
JOURNAL OF CHEMICAL PHYSICS VOLUME 114, NUMBER 22 8 JUNE 2001
ARTICLES

On the crossing of electronic energy levels of diatomic molecules
at the large- D limit

Qicun Shi
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

Sabre Kais
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 and The Fritz Haber Research
Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel

Françoise Remacle
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Analytical and numerical results are presented for the intersection of electronic energies of the same
space symmetry for electrons in the field of two Coulomb centers inD-dimensions. We discuss why
such crossings are allowed and may be less ‘‘exceptional’’ than one could think because even for
a diatomic molecule there is more than one parameter in the electronic Hamiltonian. For a one
electron diatomic molecule at the large-D limit, the electronic energies are shown analytically to
diverge quadratically from the point of their intersection. The one electron two Coulomb centers
problem allows a separation of variables even when the charges on the two centers are not equal.
The case of two electrons, where their Coulombic repulsion precludes an exact symmetry, is
therefore treated in the large-D limit. It is then found that, in addition to the quadratic intersection,
there is also a curve crossing where the energies diverge linearly. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1372181#
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I. INTRODUCTION

Intersections of potential energy surfaces of polyatom
molecules are receiving much current attention1,2 because of
the increasing evidence for their role in the dynamics of
trafast intramolecular electronic state changing process3

For diatomic molecules~or for atom–atom collisions, see
e.g., Ref. 4! one often appeals to the ‘‘noncrossing’’ rule
von Neumann and Wigner.5 This rule is taken to imply tha
an intersection of electronic potential energy curves, of
same symmetry is not to be expected. The rigor of the rul
stated differently by different authors, varying from ‘‘cann
cross’’ ~Ref. 6, p. 295! to the usually quoted ‘‘highly im-
probable circumstances’’ down to ‘‘exceptional.’’7,8 A care-
ful summary of the situation is provided in Sec. II B o
Ref. 1.

In this paper we discuss the crossing of electronic pot
tial energy curves of the same symmetry. We do not cla
that the mathematical discussion of von Neumann
Wigner5 is at fault. We do claim that the application of
mathematical result to a physical situation must take i
consideration the assumptions made in the background to
mathematical discussion. We will provide both a general
gument and detailed proofs specific to the cases of one
two electrons that crossing is possible. Our discussion for
case of one electron is a generalization of the results of G
shtein and Krivchenkov.9 Other key references for the cas
9690021-9606/2001/114(22)/9697/9/$18.00
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of the one electron diatomics are Power,10 and Hatton.11

Beyond the one electron case, a proof that the cross
of electronic potential energy curves, of the same symme
is possible requires changing one of the assumptions m
by von Neumann and Wigner.5 Specifically, we allow more
than one parameter in the Hamiltonian. This, unlike v
Neumann and Wigner5 who only discussed variations in th
interatomic distanceR. As a function of two~or more! pa-
rameters, crossing is possible. In a two parameter plane
crossing is generally allowed along a curve. If these para
eters areR and, say,Z, the crossing occurs at different value
of R for different values ofZ. It is then a matter of semantic
if one wants to call such crossings ‘‘exceptional.’’ For u
they are not exceptional because our interest in the prob
of electronic isomerism12 arose in response to the experime
tal ability to continuously tune parameters in th
Hamiltonian.13

Over the years there have been a number of papers q
tioning the noncrossing rule. Mathematically, the present
sults are in the spirit of the point made by Teller.14,15 He
noted that in a polyatomic molecule there are two~or more!
interatomic distances than can be independently varied
so potential energy surfaces can cross. We could easily a
Teller’s ~quite simple, see Ref. 14! mathematics to our cas
but we would then be subjected to a criticism by Hatt
et al.11 that we are working in a finite dimensional Hilbe
7 © 2001 American Institute of Physics
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9698 J. Chem. Phys., Vol. 114, No. 22, 8 June 2001 Shi et al.
space. Other questions have been well dealt with
Longuet-Higgins7 and by Mead.8 The one reference to th
earlier literature that should perhaps be made is that our
clusions seem to go in the opposite direction to that of Na
and Byers Brown,16 who sought to extend the non crossin
rule from diatomic molecules to polyatomics.

