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Abstract

We present a path integral formalism to obtain the statistical mechanics transfer matrix of the system which leads to

a straightforward mapping between the quantum problem and an e�ective classical lattice system. Thus, the quantum

criticality of atomic and molecular systems can be studied by the standard statistical mechanics methods. We illustrate

this general technique by presenting detailed calculations for the screened Coulomb potential. Ó 2001 Elsevier Science

B.V. All rights reserved.

1. Introduction

Phase transitions and critical phenomena con-
tinue to be a subject of great interest in many ®elds
[1]. A wide variety of physical systems exhibit
phase transitions and critical phenomena, such as
liquid±gas, ferromagnetic±paramagnetic, ¯uid-su-
per¯uid, conductor±superconductor and the list
continues to expand [2]. Over the last few decades,
a large body of research has been done on this
subject, mainly using classical statistical mechan-
ics. However, quantum phase transitions have at-
tracted much interest in recent years. These
transitions are zero temperature transitions tuned
by parameters in the Hamiltonian [3,4]. Examples
from condensed matter physics include the mag-
netic transitions of cuprates, superconductor±

insulator transitions in alloys, metal±insulator
transitions and the Quantum±Hall transitions
[4,5].

In the ®eld of atomic and molecular physics, the
analogy between symmetry breaking of electronic
structure con®gurations and quantum phase
transitions has been established at the large di-
mensional limit [6]. The mapping between sym-
metry breaking and mean-®eld theory of phase
transitions was shown by allowing the nuclear
charge Z, the parameter which tunes the phase
transition, to play a role analogous to temperature
in classical statistical mechanics [7]. The study of
quantum phase transitions and critical phenomena
continues to be of increasing interest in the ®eld of
atomic and molecular physics. This is motivated
by the recent theoretical and experimental searches
for the smallest stable multiply charged anions
[8,9], experimental and theoretical work on the
stability of atoms and molecules in external electric
and magnetic ®elds [10,11], design and control
electronic properties of materials using arti®cial
atoms [12], the study of selectively breaking
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chemical bonds in polyatomic molecules [10] and
phase transitions of ®nite clusters [13].

To treat quantum phase transitions and critical
phenomena, it seems that Feynman's path integral
is the natural choice. In this approach, one can
show that the quantum partition function of the
system in d dimensions looks like a classical par-
tition function of a system in d � 1 dimensions
where the extra dimension is the time [3]. Upon
doing so, and allowing the space and time vari-
ables to have discrete values, we turn the quantum
problem into an e�ective classical lattice problem.
Quantum phase transitions occur at zero temper-
ature, T � 0. At this limit the free energy becomes
the ground state energy and the various thermal
averages become the ground state expectation
values. With the partition function, we can use
standard statistical mechanics methods, such as
the ®nite size scaling, to get all the quantities of
interest for investigating quantum phase transi-
tions. In the following sections, we will show how
to carry out the mapping between the quantum
problem and an e�ective classical space-time lat-
tice, give an example to illustrate how calculate the
di�erent critical parameters, and then give discus-
sion and conclusions.

2. Mapping quantum problems to lattice systems

In the path integral approach, the probability
amplitude K�q0; t0; q; t� of a particle initially local-
ized at position q and time t to be found at posi-
tion q0 at time t0 is given by

K�q0; t0; q; t� �
Z q�t0��q0

q�t��q
Dqe�i=h�S�q�t��; �1�

where the symbol
R q�t0��q0

q�t��q Dq stands for integration
over all trajectories connecting the space±time
point �q; t� to �q0; t0�, and S�q�t�� is the classical
action for a given trajectory q � q�t� [14,15].

