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Quantum criticality for few-body systems: Path-integral approach
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We present the path-integral approach to treat quantum phase transitions and critical phenomena for few-
body quantum systems. Allowing the space and time variables to have discrete values, we turn the quantum
problem into an effective classical lattice problem. Imposing the constraint that any change in space time must
preserve the scaling invariance of Brownian paths, we show that the mapped classical lattice system has a
known scaling behavior when the particle is free, which breaks down when the strength of the interaction
potential reaches a certain value. In principle, any quantity with known scaling behavior may be used to
determine the transition point. We illustrate the method by numerically evaluating the correlation length and
the radial mean distance for a system composed of a single particle in the presence of an attractive Po¨schl-
Teller potential in one and three dimensions. The method is general and has potential applicability for large
systems.
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I. INTRODUCTION

Recently, several analogies have been proposed to
scribe the ground-state stability of atoms and molecules
terms of phase-transition and critical phenomena@1#. One of
the goals of such analogies is to provide a systematic pr
dure to extrapolate numerical data calculated with trunca
basis sets to the infinite limit@2#. The phase-transition
analogies are supported by the fact that aD-dimensional
quantum system can be mapped to a (D11)-dimensional
classical pseudosystem@3#. For the classical pseudosystem
the statistical mechanics formalism holds. Thus, the idea
a phase transition leads to a divergence in certain quant
at the thermodynamic limit may be mapped in terms of qu
tities of the original quantum problem@4#. In particular, the
size of the classical pseudo-system is mapped as the nu
of elements of the truncated basis set used to study the q
tum system @2,5#. The phase transition of a statistica
mechanics systems that occurs only in the thermodyna
limit is mapped into divergences of quantities of the origin
quantum problem that emerges as more elements are a
to the truncated basis set. With this analogy, we have sh
that the finite-size scaling theory is very useful in studyi
critical points in quantum few-body problems@6#. In particu-
lar, we used a phenomenological renormalization equatio
obtain the critical nuclear charges for few-electron ato
@2,5# and simple diatomic molecules@7,8#.

Recently, we have presented explicitly th
(D11)-dimensional classical system using Feynman’s p
integral formalism@9#. With this formalism, the quantum
partition function inD-dimensions looks like a classical pa
tition function of a system inD11 dimensions with the extra
dimension being the time. With this mapping, and allowi
the space and time variables to have discrete values, we
the quantum problem into an effective classical lattice pr
lem. This natural choice of Feynman’s path integral ma
the analogies less abstract and gives a physical meanin
the formulas used to obtain the phase transition in the or
nal quantum problem@9#. In this paper, we show that th
1063-651X/2001/64~5!/056120~6!/$20.00 64 0561
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mapping to a classical lattice system brings a more fun
mental definition of phase transition, and consequently, o
tools to find the transition points.

Having a classical pseudosystem connected to the orig
quantum problem allows us to go further in the pha
transition analogies by realizing that the divergences in th
modynamic quantities are consequences of a more fun
mental phenomena. The divergence of the correlation len
when the system is critical is due to the fact that the class
lattice shows fractal patterns, or in other words, the class
lattice becomes self similar in all length scales. Thus, it is
necessary to limit the phase-transition analogies to the se
for points where the correlation length diverges. Any qua
tity that changes its scaling behavior in a phase transition
be used. In this paper, we show that the classical lattice m
ping using Feynman’s path integral has a known scaling
havior when the particle is free, which breaks down when
external potential is made strong enough.

II. PATH-INTEGRAL APPROACH AND QUANTUM
CRITICALITY

Using the Feynman’s path-integral approach, the fun
mental equation to describe a system is the integral kerne
the time evolution operator exp„2 i (t92t8)/\H… from t
5t8 to t5t9.t8. The integral kernel of the operator ex
(2TH/\), which is the analytic continuation to imaginar
time of the evolution operator, is known as the Feynman-K
formula and reads

K~x8,x9;T!5E
(x8,t8)

(x9,t9)Dx~ t !