Our motivation for examining this problem is the sear
for quantum phase transitions17 due to electronic state
changes.12 The language of phase transitions will therefo
be also employed. Specifically, a first-order transition is o
where the energies diverge linearly from the crossing po
In a second order, also called ‘‘continuous,’’ transition t
two energies merge smoothly and so diverge quadratic
from the crossing. The plot of the energies in a two para
eter plane will then be referred to as a phase diagram.
stable phase is the one of lowest energy. An intersectio
two electronic states which is second order, a continu
phase transition, is actually not so unexpected. For such
intersection what was the lower energy state chan
smoothly into a higher energy state and vice versa. In o
words, the character of the lower energy state switche
one goes through the intersection.

In our earlier work,12 we investigated the symmetr
breaking and electronic structure phase diagrams for t
center molecules with one and two electrons at the largD
limit. For one electron the phase diagram, in the internuc
distanceR-nuclear chargeZ plane, has two different stabl
phases. One corresponding to the electron at equidist
from the two nuclei and the other has the electron locali
on one nucleus. The transition from one phase to the oth
a continuous phase transition, the energies of the two ph
merge continuously as we cross the boundary. For two e
trons with two equal charge centers, the phase diag
shows three different stable phases corresponding to di
ent electronic structure configurations. In addition to co
tinuous phase transitions, there is also a line of a first-or
phase transition. This line is the line where the global mi
mum is degenerate with two different phases having
same energy.

In this paper, we examine the familiar noncrossing r
for electrons of diatomics in the large-D limit. Background
technical comments are made in Sec. II. Section III dem
strates the separability of the~nonrelativistic! Schrödinger
equation for one electron in the field of two Coulomb cent
of different charges in the familiarD53 case. Numerica
results for energy crossings for H2

1 and for HHe12 systems
are provided. In Sec. IV, we generalize the proof of the p
sibility of intersection of terms of the same symmetry f
electrons in the field of two Coulomb centers
D-dimensions. Section V, shows that for a one electron
atomic molecule at the large-D limit the intersection between
the two stable phases is of a Renner-Teller-type; the ener
diverge quadratically from their intersection. In the presen
of interelectronic repulsion there is no known exact symm
try. Section VI presents a perturbation expansions in orde
classify the different types of intersections for two electr
diatomics. We show that in addition to Renner-Teller int
sections, there is also a curve crossing, a Jahn-Teller in
Downloaded 30 Aug 2002 to 128.210.142.96. Redistribution subject to A
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section, where the energies linearly diverge from the cro
ing point.

II. ON THE INTERSECTION OF ELECTRONIC TERMS
OF THE SAME SYMMETRY FOR DIATOMIC
MOLECULES

For diatomic molecules, Wigner and Neumann5 have
shown that electron terms of different symmetries can in
sect as a function of the internuclear distanceR. However,
the intersection of terms of the same symmetry is exc
tional. The derivation of this theorem presented, for exam
in Landau and Lifshitz,18 is as follows. Assume that at
certain distanceR0 between the two nuclei, the Hamiltonia
Ĥ(R0) has nearly equal eigenvaluesE1

0 andE2
0, correspond-

ing to eigenfunctionsC1
0 and C2

0. At R close toR0 , the
Hamiltonian can be written as

Ĥ~R01dR!5Ĥ~R0!1
]Ĥ

]R
U

R5R0

dR. ~1!

The difference between the eigenvalues of the energ
the point R can be obtained by first order perturbatio
approximation18

$~E1
02E2

01V112V22!
214V12

2 %1/2, ~2!

where the matrix elementsVi j of the operator V̂
5(]Ĥ/]R)uR5R0

dR are taken over the wave functionsC1
0

andC2
0.

For the energy intersections to take place, the expres
in Eq. ~2! must vanish. Since it is the sum of two square
both positive numbers must vanish simultaneously,

E1
02E2

01V112V2250, ~3!

V1250. ~4!

The matrix elementV12 can vanish identically when the
two terms are of different symmetry. Otherwise, the two E
~3! and~4! must be simultaneously satisfied and there is o
one arbitrary parameter, the magnitudedR. There are at leas
three questions about this proof.~i! Are Eqs.~3! and~4! two
independent conditions? Gershtein and Krivchenkov9 were
the first ~that we know! to demonstrate that the conside
ations above do not exclude crossing for the case of
electron in the field of two Coulomb centers atD53. Below
we generalize this result to an arbitrary number of dime
sions.~ii ! Is the proof equally valid for more than one p
rameter that can be varied? We will provide both analyti
and numerical results showing that crossing is possible.~iii !
The derivation of the conditions~3! and ~4! is only to first
order. What is the result for higher orders? It is here that
notion of first and second order transitions is introduced.