The analytical continuation of the probability
amplitude to imaginary time t � ÿis of closed
trajectories, q�t� � q�t0�, is formally equivalent to
the quantum partition function Z�b�, with the in-
verse temperature b � ÿi�t0 ÿ t�=�h [16]. In practi-
cal calculations it is common to use the path

integral lattice de®nition. In this discrete time ap-
proach, the quantum partition function reads

Z�b� � lim
Ds! 0

m
2pDs�h

� �Ns=2
Z YNs

`�0

dq`

� exp

"
ÿ Ds

�h

XNsÿ1

`�0

m
�q`�1 ÿ q`�2

2�Ds�2
 

� k
XNsÿ1

`�0

V �q` � 1� � V �q`�
2

!#
; �2�

where k is the strength of the potential
V �q�; Ds � b=Ns is the regular grid spacing be-
tween Ns points along the imaginary time axis in-
dexed by ` � 0; 1; . . . ;Ns. The closed path is made
by a periodic boundary condition in the time di-
rection such that qNs � q0. Since we are consider-
ing a quantum phase transition for a system at its
ground state energy, we must consider only the
case of b ! 1.

Now we introduce the discretization also in the
space direction. Thus, the totally discrete model
can be used as a new scheme to study quantum
particles in the presence of a potential with a point
singularity. This kind of potential cannot be de-
scribed by the path integral formalism with a ®nite
Ds within the so-called primitive approximation
[17]. Besides the discretization, the present scheme
depends upon the thermodynamic and continuum
limits which we will discuss later.

This way the position in time slice ` is given by

qi` � q0 � i`DL with i` � 1; 2; . . . ;Nq; �3�
where DL is the regular grid spacing of the position
axis which has a total of Nq points and q0 is a
constant used to adjust the origin of the coordinate
system. Moreover, the size of the space is limited
by L � NqDL.

Now we concentrate on the properties of the
two-dimensional lattice, the space±time lattice.
The partition function, Eq. (2), shows that there is
coupling only in the time direction and only be-
tween nearest neighbor time slices. This allows us
to use the statistical mechanics technique of writ-
ing the partition function Z of the ®nite system as
the trace of a matrix T to the power Ns

Z�DL;Ds�Nq;Ns
� Tr�T Ns�: �4�

452 R.A. Sauerwein, S. Kais / Chemical Physics Letters 333 (2001) 451±458



The matrix T is called the transfer matrix. Its ele-
ments are given by

T �i`; i`�1� � DL
m

2p�hDs

� �1=2

� exp

(
ÿ Ds

�h
m
2

DL
Ds

� �2

�i`�1

"
ÿ i`�2

� k
Vi`�1 � Vi`

2

#)
; �5�

where Vi` � V �q`� is the potential energy of time
slice ` evaluated at the space point i`.

The above transfer matrix can be seen as a
transfer matrix of a classical pseudo-system. The
Hamiltonian of the pseudo-system reads

H �
XNs

`�1

H`;`�1; �6�

where

H`;`�1 � m
2

DL
Ds

� �2

�i`�1 ÿ i`�2 � k
Vi`�1
� Vi`

2
� C

�7�
with C � ÿ�h lnf�m=�2p�hDs��1=2DLg=Ds being a
constant independent of the state of the lattice.
Then, the partition function of the classical pseu-
do-system becomes

T �i`; i`�1� � exp�ÿ�Ds=�h�H`;`�1�: �8�
If the classical pseudo-system Hamiltonian were
independent of Ds, the classical pseudo-system
would behave as a statistical mechanics lattice
system with inverse temperature Ds=�h.

In order to complete the mapping between the
quantum problem and the classical pseudo-system,
one must address the problems of both the con-
tinuum and the in®nite limits. The ground state
properties of the original system are obtained by
taking both the continuum limit, �Ds; DL ! 0�,
and the thermodynamic limit, �b; L ! 1�. We
assume that in principle this limit can be per-
formed in two steps. First, we take the thermo-
dynamic limit Ns; Nq ! 1, and second, we take
the continuum limit Ds; DL ! 0. From the de®-
nition of the ®nite transfer matrix, (5), we see that
both Ds and DL always appear inside the factor

�mDL2=Ds�h�. So it is clear that we cannot choose
DL and Ds independently, otherwise we could end
up with an unde®ned transfer matrix when the
continuum limit is taken. This problem can be
overcome by taking

mDL2

Ds�h
� 1 ) DL m

DL
Ds

� �
� �h: �9�

The above expression can be seen as a quantiza-
tion of the action in the semi-classical theory.
Also, this same dependency Ds � DL2 is imposed
in order to get the di�usion equation when taking
the continuum limit of the Brownian motion of
particles in a lattice [22].