3expF2
1

\Et8

t9S m

2
ẋ21V~x;l! D dtG , ~1!

where the imaginary time intervalT5t92t8 is assumed to
be positive, andx5x(t). The notation*Dx(t) means an in-
tegration over all paths that begins in the space-time p
©2001 The American Physical Society20-1
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RICARDO A. SAUERWEIN AND SABRE KAIS PHYSICAL REVIEW E64 056120
(x8,t8) and ends in (x9,t9). The potential functionV(x;l)
depends on the parameterl, which sets its strength@10,11#.

In practical calculation, it is preferred to use the pa
integral lattice definition, where the timet is defined only in
the sites of a regular time lattice with lattice-constantDT
5T/NT . The initial lattice point ist05t8, the last one is
tNT

5t9, and any intermediate instant is given byt j5t8
1 j DT, j 50,1, . . . ,NT . The position in each instant is give
by xj5x(t j ). Using this construction, the Feynman-Kac la
tice formula reads@12#

K~x8,x9;T!5 lim
NT→`

S m

2p\DTD NT/2

)
k51

NT21 E dxk

3expF2
1

\ (
j 51

NT S m

2DT
~xj2xj 21!2

1DTV~xj ;l! D G . ~2!

The path-integral summation is performed doing a regu
integration over theNT21 real variablesxkP@2`,`#. The
original definition is recovered in the limitNT→` and DT
→0 with T finite.

The integral kernelK(x9,x8;T) is formally equal to the
probability density function of statistical-mechani
r(x9,x8,b), where the imaginary time intervalT and the
inverse temperatureb are related byT5b\. Thus, the
Feynman-Kac formula may be used to evaluate
statistical-mechanics partition function,Z5Tr r, by summa-
tions in the Euclidean space instead of the Hilbert space.
Euclidean space variables may be viewed as state varia
of a space-time lattice. Thus, we see that the quantum p
lem may be mapped into a classical pseudosystem.
imaginary time is the extra dimension that was added
order to overcome the summation in the Hilbert space.

In the absence of the potential, the path-integral sum
tion is a summation over Brownian paths. Given the posit
xj 21 and the time intervalDT, the incrementyj5xj2xj 21 is
a random variable with probability proportional t
e2my2/(2\DT). The Brownian paths have a fractal nature a
are self similar as long as one scales the space and
direction with @13#

x→bx, t→b2t, ~3!

where the scale factorb is any real positive number.
The classical system, whose states are given by

Brownian paths,~the system may be also interpreted as
Gaussian polymer@14#! may be rescaled by the relation
given in Eq. ~3! to preserve the same structure. This fa
makes the time lattice critical in the sense
renormalization-group theory@15,16#. When the strength o
the attractive potentiall→`, the particle must be bound an
the contribution to the path integral summation of t
Brownian paths are weighted by the fact

exp@(21/\)* t8
t9V„x(t);l…dt#. Thus, the paths in the neigh

borhood of the origin contribute much more than paths filli
05612
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uniformly the whole space. The system is not scaling inva
ant anymore because we can devise two regions in the sp
one where the particle is likely to be localized and the ot
where it is not.

We may classify the system by the Brownian paths t
effectively contribute to the evaluation of the Feynman-K
formula. If the system is scale invariant, the system is in
critical phase. If the scaling invariance is broken by the p
tential, we have a noncritical phase. The transition betw
these two phases at a finite value of lambdal5lc will be
properly called a phase transition.

In order to numerically study this problem, we conside
finite and discrete space. The coordinatesxj are defined in a
regular lattice with lattice-constantDL. The linear system
size is given byL5NLDL, whereNL is the number of points
along the position coordinate axis. Thus, the Feynman-K
formula may be written in terms of matrix produc
K(x0 ,xNT

;T)5T(x0 ,x1)T(x1 ,x2) . . . T(xNT21 ,xNT
) where,

the matrixT is called a transfer matrix and is defined as

T~xj ,xj 21!5S mDL2

2p\DTD 1/2

expF2
1

\ S m

2DT
~xj2xj 21!2

1DTV~xj ;l! D G . ~4!

Notice the transfer matrix is a matrix representation of
short-time evolution operator exp(2DTH/\).