III. THE SEPARATION OF VARIABLES FOR THE ONE
ELECTRON PROBLEM

To set the stage for the discussion of arbitra
D-dimensions, we first re-examine the one electron in
field of two Coulomb centers problem atD53. Eventually
we will regard the charges on the two centers as parame
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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9699J. Chem. Phys., Vol. 114, No. 22, 8 June 2001 Crossing of electronic energy levels
of the Hamiltonian and so we demonstrate the separatio
variables for the general case when the charges on the
centers need not be equal.

Following the work of Hunter and Pritchard19 the wave
function C~j,h,f! can be written as a product of three sep
rate independent wave functions in prolate sphero
coordinates,20

C~j,h,f,R,Z1 ,Z2!

5X~j,R,Z1 ,Z2!Y~h,R,Z1 ,Z2!Km~f!, ~5!

whereKm(f) is the eigenfunction of the total angular m
mentum operatorL2 with eigenvaluesm(m11). Thus, from
the Schro¨dinger equation we get two independent on
dimensional equations as a function of elliptic coordinatej
andh. The functionsX andY can be expanded in the ass
ciated Legendre polynomials,19

X~j,R,Z1 ,Z2!5~j221!m/2~j11! te2pj

3(
i 50

`

gi~R,Z1 ,Z2!S j21

j11D i

, ~6!

Y~h,R,Z1 ,Z2!5(
i 50

`

f i~R,Z1 ,Z2!Pm1 i
m ~h!, ~7!

wheret5@R(11q)/2p#2m21, m is the magnetic quantum
number, q5Z1 /Z2 and p252(R2/4)(E2(q/R)). Putting
the expansions into the two elliptic equations, we obtain a
of difference equations which are represented in the follo
ing matrix forms:

G•g52Agg, ~8!

F•f51Af f, ~9!

where g and f are the column vectorsgi(R,Z1 ,Z2) and
f i(R,Z1 ,Z2), respectively, the matrix elements ofG and F
are given in Ref. 19 andAg , Af are the separation constant
GivenR, Z1 , andZ2 the problem is to find a value ofE such
that eigenvalueA of 2G is the same as an eigenvalueA of F.
The solution was found numerically by iteration using t
knownR, E, Z1 , Z2 as input. The iteration process was th
repeated until the difference of energy between two contin
loops was smaller 1.031029 and that for the separation con
stant 1.031028.

In Fig. 1 we show the lowest potential energy curv
E3(R), for the H2

1 system. Note the crossings of terms of t
same symmetry such as 3dsg and 2ssg ~left! and 4f s and
4ds ~right!. These numerical results are in complete agr
ment with previous calculations.21

For the case of unequal charges,Z151 and Z2

52 ~HHe12 system!, Figs. 2 and 3 give energy curvesE3(R)
as a function of the internuclear distanceR. Note that the
ground state energy is unstable, the curve is completely
pulsive as shown in the small window in Fig. 2. Curves
the same symmetry can cross as shown in this figure,
example, the crossing between 2ss and 3ds ~left! and 4f s
and 4ds ~right!. Figure 3 shows similar crossings of term
with the same spatial symmetry such as 5gs with 5 f s ~left!
and 6hs and 6gs ~right!. These numerical results confirm
the previous calculations and show that the von Neuma
Downloaded 30 Aug 2002 to 128.210.142.96. Redistribution subject to A
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Wigner conclusion on the rarity of crossing of terms of t
same symmetry is not valid for one electron in the field
two stationary Coulomb centers of chargesZ1 andZ2 . One
can argue that the sheer fact that there is a separatio
variables implies that there are additional symmetries.22 This
is the point made by Hatton23 and Power.10 The present re-
sults are consistent with their conclusions and, as will
shown analytically in Sec. V, this means that the crossing
of the second order.

IV. INTERSECTION OF ELECTRONIC TERMS OF THE
SAME SYMMETRY FOR ONE ELECTRON IN THE
FIELD OF TWO COULOMB CENTERS IN D-
DIMENSIONS

We begin with the Schro¨dinger equation for an one
electron molecule with the two Coulomb centersZ1 andZ2

located on theẑ axis of aD-dimensional space at2R/2 and
1R/2, respectively.24 The Hamiltonian can be separated

FIG. 1. Total energy curves for H2
1 , E3(R), at D53 as a function of the

internuclear separationR. Note for example the intersection between 3dsg

and 2ssg ~left! and 4f su and 4dsg ~right!.