The number of points along the imaginary time
Ns does not appear explicitly in any relevant
quantity. The requirement Ns ! 1 is necessary in
order to have a ®nite partition function, Eq. (4),
dominated by the leading eigenvalue of the trans-
fer matrix a0�DL;Ds; Nq�. We can see how Ns is
canceled when evaluating the ground state energy
of the system E0. In the lattice system, E0 is the free
energy per time slice which is related to the
partition function and consequently to a0�DL;Ds;
Nq� by exp�ÿNsDsE0��Z�DL;Ds�Nq;Ns

�a0 �DL;
Ds;Nq�Ns . Since Ns appears in both ends of this
equation the energy is given by E0�ÿln�a0

�DL;Ds;Nq��=Ds. Thus the discretization number
which actually sets the size of the ®nite system is
Nq. Setting Nq�N and considering implicitly that
Ns goes also to in®nity when taking the thermo-
dynamic limit, the original partition function for
b!1 is recovered by taking the limit

Z�b� � lim
DL! e
Ds�DL2

lim
N!1

Z�DL;Ds�N
h i

; �10�

where � is an arbitrarily small number.
The inner limit of the above expression N ! 1

represents the `thermodynamic limit' for our sys-
tem. In previous studies [7] of quantum phase
transitions, it was proposed that the role of the
`thermodynamic limit' be played by the number of
terms in the truncated basis set used to expand the
exact wave function. The thermodynamic limit in
the present study seems to be more natural,
since it is given by an extensive parameter of the
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pseudo-system; however, we believe that the two
de®nitions are essentially the same. Coalson [18]
showed the connection between Fourier coe�-
cients and the discrete path integration. The
number of points N of the discrete path integral is
related to the number of plane waves, i.e., the
number of terms of a truncated basis set used to
represent the states of the quantum system.

The phase transition is driven by the continuous
parameter k. There are two possible phases. These
corresponding to the presence or absence of a
stable bound ground state energy of the quantum
system. In the present formalism, these two phases
are identi®ed by localized or delocalized particles.
As in ordinary statistical mechanics lattice sys-
tems, the transition point can be identi®ed as the
divergence or discontinuity point in the correlation
length. The two point correlation function can be
de®ned as

Ck�`� � hi0i`i ÿ hi0i2; �11�
where the symbol h� � �i stands for the statistical
mechanics ensemble or `thermal' average. Its as-
ymptotic behavior for large systems is given by

Ck�`� � eÿ`Ds=n�k�; �12�
where n�k� is the correlation length. The physical
meaning of this quantity is the distance along the
imaginary time within which the time slices are
correlated. It can be shown [2] that in large systems
the correlation length can be evaluated by

n�k� ÿ 1

ln�a1=a0�Ds; �13�

where a0 and a1 �a0 > a1� are the two leading ei-
genvalues of the transfer matrix.

Any operator that is diagonal in the discrete
point basis set, like the potential energy or any
other function of the particle position say f �q�, has
the ensemble average

hf �i`�i � w�0�jf �q�jw�0�
D E

�
XN

i�1

f �qi�jw�0�i j2; �14�

where w�0� is the transfer matrix leading eigenvec-
tor. At the limit b ! 1, this eigenvector is the
ground state eigenstate of the quantum system in
the discrete representation. So the ensemble aver-
age of the lattice system in the thermodynamic

limit becomes the ground state quantum average
hw�0�jf �q�jw�0�i.

3. Numerical calculations

To illustrate this general approach, we will
carry out the calculations for the critical parame-
ters of the screened Coulomb potential, V �r� �
ÿeÿr=r. This potential is frequently used in quan-
tum calculations and the exact values of the critical
parameters kc for di�erent states are known from
®nite size scaling calculations [19]. In atomic units,
the Hamiltonian can be written as

H�k� � ÿ 1

2
rÿ k

eÿr

r
: �15�

A critical point, kc, is de®ned as the value of k for
which the bound state energy becomes absorbed or
degenerate with a continuum [7]. This system is
known to exhibit a continuous phase transition for
states with zero angular momentum, l � 0, and
®rst-order phase transition for states with nonzero
angular momentum [19].