The original Euclidean system may be recovered by t
ing the continuum limit of bothDL→0 andDT→0. In order
to preserve the scaling properties of the Brownian pa
given in Eq. ~3!, the ratioDL/DT2 must remain constant
The number of points of the space-time lattice is given
NTNL . Thus, the thermodynamic limit is given byNT→`
andNL→`. However, in order to preserve the scaling pro
erties we must also setNT5NL

2 .
The numerical study of the phase transition is made

fixing the grid spacingDL and DT and the discretization
numberNL , which sets the rank of the transfer matrix to b
diagonalized. The numerical calculation in a discrete and
nite system gives an estimate of the actual values of all
servables. The ground-state energyEL

(0) is given by

e2NTDTEL
(0)/\5Z5Tr @TNT#. ~5!

The above expression is valid in the limit of largeT
5NTDT. The subscriptL in Eq. ~5! stresses the existence o
finite-size effects, and the dependence on the grid spacin
omitted to avoid overcrowding the notation.

For a largeNT , the trace is dominated by the leadin
eigenvalue of the transfer-matrixZ'(aL

(0))NT and the
ground-state energy is given by

EL
(0)52

\

DT
ln~aL

(0)!, ~6!

whereaL
(0) is the leading eigenvalue of the transfer matr

Having the leading eigenvector of the transfer matrix, o
may evaluate any other ground-state expectation value.
0-2
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QUANTUM CRITICALITY FOR FEW-BODY SYSTEMS: . . . PHYSICAL REVIEW E64 056120
cause all geometric properties of the fractal Brownian pa
are preserved in the critical region, the root-mean-square
placementRL5^x2&1/2 must scale with the macroscopic d
mensionL. If the particle is bound,RL must achieve a finite
value independent ofL. Hence,RL has a different scaling
behavior if the particle is free or bound. This, in principl
may be used to determine the phase-transition point.

The correlation lengthj along the imaginary time direc
tion is the other quantity we can use to determine the crit
region. The correlation length is defined as the asympt
behavior of the correlation function

C~ j DT!5^x0xj&2^x0&
2'expS 2

j DT

j D j→`. ~7!

The correlation length may be written in terms of the tw
leading eigenvaluesaL

(0) andaL
(1) of the transfer matrix

jL52DT
1

ln~aL
(1)/aL

(0)!
. ~8!

When the system is critical, the quantum states mus
correlated in all length scales along the time direction, a
thus, the correlation length must scale withj;T. Hence, in
the true free-particle case withT→` andL→` the correla-
tion length diverges. SinceL is finite, one cannot have a tru
divergence, but the scaling relations presented in Eq.~3!
should still apply ifL is finite and sufficiently large. Thus
the correlation length must scale asj;L2 in the critical re-
gion.

For a given value of the critical parameterl, we perform
calculations with different system sizes. IfjL(l) scales with
L2 andRL(l) scales withL, we call the system critical be
cause the particle behaves like a free particle. When
strength of the potential breaks down this scaling behav
the system is not critical and the particle is bound. The va
of l5lc is the transition point.

The grid spacingDT and DL do not affect the scaling
properties of any quantity. The smaller the grid spacing,
smoother is the representation we get from the actual Euc
ean space. Because the potential function is not scaled
potential function range sets the magnitude of the real-sp
L, which must be covered. So a smallDL means a bigNL ,
and thus, a large transfer matrix to be diagonalized.

III. NUMERICAL EXAMPLE

In order to illustrate this method, we study the case o
single particle in the presence of the Po¨schl-Teller@17# po-
tential V(x;l)52l(l21)/cosh2(x), with l>1. This prob-
lem has an exact solution. In the one-dimensional case, t
is always a bound solution unlessl51 when the potentia
vanishes, and the particle is free. In three dimensions,
behavior is much more interesting. Regardless of the p
ence of an attractive potential in the interval 1,l,2, there
is no bound solution untill>2. Hence, there is a finite valu
of the potential strength parameter,lc52, that defines the
stability limit of the bound solution. In the present approa
this point may be obtained by investigating the scaling pr
05612
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erties of the correlation lengthjL and the mean radial dis
tanceRL .

