, M ). Full numerical results, using the finite-size scaling method, for an arbitrary
mass ratio 0<k5(11m/M )21<1 over the range 1<l5uQ/qu<1.25, show that there exists a transition
curvelc(k) through which all systems undergo a first-order phase transition from stable to unstable. Particu-
larly, lc(k) has a minimum atkm50.35, which leads to a new proposed classification of the three-body
Coulomb systems: moleculelike systems,k.km , such as Ps2 (k50.5) and atomlike systems,k,km , such as

p̄p̄d (k50.33).

PACS number~s!: 31.15.2p, 05.70.Jk
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The stability of three-body Coulomb systems is an o
problem that has been treated in many particular cases@1–3#,
and several authors have reviewed this problem@4,5#. For
example, the He atom (ae2e2) and H2

1 (ppe2) are stable
systems, H2 (pe2e2) has only one bound state@6#, the pos-
itronium negative ion Ps2 (e1e2e2) has a bound state@7#,
while the positron-hydrogen system (e2pe1) is unbound
and the proton-electron-negative-muon (pe2m2) is an un-
stable system@8#. Here we show that all three-bodyABA
Coulomb systems undergo a first-order quantum phase
sition from the stable phase ofABA to the unstable breaku
phase ofAB1A as their masses and charges vary. Using
finite-size scaling method, we calculate the transition l
that separates the two phases. For any combination of
three particles in the formABA, one can read directly from
the phase diagram if the system is stable or unstable. M
over, the transition line has a minimum that leads to a n
proposed classification of theABA systems to moleculelike
systems and to atomlike systems. This is very importan
exploring the resonance spectrum and dynamics of three
ticles where there is neither an obvious point of reference
the heavy nucleus in H2 nor a line of reference as the inte
nuclear axis in H2

1. Rost and Wintgen@9# have shown that
the resonance spectrum of the positronium negative ion2

can be understood and classified with the H2
1 molecule

quantum numbers by treating the internuclear axis of Ps2 as
an adiabatic parameter. Our approach gives a system
classification of allABA systems.

Let us consider the stability and quantum phase tra
tions of the three-bodyABA Coulomb systems with charge
(Q, q, Q) and masses (M , m, M ). With the scale transfor-
mationr→ f r , wheref 5muQqu andm5mM/(m1M ) is the
reduced mass, the scaled Hamiltonian,H→mH/( f )2, reads
@10#
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, ~1!

where 0<l5uQ/qu<` and 0<k51/(11m/M )<1. Here
we have formally separated the motion of the center of m
and the reference particle is the one with massm. With this
scaling transformation, the Hamiltonian depends linearly
1050-2947/2000/62~6!/060502~4!/$15.00 62 0605
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the parametersl andk. We are interested in the study of th
critical behavior of the Hamiltonian, Eq.~1!, as a function of
both parametersl and k. A critical point is defined as a
point for which a bound state becomes absorbed or dege
ate with a continuum@11#. The ABA system is stable if its
energy is lower than the energy of the dissociation toAB
1A. The critical behavior and stability of the ground-sta
energy as a function ofl for k50 has been previously stud
ied for the two-electron atoms@11# ~with Q521, M51,
m5` andl51/uqu51/Z, whereZ is the nuclear charge! and
for the hydrogen moleculelike ions@10# ~with q521, m
51, M5` andl5uQu5Z).

In order to obtain the stability diagram for the three-bo
Coulomb systems in the (l2k) plane, one has to calculat
the transition linelc(k) that separates the stable phase fro
the unstable one. To carry out the calculations we rely on
finite-size scaling method for quantum systems. With t
method, for a given Hamiltonian, one should proceed w
the following scheme@11#: ~i! choose a convenient orthono
mal basis set and calculate the matrix elements of the Ha
tonian; ~ii ! calculate the two leading eigenvaluesE0

(N)(l),
E1

(N)(l) of the finite Hamiltonian matrix of orderN and their
corresponding correlation length of the classical pseudo
tem jN(l),

jN~l!52
1

ln@E1
(N)~l!/E0

(N)~l!#
; ~2!

~iii ! use the phenomenological renormalization equation
obtain a sequence of pseudocritical parametersl (N), which
are the crossing points of the equation@12#

jN~l (N,N8)!

N
5

jN8~l (N,N8)!

N8
, ~3!

whereN is the order of the Hamiltonian matrix andN85N
21, except when there are parity effects, then one ha
takeN85N22; and finally~iv! extrapolate the values of th
sequences, using extrapolating methods such as the a
rithm of Bulirsch and Steor to obtain the critical paramete
in the limit N→`.
©2000 The American Physical Society02-1
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To carry out the variational calculations, we used the f
lowing complete basis set:

Fn,m,l~r 1 ,r 2 ,r 12!5fn~x!fm~y!f l~z!,

fn~x!5Ln~x!e2x/2, ~4!

whereLn is the Laguerre polynomial of degreen and order 0
andx5(u/kx)(r 11r 22r 12), y5(u/ky)(2r 11r 21r 12), and
z5(u/kz)(r 12r 21r 12) are the perimetric coordinates@13#.
Here we choosekx515ky/25kz/2 andu51.5, which gives
faster convergence results for the critical points.

