PHYSICAL REVIEW E, VOLUME 64, 056120

Quantum criticality for few-body systems: Path-integral approach

Ricardo A. Sauerwefr? and Sabre Kais
IDepartment of Chemistry, Purdue University, West Lafayette, Indiana 47907
2Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
(Received 24 May 2001; published 24 October 2001

We present the path-integral approach to treat quantum phase transitions and critical phenomena for few-
body quantum systems. Allowing the space and time variables to have discrete values, we turn the quantum
problem into an effective classical lattice problem. Imposing the constraint that any change in space time must
preserve the scaling invariance of Brownian paths, we show that the mapped classical lattice system has a
known scaling behavior when the particle is free, which breaks down when the strength of the interaction
potential reaches a certain value. In principle, any quantity with known scaling behavior may be used to
determine the transition point. We illustrate the method by numerically evaluating the correlation length and
the radial mean distance for a system composed of a single particle in the presence of an attrackilze Po
Teller potential in one and three dimensions. The method is general and has potential applicability for large
systems.
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I. INTRODUCTION mapping to a classical lattice system brings a more funda-
mental definition of phase transition, and consequently, other
Recently, several analogies have been proposed to désols to find the transition points.

scribe the ground-state stability of atoms and molecules in Having a classical pseudosystem connected to the original
terms of phase-transition and critical phenomfhjaOne of ~ quantum problem allows us to go further in the phase-
the goals of such analogies is to provide a systematic procdtansition analogies by realizing that the divergences in ther-
dure to extrapolate numerical data calculated with truncatefnodynamic quantities are consequences of a more funda-
basis sets to the infinite limif2]. The phase-transitions mental phenomena. The divergence of the correlation length
analogies are supported by the fact thaDalimensional ~When the system is critical is due to the fact that the classical
guantum system can be mapped toa+1)-dimensional lattice shows fractal patterns, or in other words, the classical
classical pseudosystefl]. For the classical pseudosystem, lattice becomes self similar in all length scales. Thus, it is not
the statistical mechanics formalism holds. Thus, the idea thdtecessary to limit the phase-transition analogies to the search
a phase transition leads to a divergence in certain quantitid§r points where the correlation length diverges. Any quan-
at the thermodynamic limit may be mapped in terms of quanlity that changes its Scaling behavior in a phase transition can
tities of the original quantum problefd]. In particular, the be used. In this paper, we show that the classical lattice map-
size of the classical pseudo-system is mapped as the numhbiging using Feynman’s path integral has a known scaling be-
of elements of the truncated basis set used to study the quafi@vior when the particle is free, which breaks down when an
tum system[2,5]. The phase transition of a statistical- €xternal potential is made strong enough.
mechanics systems that occurs only in the thermodynamic
limit is mapped into divergences of quantities of the original Il. PATH-INTEGRAL APPROACH AND QUANTUM
guantum problem that emerges as more elements are added CRITICALITY
to the truncated basis set. With this analogy, we have shown i )
that the finite-size scaling theory is very useful in studying USing the Feynman's path-integral approach, the funda-
critical points in quantum few-body problerf&]. In particu- mentgl equat|on.to describe a systgm is the integral kernel of
lar, we used a phenomenological renormalization equation tfe time evolution operator ekpi(t"—t")/AH) from t

obtain the critical nuclear charges for few-electron atoms=t' to t=t">t". The integral kernel of the operator exp
[2,5] and simple diatomic moleculdg,g]. (=TH/%), which is the analytic continuation to imaginary

Recently, we have presented explicitly the time of the evolution operator, is known as the Feynman-Kac
(D + 1)-dimensional classical system using Feynman’s patformula and reads
integral formalism[9]. With this formalism, the quantum

partition function inD-dimensions looks like a classical par- K(x' X":T)= (X"'t”)Dx(t)

tition function of a system iD+1 dimensions with the extra o ('t

dimension being the time. With this mapping, and allowing 1 (o

the space and time variables to have discrete values, we turn Xexp{ — _ft (TX2+V(X')\) dt|, (@
the quantum problem into an effective classical lattice prob- file\2 ' '

lem. This natural choice of Feynman’s path integral makes

the analogies less abstract and gives a physical meaning where the imaginary time intervdl=t"—t’ is assumed to
the formulas used to obtain the phase transition in the origibe positive, anck=x(t). The notation/ Dx(t) means an in-
nal quantum probleni9]. In this paper, we show that the tegration over all paths that begins in the space-time point
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(x’,t") and ends in X",t"). The potential functiorV(x;\) uniformly the whole space. The system is not scaling invari-
depends on the parameter which sets its strengtf0,11. ant anymore because we can devise two regions in the space,
In practical calculation, it is preferred to use the path-one where the particle is likely to be localized and the other