FIG. 2. Total energy curves for HHe12, E3(R), atD53 as a function of the
internuclear separationR. Note for example the intersection between 3ds
and 2ss ~left! and between 4f s and 4ds ~right!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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D-dimensional prolate spheroidal coordinates. In this coo
nate system, the distance between the electron and eith
the chargesr i ( i 51,2) and the hyper-radiusr are given by

j5
r 11r 2

R
, h5

r 12r 2

R
, r25

R2

2
~j221!~12h2!,

~10!

whereR is the distance between the two charges. With
coordinate system defined above theD-dimensional Hamil-
tonian in atomic units takes the form,25

Ĥ52
1

2 H 1

arD21 F ~j221!
]

]j S rD21
]

]j D
1~12h2!

]

]h S rD21
]

]h D G2
LD22

2

r2 J
2

R~~Z11Z2!j1~2Z11Z2!h!

2a
1

Z1Z2

R
, ~11!

wherea5(R2/4)(j22h2) andLD22
2 is the projection of the

generalized orbital angular momentum operatorLD21
2 onto

the internuclear axis with an eigenvaluesumu(umu1D23).
Here the quantum numberumu50,1,2,...,l for s, p, d,... elec-
tronic terms.

Now, the the solutionC(j,h,VD22) of the Schro¨dinger
equation can be written as a product of three independ
solutions C(j,h,VD22)5X(j)Y(h)K(VD22). The func-
tion K(VD22) is the eigenfunction of the generalized orbit
angular momentum operatorLD22

2 and the other two func-
tions, in elliptic coordinates, satisfy

1

~j221!~D23!/2

]

]j
~j221!~D21!/2

]X

]j

1H R~Z11Z2!j2
umu~ umu1D23!

j221
2p2j21AJ X50,

~12!

FIG. 3. Total energy curves for HHe12, E3(R), atD53 as a function of the
internuclear separationR. Note for example the intersection between 5gs
and 5f s ~left! and between 6hs and 6gs ~right!.
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~12h2!~D23!/2

]

]h
~h221!~D21!/2

]Y

]h

1H R~Z22Z1!h2
umu~ umu1D23!

12h2 1p2h22AJ Y50,

~13!

where p252(R2/2)(E2(Z1Z2 /R)) and A is a separation
constant. The equations can be solved numerically fo
given R, Z1 , Z2 , andD as described in the previous sectio
and given in Ref. 25.

Gershtein and Krivchenkov9 demonstrated that the pos
sibility of crossing of terms of the same symmetry for o
electron in the field of two Coulomb centers atD53. Now
we are in a position to generalize their proof
D-dimensions.

For the Hamiltonian in Eq.~11!, the perturbed operato
V̂ can be written as

V̂5
]Ĥ

]R
dR5H 2

2

R
Ĥ1

Z1Z2

R2 2
1

R S Z1

r 1
1

Z2

r 2
D J dR ~14!

and the nondiagonal matrix elementV12 has the same form
as the one atD53 except that the integral is taken over
D-dimensional volume elementdt,

V1252
dR

R E C1
0* S Z1

r 1
1

Z2

r 2
DC2

0dt

[2
dR

R K Z1

r 1
1

Z2

r 2
L

12

, ~15!

where dt5Jdjdhdu1du2¯duD22 , and J is the Jacobian
factor.25 By integrating overVD22 we remove theD22
dimensional angular parts and obtain for the matrix elem
of

K 1

r 1
L

12

5NF E
1

`

X1jX2djE
21

11

Y1Y2dh

2E
1

`

X1X2djE
21

11

Y1hY2dhG , ~16!

where the integral of the angular parts and the constants
factored intoN.

On the other hand, it follows from Eqs.~12!–~13!,

~A12A2!E
1

`

X1X2dj5~p1
22p2

2!E
1

`

X1j2X2dj, ~17!

~A12A2!E
21

11

Y1Y2dh5~p1
22p2

2!E
21

11

Y1h2Y2dh.

~18!