Solving the Scho¨dinger equation HC5EC, where
C(r 1 ,r 2 ,r 12)5F(r 1 ,r 2 ,r 12)1F(r 2 ,r 1 ,r 12), gives a sparse
real, and symmetricM (N)3M (N) matrix of orderN. The
symmetric matrix is expressed in a sparse row-wise form
reordered, and LU-decomposed@14#. Then, we employ the
block-renormalization Lanczos procedure@15# to obtain the
eigenvalues. From the leading two eigenvaluesE0

(N)(l) and
E1

(N)(l), we can obtain the correlation length, Eq.~2!, for the
classical pseudosystemjN(l). Now we are in a position to
apply the phenomenological renormalization equation,
~3!, to obtain a sequence of pseudocritical parameterslc

(N)

for different values ofk. The values of the parameterk
5(11m/M )21 was varied in the interval@0,1# according to
the different masses of the combined particles. The value
atomic units, of the particle masses were taken from R
@16#: for electron me51.0, proton mp51 836.152 667 5,
deuteronmd53 670.482 955 0, tritiummt55 496.921 617 9
@16,17#, muon mm5206.768 265 7, and heliummHe
57 296.299 508. The values ofk for the different combina-
tions of the three particles are listed in Table I. The extra
lated critical values oflc as obtained from the phenomen
logical renormalization equation, Eq.~3!, are in complete
agreement with the results of the first-order method. W
this method, one defineslc

(N) as the value in which the
ground-state energy in theNth-order approximationE0

(N)(l)
is equal to the threshold energyE0

th . The results of the ex-
trapolated critical values are listed in Table I, and are in go
agreement with previous results for`He @18# and `H2

1

@19#.
To illustrate the critical phenomena and stability of t

three-body Coulomb systems, we consider in detail three
ferent values ofk along the transition line: the He atom (k
50.000 013 7), Ps2 (k50.5), and H2

1 (k50.999 455 7).
Figure 1 shows the crossing points, the pseudocritical po
lc

(N) , obtained from the phenomenological renormalizat

TABLE I. The critical parameters for different three-body Co
lomb systems.

Systems k lc Systems k lc

`He 0 1.097 661 ee ē 0.5 1.084 831

He 0.000 013 7 1.097 649 dd p̄ 0.666 556 4 1.096 404

mmp 0.101 212 1 1.089 825 dde 0.999 727 6 1.230 653

p̄p̄t 0.250 393 3 1.083 234 tte 0.999 818 1 1.231 663

p̄p̄d 0.333 443 6 1.081 979 `H2
1 1 1.234 361
06050
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equation, which means the crossing points
@E1

(N)(l)/E0
(N)(l)#N as a function ofl for He, Ps2, and H2

1

systems. Atlc , the ground-state energy of each of the thr
systems becomes degenerate with the threshold of ioniza
for He and dissociation for Ps2 and H2

1. Our numerical
results show that the ground-state energy is a continu
function of 1.0<l<1.25 and 0<k<1, but bends over
sharply atlc to become degenerate with the scaled low
continuum atE052 1

2 . By virtue of this behavior, we expec
that the first derivative of the energy with respect tol will
develop a steplike discontinuity atlc . H(lc) has a square-
integrable eigenfunction, ask varies, corresponding to a
scaled threshold energyEth(lc)52 1

2 @20#. E(l) approaches
Eth(lc) linearly in (l2lc) as l→lc

2 @20,21,18#. The be-
havior of the ground-state energy for the three systems
their first and second derivatives resembles the behavio
the free energy at a first-order phase transition. This beha
is universal for allABA Coulomb systems.

For theABA Coulomb systems when 1<l<lc the ratio
of charges is sufficiently small enough to keep the three p
ticles bound and the system at least has one bound state@6#.
This situation remains until the system reaches a crit
point lc , which is the maximum value ofl for which the
Hamiltonian has a bound state. Forl>lc , one of the par-
ticles jumps to infinity with zero kinetic energy. Figure
presents a direct picture for the change in the mean valu
the distance,̂r 12&, of the two like charge particles asl var-
ies. The steplike discontinuity atlc tells us about the jump
of one of the particles and the breakup of the system. In F
3 we plot the charge-density probabilityuC(r 1
5a,r2,r12)u2 for one of the protons of the numerically calcu

FIG. 1. The ratio between the ground-state energyE0
(N)(l) and

the second lowest eigenvalueE1
(N)(l), raised to a powerN as a

function of l for N526,27, . . . ,36: ~a! He atom (k
51.370 557 77231023), ~b! Ps2 (k50.5), and ~c! H2

1 (k
50.999 455 679).
2-2
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FIG. 3. The charge-density probabilityuC(r 15a,r 2 ,r 12)u2 for
one of the protons of the H2

1 like molecular ions, at fixed distanc
a53. In this geometry, in the (Xp ,Yp) plane, the electron is fixed
at the origin of the coordinates and the electron-proton distanc
fixed ata53 along theXp axis. Herea, Xp , andYp are given in

atomic units. In the upper partl (N 5 20)51.24,lc
(N 5 20)51.2402

and in the lower partl (N 5 20)51.241.lc
(N 5 20)51.2402.