Hamiltonians with spherical symmetry can be
investigated with a radial path integral [20]. Using
the above proposed scheme, the calculation is
performed by taking N ! 1 with DL (and Ds)
®xed. Excluding the origin with the radial grid
ri � iDL, with i � 1; 2; . . . ;N , the potential is ef-
fectively bounded from below. Numerically we
found that no matter how small we take DL, for a
su�ciently large value of N, we get the same lim-
iting value.

The transfer matrix for the radial path integral
equation is

Trad�i`; i`�1� � Ml��3=2��i`; i`�1�T �i`; i`�1�; �16�
where T �i`; i`�1� is the same transfer matrix de®ned
in Eq. (5) but with the potential terms given by
the radial discretization rule Vi` � ÿk exp�i`DL� �
�i`DL�. The factor Ml��3=2��i`; i`�1� is introduced by
the discrete radial functional weight

Ml��3=2��i`; i`�1� �
������������������������
2p

DL2

Ds
i`i`�1

r
exp

�
ÿ DL2

Ds
i`i`�1

�
� Il��3=2�

DL2

Ds
i`i`�1

� �
; �17�
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where Il��3=2� is the modi®ed Bessel function. In the
context of the pseudo-system, the pre-factor
M`��3=2��i`; i`�1� plays the role of a centrifugal po-
tential which leads to another coupling between
consecutive time slices.

In order to study the properties of the system
we ®x DL and take Ds � DL2. Then we numerically
calculate the two leading eigenvalues with their
respective eigenvectors for di�erent values of k and
di�erent matrix sizes N. The correlation length
n�N��k� is then readily evaluated using Eq. (15). An
`order parameter' can be de®ned as the average
radial coordinate scaled by the system size
R=L � hi`i=N . Klaus and Simon [23] showed that
short range potentials in three dimensions, such as
the Yukawa potential, do not have normalizable
ground state eigenfunctions at transition points.
Thus, for the case l � 0, we can foresee that
R=L � R�=L 6� 0 at the transition point �R� is R at
the transition point); although in the thermody-
namic limit, this magnitude identi®es the two
di�erent symmetries. A localized state has R=L
< R�=L, and a nonlocalized state has R=L > R�=L.
In the case l � 1, the centrifugal term makes the
Yukawa potential e�ectively long range. Thus the
ground state wave function of the localized states
are normalizable even at the transition point.
Hence, the distinction between the two symmetries
becomes clearer. In the thermodynamic limit,
R=L � 0 identi®es localized states while R=L 6� 0
identi®es nonlocalized states.

The e�ect of the grid spacing and the system
size, in the localization of the pseudo-critical point,
is summarized in Fig. 1. Each curve corresponds to
a di�erent value of DL�Ds � DL2�. Notice that
there is indeed a `thermodynamic limit' since as
N ! 1 the pseudo-critical points k�N�c converges
towards a de®nite value. This value can depend on
the grid spacing. In principle, we could think that
the smaller the grid spacing the closer its thermo-
dynamic extrapolation will be to the actual tran-
sition point kc. However, our results show that the
extrapolated value of k�N�c for 0:016DL6 0:06
leads to the same accurate value kc � 0:840(1)
which is in perfect agreement with previous cal-
culation using the truncated basis set scheme [19].

In Fig. 2 we show the correlation length n and
the order parameter R=L as a function of k for

®xed values of DL � 0:05 and Ds � DL2. Each
curve in these ®gures corresponds to calculations
with di�erent values of N. For l � 0, there is a
clear peak in the correlation length n�N��k� which
scales with L2. The position of the peak for each
lattice size determines the pseudo-critical transi-
tion point k�N�c . The corresponding order parame-
ter R=L curves show that this transition is
continuous or, of the second-order type. For an-
gular momentum l � 1, the correlation length n
and the the order parameter R=L show a di�erent
transition: a ®rst-order phase transition. There is a
clear peak in the correlation length n�N��k� curves
which scales with L2. Comparing the case l � 0
and l � 1 we see that the behavior of the correla-
tion length near the transition point is qualitatively
di�erent. This di�erence also appears in the order
parameter. We see in Fig. 2 that the R=L curves
tend to a step-like function as the system size
grows.