The separation constantA is the eigenvalue of Eqs.~12! and
~13! for a given p, R, Z1 , and Z2 . For the nondegenerat
eigenvalue spectrum, from the one-dimensional equa
~12! or ~13!, we haveA1ÞA2 , A1 , andA2 are the values of
the separation constant for the states 1 and 2. But ifA1

ÞA2 , the two states have different~generalized! symmetry
and therefore we obtain
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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K 1

r 1
L

12

5N1S E1
02E2

0

A12A2
D , ~19!

and

K 1

r 2
L

12

5N2S E1
02E2

0

A12A2
D , ~20!

with N15N1(R,Z1 ,Z2) andN25N2(R,Z1 ,Z2). Putting Eqs.
~19!–~20! into Eq. ~15! the matrix elementV12 becomes

V1252
Z1N11Z2N2

R~A12A2!
•~E1

02E2
0!•dR. ~21!

Generally Z1N11Z2N2Þ0. No matter what the values o
m1 , m2 , Z1 , Z2 are, as long asR→R0 and E1

0→E2
0, V12

→0 and consequently terms of the same space symmetry
different generalized symmetry can intersect at any gi
dimensionD. This proof generalizes the one given by Ge
shtein and Krivchenkov forD53.9

As an extension of the treatment using only one varia
R for fixed Z1 and Z2 , we can consider the case of tw
variables, takingR andZ15Z for fixed q5Z1 /Z2 . For two
parameters, the intersection occurs along curves when
symmetries of the terms are different and at points when t
are the same. For the two neighboring points (R0 ,Z0) and
(R01dR,Z01dZ), the perturbation operatorV̂ is

V̂5S ]Ĥ

]R
dR1

]Ĥ

]Z
dZD U

R5R0 ,Z5Z0

~22!

and the nondiagonal matrix element becomes

V1252S 1

R
dR1

1

Z
dZD K Z1

r 1
1

Z2

r 2
L , ~23!

where Z15Z and Z25Z/q. Thus, V12 vanishes simulta-
neously withE1

02E2
0 as we have shown before and in add

tion wheneverdR/R52(dZ/Z).
The analytic considerations are sufficient to show t

crossing is possible but they do not show how the ter
diverge from the crossing point. Going to a higher order
perturbation theory will require a numerical approac
Therefore, in the next section we go to the large-D limit in
order to obtain explicit analytic results. It then turns out th
the conditiondR/R52(dZ/Z) gives an equation for the line
along which a continuous phase transition occurs~see Fig. 4
and also Ref. 12!. Specifically, the symmetry breaking whic
splits the single minimum in the united atom limit into
double minimum in the separated atoms limit occurs alon
critical line Zc5(3A3/4)(1/R).12

V. CROSSINGS OF ENERGY LEVELS FOR ONE
ELECTRON IN THE FIELD OF TWO COULOMB
CENTERS AT THE LARGE- D LIMIT

In the large-D limit the energy and geometry are foun
simply by minimization of an effective potential.25 In our
previous numerical calculations,12 we have found that there
are different electronic configurations at the large-D limit for
Downloaded 30 Aug 2002 to 128.210.142.96. Redistribution subject to A
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diatomics, which shows the possible stable structures of e
tronic isomers. This means that there are intersections a
nite R andZ.

With the transformationC→r@(D21)/2#F, the Hamil-
tonian in Eq.~5! becomes

HD52
1

2a S ~j221!
]2

]j2 1~12h2!
]2

]h2D1
L221

2r2

2
R~~Z11Z2!j1~2Z11Z2!h!

2a
1

Z1Z2

R
, ~24!

whereL5(umu1@(D23)/2#). The large-D effective Hamil-
tonian H` is readily obtained atD→` after the scaling
transformationr→ f r and f HD(R)→HD(R) with f 5(L2

21),

H`5
2

R2~j221!~12h2!
2

2Z1

R~j1h!
2

2Z2

R~j2h!

1
Z1Z2

R
, ~25!

in which the energy is given in units of 1/k2(k5(D
22)/2) hartree and distancek2 in bohr radii. Therefore,
evaluating the ground state electronic energy reduces to
termining the minimum of the effective Hamiltonian func
tion with respect toh andj in Eq. ~25! for fixed parameters
R, Z1 , andZ2 .