The one-dimensional case is a straight forward appli
tion of Eq.~4!. The lattice in the position space is defined
picking evenly spaced points in the intervalxP@2L/2,L/2#.
The results are obtained by exact diagonalization of
transfer matrix for every system size defined byL5NLDL.
To investigate the trivial transition atD51, it is enough to
consider only one grid spacingDL50.03. For the remainde
of this paper, we consider that the particle has a mass e
to the electron mass and atomic units (m5\51) are implied
for all numerical quantities. Thus, the values ofjL and RL
are calculated with ten different system sizes,L
5100,200, . . . ,1000, whereL is measure in units ofDL.
The results are shown in Fig. 1. In Fig. 1~a! we plot jL /L2

and in Fig. 1~b! RL /L as a function ofl. The curves corre-
spond to different system sizesL5100,200, . . . ,1000. For a
given value ofl, it is clear that the only point whereRL
;L andjL;L2 is l51. Thus, the one-dimensional syste
is critical only when the potential vanishes, and the parti
is free. Sol51 is regarded as a trivial critical point. In Figs
1~c! and 1~d!, we showjL andRL as a function ofL2 andL
for fixed value ofl. The curve with circles corresponds t
l51, the other five correspond to small deviations from t
free-particle case withl51.02, 1.04, 1.06, 1.08, and 1.10
The only case that can be adjusted to a straight line il
51. In the presence of a weak potential, the scaling ofjL
andRL deviates from the critical scaling represented by
straight lines.

In order to solve the three-dimensional case, we obtai
the transfer matrix using the spherical coordinates path i
gral which reads

FIG. 1. Upper panels~A! and ~B! show the scaled correlation
lengthj/L2 and the scaled radial mean distanceR/L as a function
of the potential strengthl for different system sizes with
L53,6,9, . . . ,30. The grid spacing is kept fixedDL50.03 so the
smallest system hasNL5100 and the largest hasNL51000 points.
Lower panels ~C! and ~D! illustrate the scaling ofj and R
with the system size L for different values of l
51(s),1.02,1.04,1.06,1.08,1.10. All numerical values are
atomic units.
0-3
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RICARDO A. SAUERWEIN AND SABRE KAIS PHYSICAL REVIEW E64 056120
FIG. 2. Upper panels~A! and~B! show the scaled correlation lengthj/L2 and the scaled radial mean distanceR/L as a function of the
potential strengthl for different system sizes withL53,6,9, . . . ,30. The grid spacing is kept fixed,DL50.03, so the smallest system ha
NL5100 and the largest hasNL51000 points. Lower panels~C! and~D! illustrate the scaling ofj andR with the system sizeL for different
values ofl. The perfect linear fit withl51 (s) andl5lc (h). The dashed lines correspond to values ofl that are smaller than the critica
value of 5, 10, 15, 20, and 25 %. The continuous lines have values ofl greater thanlc by the same relative amounts. All numerical valu
are in atomic units.
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Trad~r j ,r j 21!5Ml 13/2~r j ,r j 21!T~r j ,r j 21!, ~9!

wherer is the particle radial coordinate andT(r j ,r j 21) is the
same transfer matrix defined in Eq.~4!. The factor
Ml 13/2(r j ,r j 21) is introduced by the discrete radialfunc-
tional weight

Ml 13/2~r j ,r j 21!5A2pmrjr j 21

\DT
expF2

mrjr j 21

\DT G
3I l 13/2S mrjr j 21

\DT D , ~10!

where I l 13/2 is the modified Bessel function. The quantu
numberl sets the angular momentum. Since we are study
the ground state, it is enough to consider only the soluti
with l 50.