In order to complete the comparison between
the two di�erent types of transitions, we plot in
Fig. 3 the energy E, the ®rst derivative dE=dk, the
correlation length n, and the order parameter R=L
for l � 0 and l � 1 with the system size N � 2000
and DL � 0:05. All of these quantities are plotted
as a function of the scaled parameter

Fig. 1. The pseudo-critical points, k�N�c vs 1=N 2 for the ground

state of the Yukawa potential for di�erent grid spacing DL. The

exact value of kc is also shown by a dot.
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�kÿ k�N�c �=k�N�c where k�N�c is the pseudo-critical
value for each ®nite system. The nature of the
phase transitions is now very clear: continuous for
l � 0 and ®rst-order for l � 1.

The study of phase transitions and critical
phenomena show that physical systems as di�erent
as ¯uids and anisotropic ferromagnets can be
grouped into the same universality class. Re-
markably few universality classes are de®ned by
the values of a set of critical exponents which are
given by the asymptotic behavior of some quan-
tities near the critical point [2]. As we have mapped
our original problem into a lattice system we are
tempted to ask if this pseudo-system has such a
universal behavior. The critical exponents associ-
ated with the correlation length m and the speci®c
heat a are, respectively, de®ned as

n � jkÿ kcjÿm
and E0 � jkÿ kcj2ÿa

: �18�
Notice that in our system, k plays the role of the
temperature. Thus, the second derivative of the

ground state energy of the quantum system (or the
free energy of the lattice model) with respect to k is
analogous to the speci®c heat in thermodynamic
models.

Although the calculations in the present work
are performed in a ®nite system, we can use the
scaling invariance property of systems near criti-
cality to extrapolate our data to the thermody-
namic limit. This extrapolation technique is based
on the theory of ®nite size scaling [21]. We used the
algorithm of Bulirsh and Stoer to obtain the
extrapolated values of all the magnitudes [7].
The results for the critical parameters are given in
Table 1.

4. Discussion and conclusions

We have shown with the use of Feynman's path
integral approach that by allowing the space and
time variables to have discrete values, the quantum

Fig. 2. The scaled correlation length n=L2 and the order parameter R=L vs k for the Yukawa potential with l � 0 and l � 1 for in-

creasing grid points N � 200 �/�, 400 (�), 600 (}), 800 (M), 1000 (�) and 2000 (�), using DL � 0:05.
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problem can be mapped to an e�ective classical
lattice problem. The lattice can also be used to
remove an existing point singularity of the original
quantum problem without compromising its criti-
cal behavior. Thus, the quantum criticality of the
original system can be studied by the powerful
statistical mechanics methods developed for lat-
tices. In particular, the Monte Carlo techniques
can be directly applied. Hence, opening the pos-
sibility of studying larger atomic and molecular

systems. With this analogy we have obtained very
accurate critical parameters for the screened
Coulomb potential for both ®rst-order and con-
tinuous phase transitions.

The ®eld of quantum critical phenomena in
atomic and molecular physics is still in its infancy
and there are many open questions about the
interpretations of the results including whether
or not these quantum phase transitions really
do exist. The possibility of exploring these
phenomena experimentally in the ®eld of arti®-
cial atoms [24] o�ers an exciting challenge for fu-
ture research. This approach is general and might
provide a powerful way in determining critical
parameters for the stability of atomic and molec-
ular systems in external ®elds, for selectively
breaking chemical bonds and for design and con-
trol electronic properties of materials using arti®-
cial atoms.

Fig. 3. Comparison of the bound state energy E, the ®rst derivative dE=dk, the scaled correlation length n=bN , and the order pa-

rameter R=L as a function of the scaled k for the Yukawa potential at second-order phase transition, l � 0 ��� and ®rst-order

transition, l � 1 ���.

Table 1

Critical parameters for the Yukawa potential for l � 0 and

l � 1

Quantity l � 0 l � 1

Transition-order Second-order First-order

kc 0.840 (1) 4.540 (2)

a 0.00 (1) 0.99 (2)

m 1.00 (1) 0.500 (5)
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