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We present quantum phase transitions and critical phenomena of three-body Coulomb systems with charges
(Q, g, Q) and massesM, m, M). Full numerical results, using the finite-size scaling method, for an arbitrary
mass ratio 6<x=(1+m/M) 1<1 over the range £\=|Q/q|<1.25, show that there exists a transition
curve (k) through which all systems undergo a first-order phase transition from stable to unstable. Particu-
larly, Nc(«x) has a minimum at,,,=0.35, which leads to a new proposed classification of the three-body
Coulomb systems: moleculelike systems; «,,,, such as Ps(x=0.5) and atomlike systemg< k,, such as
ppd (k=0.33).

PACS numbds): 31.15~-p, 05.70.Jk

The stability of three-body Coulomb systems is an oldthe parameters andx. We are interested in the study of the
problem that has been treated in many particular cdseg], critical behavior of the Hamiltonian, E¢l), as a function of
and several authors have reviewed this prob[dns]. For  both parametera and «. A critical point is defined as a
example, the He atomae"e~) and H,™ (ppe~) are stable point for which a bound state becomes absorbed or degener-
systems, H (pe e™) has only one bound staf6], the pos- ate with a continuunj1l]. The ABA system is stable if its
itronium negative ion Ps (e"e”e”) has a bound stafg], energy is lower than the energy of the dissociationA®
while the positron-hydrogen systene (pe*) is unbound +A. The critical behavior and stability of the ground-state
and the proton-electron-negative-mugme( «~) is an un-  energy as a function of for «k=0 has been previously stud-
stable systenj8]. Here we show that all three-bodyBA ied for the two-electron atomill] (with Q=—-1, M=1,
Coulomb systems undergo a first-order quantum phase tram=c and\ = 1/|q|= 1/Z, whereZ is the nuclear chargend
sition from the stable phase #fBA to the unstable breakup for the hydrogen moleculelike iongl0] (with g=—1, m
phase ofAB+ A as their masses and charges vary. Using the=1, M= and\=|Q|=2).
finite-size scaling method, we calculate the transition line In order to obtain the stability diagram for the three-body
that separates the two phases. For any combination of th@oulomb systems in thex(- x) plane, one has to calculate
three particles in the forrABA, one can read directly from the transition line\.(«) that separates the stable phase from
the phase diagram if the system is stable or unstable. Morehe unstable one. To carry out the calculations we rely on the
over, the transition line has a minimum that leads to a newinite-size scaling method for quantum systems. With this
proposed classification of th®BA systems to moleculelike method, for a given Hamiltonian, one should proceed with
systems and to atomlike systems. This is very important irthe following schemg11]: (i) choose a convenient orthonor-
exploring the resonance spectrum and dynamics of three pamal basis set and calculate the matrix elements of the Hamil-
ticles where there is neither an obvious point of reference agnian; (i) calculate the two leading eigenvalug§V(\),
the heavy nucleus in Hnor a line of reference as the inter- E(lN)O\) of the finite Hamiltonian matrix of ordax and their

nuclear axis in H". Rost and Wintgefi9] have shown that corresponding correlation length of the classical pseudosys-
the resonance spectrum of the positronium negative ion Pstem & (),

can be understood and classified with the”Hmolecule

guantum numbers by treating the internuclear axis of &s 1
an adiabatic parameter. Our approach gives a systematic ENN)=— . . : 2)
classification of allABA systems. In[EV(N)/Ep™(N)]

Let us consider the stability and quantum phase transi-
tions of the three-bodABA Coulomb systems with charges (iii) use the phenomenological renormalization equation to
(Q, g, Q) and massesM, m, M). With the scale transfor- obtain a sequence of pseudocritical parameiéts, which
mationr — fr, wheref = 4|Qq| andu=mM/(m+ M) is the  are the crossing points of the equatidr2]
reduced mass, the scaled Hamiltonigh- wH/(f)?, reads

[10] EAMN) g .
N N N’ ’
VZ va 1 1
H=-—F -5 ————— kVy-Voth—, (1 : I .
2 2 rp o1y EP) whereN is the order of the Hamiltonian matrix and’ =N

—1, except when there are parity effects, then one has to
where O<\=|Q/q|sx and Osk=1/(1+m/M)<1. Here takeN’=N-2; and finally(iv) extrapolate the values of the
we have formally separated the motion of the center of massequences, using extrapolating methods such as the algo-
and the reference particle is the one with masdVith this  rithm of Bulirsch and Steor to obtain the critical parameters
scaling transformation, the Hamiltonian depends linearly orin the limit N—oo.
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TABLE I. The critical parameters for different three-body Cou-
lomb systems.