Now, the discretization is done over the radial coordina
excluding the originr i5 iDL, i 51,2, . . . ,NL , for each in-
stantt j . The quantityRL is now the ground-state expectatio
valu RL5^r &. The transfer matrix is obtained using differe
values of grid spacingDL50.01, 0.02, 0.03, 0.04, 0.05, an
0.06 for ten different system sizes. The system sizes se
discretization numbers starting fromNL5100,200,300, . . . ,
up to 1000. For each case, the two leading eigenvalues
its leading eigenvector are numerically evaluated and use
compute the correlation length and radial mean distance

In Fig. 2 we present the results using only the grid spac
DL50.03 of the three dimensional case. In Fig. 2~a!, jL /L2

is shown as a function of the potential parameterl, each
curve corresponds to a different system size. Notice
05612
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jL /L2 curves exhibit a peak aroundl52, the biggest system
(L51000) has the highest and sharpest peak, and the sm
est system (L5100) has the lowest and widest peak. Co
paring the curves for different system sizes we see that
values ofjL with l to the left of the peak tend to a limiting
curve wherej scales withL2. In the other region, to the righ
of the peak, the value ofjL /L2 tends to vanish as the syste
size is increased. Thus, we may consider the value oflc

determined as the peak of thejL curve for a given system
size as a pseudocritical transition point, which must conve
to the true transition point in the thermodynamic limit. Mor
over, it is important to note that the system is critical n
only when l5lc but is critical in the entire region 1<l
<lc . This is because the scaling ofj with the system size is
the same as the scaling of a free particle. In Fig. 2~b!, we turn
our attention to the scaling behavior ofR as a function ofl
for the ten different system sizes. The curves correspon
different system sizes (L5100 for the highest curve toL
51000 for the lowest curve!. As the system size increase
the RL /L curve tends toward a limiting curve that vanish
asl increases and goes to a constant whenl51. The value
of l where the particle changes its scaling behavior may
identified as the crossing point of theRL /L curves for dif-
ferent system sizes. The limiting scaling behavior of t
RL /L curves to the left of the limiting crossing point is th
same of a free particle whereRL scales withL, hence the
system is critical. For values ofl to the right of the limiting
crossing pointRL /L tends to vanish and the system is n
critical anymore. Looking to the scaling behavior ofRL
curves, we define a pseudocritical transition pointlc as the
point where theRL(l) andRL8(l) curves cross. In this pa
0-4
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QUANTUM CRITICALITY FOR FEW-BODY SYSTEMS: . . . PHYSICAL REVIEW E64 056120
per, we fixed the value of the grid spacing and considerNL8
51.1NL , and thelc this way determined is regarded a fun
tion of DL andNL .

In Figs. 2~c! and 2~d!, we stress the existence of a ran
of values ofl where the system preserves the same sca
behavior of a free particle and may be called critical. In the
two plots we fix the value ofl and presentjL as a function
of L2 andRL as a function ofL. The data plotted as circle
are for the free-particle casel51 and the squares forl
5lc , wherelc is the pseudocritical transition point dete
mined as discussed above. By examining the scaling be
ior of jL in Fig. 2~c! andRL in Fig. 2~d!, we clearly see tha
these two sets of data each fit perfectly to straight lin
showing that the system is critical. This is illustrated by t
dashed lines in Figs. 2~c! and 2~d! which correspond to val-
ues of lambda that are smaller than the critical value of 5,
15, 20, and 25 %. Their linear behavior shows that syste
with 1,l,lc are critical. The continuous lines have valu
of l greater thanlc by the same relative amounts, the lin
eventually bend from the linear behavior showing that
l.lc the system critical-scaling behavior is destroyed.

In Fig. 3, we present all the numerical estimates of
critical phase-transition pointlc for the three-dimensiona
Pöschl-Teller system. Along the straight line~A! are plotted
the values oflc determined as the peak of the correlati
length curve. Along the straight line~B! are plotted the val-
ues oflc determined by the crossing points of the curvesRL
andRL8 . As discussed above, the values oflc depend on the
discretization numberNL and the grid spacingDL. However,
we plotted the data as a function of 1/L2, becauseL
5NLDL is the relevant scaling dimension. In this plot, ea
symbol corresponds to a different grid spacing. Despite
fact that they were evaluated with different grid spacin
when plotted against 1/L2, the set of data obtained using th
scaling ofjL are grouped along one curve and the set of d
obtained using theRL scaling are grouped along anoth
curve. Only the linear behavior of this curve for large syst