We have numerically shown12 that there are two elec
tronic geometrical configurations for one electron in the fie
of two equal Coulomb charge centers (Z15Z2), one is
h-symmetrical~h50!, and anotherh-nonsymmetrical~hÞ0!
as shown in Fig. 4. The transition from one phase to
other is a continuous phase transition. This means that a
move across the phase plane, the energies of the two iso
merge continuously as we cross the boundary.

To better understand the transitions and to be able
generalize it to the case of two electron molecules, we ap
perturbation theory near the phase boundary. With the sc
elliptic coordinates for one-electron molecules with two ce

FIG. 4. Phase diagram in the (R–Z1) plane for one electron in the field o
two equal charge centersq5Z1 /Z251 at the large-D limit. The two differ-
ent phases withh50 and withhÞ0 are shown.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



th

ec

to

g
er
n
e

s
th
-

i

her

ne
les.
arly
s
for

ate
n

ge
n

the

tw

liz
f

e

9702 J. Chem. Phys., Vol. 114, No. 22, 8 June 2001 Shi et al.
tersZ15Z25Z, the optimized energy at the large-D limit for
the symmetrical configuration~h50! is given by

E`
s ~j1 ,h150!5

2

R2~j1
221!

2
4Z

Rj1
1

Z2

R
, ~26!

and the nonsymmetrical configuration~hÞ0! has the form,

E`
ns~j2 ,h2!5

2

R2~j2
221!~12h2

2!
2

4Zj2

R~j2
22h2

2!
1

Z2

R
.

~27!

In Eqs. ~26! and ~27! we add to the elliptical coordinatesj
andh the indexes 1 and 2 in order to distinguish between
two phases.

First of all one can see clearly that there is an inters
tion of the energy between the phase withh50 and the phase
with hÞ0, which is given byE`

nsuh2505E`
s . But in order to

show what type of transition we have, it is convenient
introduce the generalized coordinatesQh5u(h22h1)/2u for
h which is defined in the interval@0,1#. With perturbation
expansion ofE`

ns in the vicinity of (h22h1;0,h150) we
obtain

E`
ns~j2 ,h2!2E`

s ~j1!

5E`
s ~j2!2E`

s ~j1!1S 2

R2~j1
221!

2
4Z

Rj2
3D ~h22h1!2

1O~~h22h1!3!, ~28!

where the symbolO(xn,ym) expresses thenth andmth order
of variablesx andy respectively. We note that the remainin
terms are of order (h22h1)2. It shows that as the paramet
h varies from nonzero to zero the energy changes i
second-order phase transition. We designate this kind of
ergy crossing, or more accurately energy merging, a
Renner-Teller-type crossing. As an example, Fig. 5 gives
energy curveE` at Z15Z251 as a function of the internu
clear distanceR ~left! and the generalized coordinateQ
5h1 ~right! with h150 for the symmetrical configuration
andh1Þ0 for the nonsymmetrical configuration. IfZ1 is not
equal toZ2 , we have only one phase for the one electron

FIG. 5. The degenerate energy crossing of one-electron in the field of
equal charge centers,Z15Z25Z51, as a function of internuclear distanceR
~left! and the degenerate quadratic crossing as a function of genera
coordinateQ5h1 ~right!.
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the field of two Coulomb centers at the large-D limit. This
phase corresponds to the electron localized on the hig
charge center.

VI. CROSSING OF ENERGY LEVELS FOR TWO
ELECTRONS IN THE FIELD OF TWO COULOMB
CENTERS AT THE LARGE- D LIMIT

For diatomic molecules with two or more electrons o
does not know of a method for the separation of variab
Algebraic methods do show that there is a useful and ne
exact symmetry26,27 but no exact dynamical symmetry i
known. This case provides therefore a critical test case
the no crossing rule. We will indeed analytically demonstr
that in the large-D limit, there is a first order phase transitio
in addition to the second order transitions.

For the two-electron molecules with two equal char
centers,Z15Z25Z, our previous calculations have show
that there are three stable phases:12,28the symmetric phase~s!
with ~j,0;j,0!, the antisymmetric phase~as! with ~j,h;j,2h!,
and the nonsymmetric phase~ns! with ~j,0;j8,0! andjÞj8 as
shown in Fig. 6.

The optimized energy for the three stable phases in
R–Z plane (Z5Z1 ,q5Z1 /Z251) are given by

E`
s 5

A2

RAj1
221

1
4

R2~j1
221!

2
8Z

Rj1
, ~29!