FIG. 2. The average distance between particle 1 and 2,^r 12& in
atomic units, as a function ofl: ~a! He atom,~b! Ps2, and~c! H2

1.
06050
lated eigenfunctions of the H2
1-like molecular ions, at a

fixed scaled distancea53, which is the approximate dis
tance between the electron and the other proton. In this
ometry, in the (Xp ,Yp) plane, the electron is fixed at th
origin of the coordinates and the electron-proton distanc
fixed at a53 along the Xp axis. For l (N 5 20)51.24
,lc

(N 5 20)51.2402 the proton density peaks at (Xp

523,Yp50), as shown in the upper part of Fig. 3. F

l (N 5 20)51.241.lc
(N 5 20)51.2402, the system breaks u

and the proton jumps to a large distance; the proton den
becomes localized at very large distance (.80), as shown in
the lower part of Fig. 3. When the size of the system
creases,N→`, the proton jumps to infinity.

The position of this steplike discontinuity in the^r 12& as a
function of l can be used as another possible definition
the pseudocriticallc

(N) . The extrapolated values of this se
quence, using the Bulirsh and Stoer algorithm@11#, as a
function of k are in complete agreement with the previo
results of the crossing points of Eq.~3! and from the first-
order method whereE0

(N)(l)5E0
th @10#. The three groups of

data for lc are consistent to an accuracy of better th
0.0005. The extrapolated values oflc as a function ofk are
listed in Table I.

In Fig. 4 the transition linelc as a function ofk is shown.
The parameterk changes betweenk51, which corresponds
to the H2

1-like systems in the Born-Oppenheimer appro
mation andk50, which corresponds to the He-like atoms
the infinite mass approximation. Between the two limitsk
50 andk51, there are many stable three-particle syste
as shown in the figure. The transition line separates the th
particle systems into stable systems~with at least one bound
state! and unstable systems. These numerical results con
the general properties of stability domain discussed by M

is

FIG. 4. The critical parameterlc as a function ofk in the range
0<k<1. The different three-body systems are shown along
transition line that separates the stable phase from the unstable
Note the minimum value ofkm50.35; for k.km we have mol-
eculelike systems, while fork,km the systems behave like atom
The window in this figure shows the two branches in the (E0

(N) ,l)
plane ask varies in the interval@0,1#. E0

(N) is given in atomic units.
2-3



m
d

e
o

in
o

rm
ith

e

o

la-
and
d

hed
am-

the
le
the

e

e a
y-
be

of

he

RAPID COMMUNICATIONS

SABRE KAIS AND QICUN SHI PHYSICAL REVIEW A62 060502~R!
tin @8#, the instability region in thel-k plane should be
convex. Particularly, the transition curve has a minimu
which occurs atkm50.35, and hence all possible boun
three-body systems are divided into two branches in thel-k
plot, one with 0<k,km and the other withkm,k<1. The
two closest systems tokm are Ps2 with k50.5 andp̄p̄d with
k50.33. The inset in Fig. 4 shows the two different branch
in their ground-state energy as a function of the location
the pseudocritical pointslc

(N)(k).
The observation of two different branches leads us to

vestigate the similarity between the moleculelike systems
the right branch,k.km , such as the Ps2, and the atomlike
systems of the left branch,k,km , such asp̄p̄d. The param-
eter k measures the strength of the mass polarization te
which is due to the motion of the two identical particles w
respect to the third particle. The mass polarization term
then a measure of the momentum correlation of the two id
tical particles with respect to the third particle. Ifk@km , as
in the case of a molecule such as H2

1, the light particle with
massm and chargeq tends to stay in the middle of the tw
heavy particles to achieve bonding, while fork!km , as in
the case of the He atom, each light particle with massM and
06050
,

s
f

-
f

,
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n-

chargeQ is less localized and thus the momentum corre
tion is smaller. The fact that the resonance spectrum
dynamics of Ps2 (k50.5) was understood and classifie
with the H2

1 quantum numbers@9# is very encouraging and
shows that the above proposed classification might s
some light on a systematic and concise picture of the dyn
ics of all ABA Coulomb systems.

In summary, we have shown that theABA Coulomb sys-
tems exhibit a first-order quantum phase transition as
parameterl varies. The transition line between the stab
and the unstable phase was accurately calculated using
finite-size scaling method. The transition linelc(k) has a
minimum atkm50.352 orm/M51.84, which separates th
two branches in the (E0

(N) ,l) plane ask varies between mol-
eculelike systems and atomlike systems. This might b
powerful result, since it provides a rough picture of the d
namics for many exotic particle combinations that may
realized experimentally, such as (e2m1e2), (m2pm2), etc.
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