FIG. 3. The value of the pseudocriticall evaluated
at different system sizes and different gridDL
50.01 (s),0.02 (h), 0.03 (L), 0.04 (n), 0.05 (,), 0.06 (x).
Note that the extrapolated value islc52. All numerical values are
in atomic units.
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is plotted as the straight lines~A! and~B!. The linear adjust-
ments for large systems give the following estimates for
infinite system:lc52.0000(2) when using thejL scaling
and lc51.9998(8) when using theRL scaling. The two
schemes extrapolate to the the same result and are in
good agreement with the exact resultlc52. However, one
may notice that the convergence of the data obtained u
jL is much faster than the data obtained usingRL .

IV. CONCLUSIONS

We have shown that the path-integral approach to qu
tum mechanics for a system composed of only one particl
the presence of an attractive potential with strength set b
continuous parameter is a natural approach to describe
understand phase-transition phenomena. In this case,
‘‘collective’’ phenomena behind the phase transition is
property of the space-time lattice. The transition is betwee
critical phase, where the paths that effectively contribute
the Feynman’s path integral have the same scaling beha
as the Brownian paths that describe a free quantum part
and a noncritical phase, where only paths around the att
tion center effectively contribute to the Feynman’s path
tegral. Like the wave function, paths in the path integral
not observables. However, one may say that the experim
tal fact that a particle is bound or not are special avera
over these experimentally inaccessible quantities. Con
quently, the stability limit of the bound state of a singl
quantum particle reflects the phase transition in the pa
used to describe it in Feynman’s approach. We have ill
trated these ideas by a numerical study of a single-quan
particle in the presence of the Po¨schl-Teller potential in one
and three dimensions.

Furthermore, we showed that the study of the scaling
havior of the space-time lattice may provide other numeri
tools to determine the ground-state stability limit of a bou
solution. In this numerical example, we saw that besides
correlation lengthj one may look at the scaling behavior o
the radial mean distanceR. The extrapolated numerical re
sults for the three-dimensional Po¨schl-Teller potential for the
critical lambda arelc52.0000(2) when estimated usingjL
and lc51.9998(8) when usingRL , with the exact result
lc52. Thus, we showed that both quantities may be use
determine the transition point within the same accura
However the convergence of theRL data is much slower,
because depending on the grid spacing, it is necessary t
to bigger systems compared to thejL data in order to observe
the large system asymptotic behavior. Moreover, one m
calculate the the ground-state and first excited-state ene
to estimatejL while we need only the ground-state properti
to obtainRL .

This approach is based on the breakdown of the fr
particle scaling properties as the strength of the attrac
external potential is made strong enough. This general i
can certainly be applied to systems with more than one p
ticle as long as the unbound solution can be well represe
by noninteracting free particles. This would be the case o
few particles that interact with each other by repulsive forc
that decay with the distance between them. Hence, in
0-5
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RICARDO A. SAUERWEIN AND SABRE KAIS PHYSICAL REVIEW E64 056120
absence of any external attractive potential, the particles
be far away from each other and consequently will beh
like free particles. In particular, we expect that the radii
the closed path of each particle will scale according to
relations given in Eq.~3!. Now we consider what will hap-
pen when the particles are also under the influence o
external attractive potential. If the potential is made stro
enough, it will eventually localize the particles, destroyi
the scaling behavior of the free-particle paths. The transi
from the states where all particles are localized to the st
where all particles are free will be qualitatively the same
the transition of the one-particle system presented in
paper. This transition may be studied either by looking at
correlation length or at the radii of the particle paths. Ho
ever, the phase diagram of the many-body system could
much richer, because not all particles may be localized at
same time. In this case, the correlation length defined in
ev
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~7! may not be used to identify these intermediate transiti
because it is associated with the correlation function am
quantum states of the whole system. However, the part
path radii may still be used to investigate if there are so
particles that behave like free particles and others that do
Naturally, this method is not suitable to study transitio
between two kinds of localized states. This approach is g
eral and might be used with other simulation techniqu
such as Monte Carlo methods@18#, to obtain critical param-
eters for few-electron atoms and simple molecular system
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