E`
as5

4

R2~j2
221!~12h2

2!
1

A2

RAh2
2211j2

2~h2
211!

2
8j2Z

~j2
22h2

2!R
, ~30!

o

ed
FIG. 6. Phase diagram in the (R–Z1) plane for two electrons in the field o
two equal charge centers,q5Z1 /Z251 at the large-D limit. There are con-
tinuous phase transitions between the phases~j,0;j,0! and ~j,h;j,h! and
between ~j,0;j,0! and ~j,0;j8,0!. But the transition between the phas
~j,0;j8,0! and~j,h;j,h! is a first-order phase transition. Here~j,h;j8,h8! is a
double elliptic coordinate representation.
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E`
ns5

2

~211j3
2!R2 1

2

~211j4
2!R2 1

2

A221j3
21j4

2R

2
4~j31j4!Z

j3j4R
. ~31!

In order to analyze what type of transitions we ha
between pairs of the three different phases, we carry out
following perturbation expansion:

~E`
as~j2 ,h2!2E`

s ~j1!!uh2→0,j2→j1

5S 4~3j1
211!

R2~j1
221!3 1

~2j1
211!

21/2R~j1
221!5/22

8Z

Rj1
3D ~j22j1!2

1S 4

~j1
221!R22

11j1
2

A2~j1
221!3/2R

2
8Z

j1
3RD h2

2

1O~~j22j1!3,~j22j1!h2
2!, ~32!

where the generalized coordinates areQh5u@h2

2(2h2)#/2u5uh2u andQj5u(j22j1)/max(j2,j1)u,

~E`
ns~j4 ,j3!2E`

s ~j1!!uj4→j3 ,j3→j1

5S 4~3j1
211!

R2~j1
221!3 1

~2j1
211!

21/2R~j1
221!5/22

8Z

Rj1
3D ~j32j1!2

1S 216j1
2

~j1
221!3R2 1

21j1
2

4A2~j1
221!5/2R

2
4Z

j1
3RD ~j42j1!2

1
3j1

2

2A2~j1
221!5/2R

~j32j1!~j42j1!

1O~~j42j1!3,~j32j1!3,~j42j1!2~j32j1!,

~j42j1!~j32j1!2), ~33!

where the generalized coordinates areQj5u(j4

2j3)/max(j4,j3)u and Qj85u(j32j1)/max(j3,j1)u. To con-
sider transitions betweenE`

ns andE`
as we reconstruct a super

surface function,

E`
as1ns5

2

~211j3
2!~12h2

2!R2 1
2

~211j4
2!~12h2

2!R2

1
2

A221j3
21j4

212h2
212j3j4h2

2R

2
4j3Z

~j3
22h2

2!R
2

4j4Z

~j4
22h2

2!R
~34!

with E`
as1nsuh2→05E`

ns and E`
as1nsuj4→j2 ,j3→j2

5E`
as. Qj

5u(j42j3)/max(j4,j3)u is the generalized coordinate forE`
as

and Qh5u@h22(2h2)#/2u5uh2u for E`
as. Referring to the

supersurface, we try to expand Eq.~30! in terms of (h2)n

and Eq.~31! in terms of (j42j3)n,
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~E`
ns~j4 ,j3!2E`

as~j2 ,h2!!uh2→0,j4→j3

5E`
s ~j3!2E`

s ~j2!

1S 2
4j3

R2~j3
221!22

j3

A2R~j3
221!3/2

1
4Z

Rj3
2D ~j42j3!

1O~h2
2,~j42j3!2!. ~35!

Generally,j3Þj2 . Equations~32! and~33! show continuous
transitions, energy merging between symmetrical and a
symmetrical configurations, and symmetrical and nonsy
metrical configurations. But Eq.~35! indicates that there is a
first-order transition between the antisymmetrical and n
symmetrical configurations and it is of the Jah
Teller-type.29 As an example we show in Fig. 7,E`(R) for
Z51 andq5Z1 /Z251 for the energy merging~upper! and
for the energy intersecting~lower!.

For the case of unequal chargesqÞ1, we have shown in
our previous study that the electronic phase diagram has
two different phases.12 The covalent phase~j,h;j8,h8!, where
jÞj8, hÞh8 and the ionic phase~j,h;j,h!. The phase dia-
gram is characterized by a tricritical point where the fir
order transition line meets with the second-order transit
line. Thus in this case, we have continuous phase trans
in one region and a first-order phase transition in anothe

The energy of ionic phase can be expressed in the fo

E`
ion5

2

R2 S 2

~j1
221!~12h1

2!
1

R

A2A~j1
221!~12h1

2!