0.805
Systems K N Systems K N

“He 0 1.097661 ee e 0.5  1.084831 0785 2

He 0.0000137 1.097649 44 p 0.6665564 1.096 404 1.0930 1.0945 1.0960

upp 01012121 1.089825 dde 0.9997276 1.230653
ppt 02503933 1083234 tte 0.9998181 1.231663

ppd 0.3334436 1.081979 “H,* 1 1.234361

To carry out the variational calculations, we used the fol-
lowing complete basis set:

D mi(r1,r2,112)= @n(X) dm(Y) h1(2),
¢n(x) = Ln(x)e_X/z’ (4)

whereL ,, is the Laguerre polynomial of degreeand order 0
andx=(0/k,)(r1+r,—rqp), y=(0/k))(—ri+r,+ryy), and
z=(6/k,)(r{—r,+r,) are the perimetric coordinat¢43].
Here we choos&,=1=k,/2=k,/2 and¢= 1.5, which gives
faster convergence results for the critical points. FIG. 1. The ratio between the ground-state eneggy(\) and
Solving the Schdinger equation HW =EW¥, where the second lowest eigenval&" (1), raised to a poweN as a

W(ry,rp,r1)=®(rq,ry,r1)+®(r,,rq,r1,), gives a sparse, function of N for N=2627...,36: (@ He atom (
real, and symmetrid1 (N) X M(N) matrix of orderN. The =~ =1.37055777%10°°%), (b Ps (x=0.5), and (c) Hy" (x
symmetric matrix is expressed in a sparse row-wise format;-0-999 455679).
reordered, and LU-decomposgt]. Then, we employ the g jation,  which means the crossing points  of
cioemvalues, From the leading o eigemalagd0y and  LEo (V/ES(N)1" as a function ok for He, Ps', and

) , . systems. AfA., the ground-state energy of each of the three
E1”(\), we can obtain the correlation length, EB), for the gy stems becomes degenerate with the threshold of ionization
classical pseudosystegiy(\). Now we are in a position 0  for He and dissociation for Psand H*. Our numerical
apply the phenomenological renormalization equation, Eqregyjts show that the ground-state energy is a continuous
(3), to obtain a sequence of pseudocritical parameté'?'é function of 1.0s\=<1.25 and G<k<1, but bends over
for different values of«. The values of the parametar  gsharply ath. to become degenerate with the scaled lowest
=(1+m/M)~* was varied in the intervdD,1] according to  continuum aE,= — %. By virtue of this behavior, we expect
the different masses of the combined particles. The values, ifhat the first derivative of the energy with respect\tavill
atomic units, of the particle masses were taken from Refdevelop a steplike discontinuity at.. H(\.) has a square-
[16]: for electron me=1.0, proton m,=1836.1526675, integrable eigenfunction, as varies, corresponding to a
deuteronmy=3 670.482 9550, tritiunm,=5 496.9_21 6179  gcaled threshold enerd"(\.) = — % [20]. E(\) approaches
[16,17_|, muon mM=206768 2657, a-nd hellumm_He Eth()\c) Iinearly in ()\_}\c) aS)\—>)\; [20121118 The be-
=7296.299 508. The values affor the different combina-  ayior of the ground-state energy for the three systems and
tions of the three particles are listed in Table I. The extrapoyeir first and second derivatives resembles the behavior of

lated critical values oh. as obtained from the phenomeno- e free energy at a first-order phase transition. This behavior
logical renormalization equation, E@3), are in complete 5 niversal for allABA Coulomb systems.

agreement with the results of the first-order method. With ko the ABA Coulomb systems when<lA <)\ the ratio
this method, one defines{" as the value in which the charges is sufficiently small enough to keep the three par-
ground-state energy in théth-order approximatio£§(\) ticles bound and the system at least has one bound[&iate
is equal to the threshold enerdg}’. The results of the ex- This situation remains until the system reaches a critical
trapolated critical values are listed in Table |, and are in googhoint \., which is the maximum value of for which the
agreement with previous results féiHe [18] and “H,”  Hamiltonian has a bound state. FoE\ ., one of the par-
[19]. ticles jumps to infinity with zero kinetic energy. Figure 2
To illustrate the critical phenomena and stability of the presents a direct picture for the change in the mean value of
three-body Coulomb systems, we consider in detail three difthe distance(r ,,), of the two like charge particles asvar-
ferent values of along the transition line: the He ator ( ies. The steplike discontinuity at, tells us about the jump
=0.0000137), Ps (k=0.5), and H" (k=0.9994557). of one of the particles and the breakup of the system. In Fig.
Figure 1 shows the crossing points, the pseudocritical point§ we plot the charge-density probability| ¥ (r,
AN obtained from the phenomenological renormalization=a,r,,r;,)|? for one of the protons of the numerically calcu-
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FIG. 4. The critical parametex, as a function ok in the range
N=26 O=«=1. The different three-body systems are shown along the
0 transition line that separates the stable phase from the unstable one.
1.225 1.235 1.245 Note the minimum value ok,,=0.35; for x> «,, we have mol-
A eculelike systems, while fae< k,, the systems behave like atoms.