2
2R~h1~Z22Z1!1j1~Z21Z1!!

j1
22h1

2 D ~36!

and the energy of the covalent phase takes the form,

FIG. 7. Degenerate energy crossings for two electrons in the field of
equal charge centers,q5Z1 /Z251 at the large-D limit. ~Upper! The energy
quadratic crossing as a function of the generalized coordinatesQ5h2 from
the antisymmetrical configuration~j,h;j,2h! in a double elliptic coordinate
representation to the symmetrical configuration~j,0;j,0!. ~Lower! The inter-
section of energyE`

as for antisymmetrical configuration andE`
ns for nonsym-

metrical configuration atZ150.585Z2 as a function of the generalized co
ordinatesQ5(j42j3)/j. which is equal toh2 , Q5h2 , if we introduce a
factor f such thatQ5(j42j3)/@ f max(j4,j3)#. This factor was found to be
f 52 for E`

as(R)5E`
ns(R).
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E`
cov5

2

~j2
221!~12h2

2!R2 1
2

~j3
221!~12h3

2!R2 1
2

A221j2
21j3

21h2
222j2j3h2h31h3

2R

2
2~h2~Z22Z1!1j2~Z21Z1!!

~j2
22h2

2!R
2

2~h3~Z22Z1!1j3~Z21Z1!!

~j3
22h3

2!R
. ~37!

There is definitely energy crossing between the two phases becauseE`
cov5E`

ion along the boundary line whenj3→j2 ,
j2→j1 , h3→h2 , h2→h1 . Introducing the generalized coordinatesQj5u(j32j2)/max(j3,j2)u and Qh5u(h32h2)/2u, we
can perform perturbation expansion of Eq.~37! in term of (j32j2)n and (h32h2)n. The energy difference between the tw
phases is

E`
cov~j2 ,h2 ;j3 ,h3!2E`

ion(j1 ,h1)5E`
ion~j2 ,h2!2E`

ion~j1 ,h1!1S 4h2

~j2
221!~12h2

2!2R2 1
~j2

221!h2

A2~~j2
221!~12h2

2!!3/2R

1
2~j2

2~Z12Z2!1h2
2~Z12Z2!22j2h2~Z21Z1!!

~j2
22h2

2!2R D ~h32h2!

1S 24j2

~j2
221!2~12h2

2!R2 1
j2~h2

221!

A2~~j2
221!~12h2

2!!3/2R

1
2~2j2h2~Z22Z1!1j2

2~Z21Z1!1h2
2~Z21Z1!!

~j2
22h2

2!2R D
3~j32j2!1O~~j32j2!2, ~j32j2!~h32h2!,~h32h2!2!. ~38!
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Usuallyj2Þj1 andh2Þh1 . If both coefficients of the linear
terms, (j32j2) and (h32h2) in Eq. ~38! are zero the re-
maining terms are of orderQj

2, Qh
2 or AQjQh. Thus, the

energy transition will be of second-order. Otherwise we o
tain a first-order transition as a function ofQj , Qh or both.
This finding is consistent with our previous numerical resu
for the energy as a function ofR andZ.12

VII. DISCUSSION

Quantum phase transitions and particularly so, first or
transitions, are of current interest because they allow a
lecular system to be used as a switching device. For
purpose, even a diatomic molecule can have more than
parameter in its Hamiltonian. Of course, for potential app
cations, the parameter to be varied must be under experim
tal control. The noncrossing rule seems to imply that suc

TABLE I. Phase transitions in diatomic molecules.

D53 D finite D→`

one electron
Z15Z2 no first-order no first-order no first-order

yes second-order
Z1ÞZ2 no first-order no first-order no transition

only one phase

two electron
Z15Z2 a a both first and

second-order
Z1ÞZ2 a a

aTo be determined.
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program will only succeed in exceptional cases. So it is
interest to know how rare is this exceptional behavior. In t
paper we discussed what could be shown by analytical c
siderations for one and two electron systems. The results
summarized in Table I. There is still an important gap in t
table but the bottommost entry gives us scope for hope
the large-D limit, two electron systems, for which there is n
known symmetry, exhibit a first-order phase transition.
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