The window in this figure shows the two branches in tB§'(,))

FIG. 2. The average distance between particle 1 afd,2, i pjane asc varies in the interval0,1]. E{V is given in atomic units.
atomic units, as a function of: (a) He atom,(b) Ps~, and(c) H,".
lated eigenfunctions of the Fi-like molecular ions, at a
fixed scaled distanca=3, which is the approximate dis-
tance between the electron and the other proton. In this ge-
ometry, in the K,,Y,) plane, the electron is fixed at the
origin of the coordinates and the electron-proton distance is
10 fixed at a=3 along the X, axis. For A\(N=20)=124
<A{N=29-12402 the proton density peaks afX(
=—-3,Y,=0), as shown in the upper part of Fig. 3. For

AN=20=1 247>\ (N=200=1 2402, the system breaks up
and the proton jumps to a large distance; the proton density
becomes localized at very large distanee80), as shown in

the lower part of Fig. 3. When the size of the system in-
(a) AV =20) ~ )\£N=20) creasesN— oo, the proton jumps to infinity.

The position of this steplike discontinuity in tkie;,) as a
function of A\ can be used as another possible definition of
T the pseudocriticah"). The extrapolated values of this se-
. guence, using the Bulirsh and Stoer algorithid], as a
function of « are in complete agreement with the previous

results of the crossing points of E() and from the first-
. order method wher&{™(\)=E{' [10]. The three groups of
data for A, are consistent to an accuracy of better than
0.0005. The extrapolated valuesXaf as a function ofk are
listed in Table I.
In Fig. 4 the transition liné . as a function ok is shown.
(b) )\(N=20) > )\£N=20) The parametek changes betweekn=1, which corresponds
to the H,"-like systems in the Born-Oppenheimer approxi-

FIG. 3. The charge-density probabilit¥ (r,=a,r,,r,,)|2 for ~ mation and«=0, which corresponds to the He-like atoms in
one of the protons of the H like molecular ions, at fixed distance the infinite mass approximation. Between the two limits
a=3. In this geometry, in theX,,Y,) plane, the electron is fixed =0 andx=1, there are many stable three-particle systems,
at the origin of the coordinates and the electron-proton distance ias shown in the figure. The transition line separates the three-
fixed ata=3 along theX, axis. Herea, X,, andY, are given in  particle systems into stable systefmsth at least one bound
atomic units. In the upper par®™ = 29=1.24<\{N=20=12402  state and unstable systems. These numerical results confirm
and in the lower park (N = 29=1.241>\(N = 29=1 2402, the general properties of stability domain discussed by Mar-
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tin [8], the instability region in the\-x plane should be chargeQ is less localized and thus the momentum correla-
convex. Particularly, the transition curve has a minimumtion is smaller. The fact that the resonance spectrum and
which occurs atk,=0.35, and hence all possible bound dynamics of Ps (x=0.5) was understood and classified
three-body systems are divided into two branches inthe  Wwith the H,* quantum numberf9] is very encouraging and
plot, one with 0< k< k, and the other withc,,<x<1. The shows that the above proposed classification might shed
two closest systems te,, are PS with k=0.5 andppd with ~ SOM€ light on a systematic and concise picture of the dynam-
«x=0.33. The inset in Fig. 4 shows the two different branchedCs Of all ABA Coulomb systems.
in their ground-state energy as a function of the location of [N Summary, we have shown that th8A Coulomb sys-
the pseudocritical points{™(«). tems exhibit a _flrst-order qua.n.tum.phase transition as the
The observation of two different branches leads us to inParameter varies. The transition line between the st_able
vestigate the similarity between the moleculelike systems ofnd the unstable phase was accurately calculated using the

the right branchx> «,,, such as the Ps and the atomlike inite-size scaling method. The transition ling(x) has a

svstems of the left branchk< such aspd. The param- minimum atx,,=0.352 orm/M =1.84, which separates the
Y '~ Km, SUCh apd. the pa two branches in theB{" ,\) plane as« varies between mol-
eter k measures the strength of the mass polarization term

which is due to the motion of the two identical particles with eculelike systems and atomlike systems. This might be a

respect to the third particle. The mass polarization term iéaowerful result, since it provides a rough picture of the dy-

then a measure of the momentum correlation of the two iden-o h'c> for many exotic particle combinations that may be

. . i D
tical particles with respect to the third particle.d® «,, as realized experimentally, such ae (u"e"), (1 pu), etc.

in the case of a molecule such ag'Hthe light particle with We would like to acknowledge the financial support of
massm and charge tends to stay in the middle of the two the Office of Naval ResearckContract No. N0O0014-97-
heavy particles to achieve bonding, while ferck,,, asin 0192 and S.K. acknowledges the financial support of the
the case of the He atom, each light particle with nldsand  National Science Foundation.
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