integral lattice definition, where the tintds defined only in ~ where it is not.
the sites of a regular time lattice with lattice-constant We may classify the system by the Brownian paths that
=T/N;. The initial lattice point isty=t’, the last one is effectively contribute to the evaluation of the Feynman-Kac
tNT=t", and any intermediate instant is given by=t’ formula. If the system is_ sce_lle in_varian.t, the system is in a
+jAT, j=0,1, ... Ny. The position in each instant is given Ccfitical phase. If the scaling invariance is broken by the po-
by x;=x(t;). Using this construction, the Feynman-Kac lat- tential, we have a noncritical phase. The transition between
tice formula read$12] these two phases at a finite value of lambda\ . will be
properly called a phase transition.
Np/2NT—1 In order to numerically study this problem, we consider a
(m) kli[l f dxy finite and discrete space. The coordinateare defined in a
- regular lattice with lattice-constarfL. The linear system
1M size is given byt =N AL, whereN_ is the number of points
Xex;{ ) <_(X._XA_1)2 along the position coordinate axis. Thus, the Feynman-Kac
A= 24T formula may be written in terms of matrix products
K(xo,xNT;T)=T(xo,x1)T(x1,x2) .. .T(xNT,l,xNT) where,
+ATV(X; ;)\)) } (20  the matrixT is called a transfer matrix and is defined as

mAL? |2 1/ m )
2aiaT) TR ElZAT TN

- 4

K(x",x";T)= lim

Np—

The path-integral summation is performed doing a regular T(Xj,Xj—1)=
integration over théN;— 1 real variablesq e[ —o0,]. The
original definition is recovered in the limNlt—o andAT
—0 with T finite. +HATV(X; i’\))
The integral kerneK(x",x";T) is formally equal to the
probability density function of statistical-mechanics Notice the transfer matrix is a matrix representation of the
p(X",x",B), where the imaginary time interval and the short-time evolution operator expATH/#).
inverse temperaturgd are related byT=pg%. Thus, the The original Euclidean system may be recovered by tak-
Feynman-Kac formula may be used to evaluate thdng the continuum limit of bottAL—0 andAT—0. In order
statistical-mechanics partition functioi="Tr p, by summa- to preserve the scaling properties of the Brownian paths
tions in the Euclidean space instead of the Hilbert space. Thgiven in Eq.(3), the ratio AL/AT? must remain constant.
Euclidean space variables may be viewed as state variabl&he number of points of the space-time lattice is given by
of a space-time lattice. Thus, we see that the quantum protN{N, . Thus, the thermodynamic limit is given By;— oo
lem may be mapped into a classical pseudosystem. ThandN, —o. However, in order to preserve the scaling prop-
imaginary time is the extra dimension that was added irerties we must also sNTzNE_
order to overcome the summation in the Hilbert space. The numerical study of the phase transition is made by
In the absence of the potential, the path-integral summafixing the grid spacingAL and AT and the discretization
tion is a summation over Brownian paths. Given the positiomumberN, , which sets the rank of the transfer matrix to be
Xj—1 and the time intervaA T, the incremeny;=X;—X;_1iS  diagonalized. The numerical calculation in a discrete and fi-
a random variable with probability proportional to nite system gives an estimate of the actual values of all ob-
e~m(21AT) The Brownian paths have a fractal nature andservables. The ground-state eneff§) is given by
are self similar as long as one scales the space and time

direction with[13] e NrATE D — 7 — T TN, (5)
x—bx, t—b?, ©) The above expression is valid in the limit of large
. . =N7AT. The subscript in Eq. (5) stresses the existence of
where the scale factdris any real positive number. finite-size effects, and the dependence on the grid spacing is

The_ classical system, whose states are given by thgmitted to avoid overcrowding the notation.
Brownian paths|the system may be also interpreted as a gqr g largeN, the trace is dominated by the leading

G_auss_ianEpolyéme[M]) may bﬁ rescaled by the rTeLa_ltiofns eigenvalue of the transfer-matriz~(a{”)N7 and the
given in Eq.(3) to preserve the same structure. This facty o i oo energy is given by

makes the time lattice critical in the sense of

renormalization-group theorjil5,16. When the strength of 3
. . . (0) (0)

the attractive potential — o, the particle must be bound and ElV=- ﬁln(a,_ ), (6)

the contribution to the path integral summation of the

Brownian ~ paths are weighted by the factor yherea(® is the leading eigenvalue of the transfer matrix.
exp[(—l/ﬁ)f:,V(x(t);)\)dt]. Thus, the paths in the neigh- Having the leading eigenvector of the transfer matrix, one
borhood of the origin contribute much more than paths fillingmay evaluate any other ground-state expectation value. Be-

056120-2



QUANTUM CRITICALITY FOR FEW-BODY SYSTEMS: ... PHYSICAL REVIEW B4 056120

0.20 T T T

cause all geometric properties of the fractal Brownian paths 008

are preserved in the critical region, the root-mean-square dis

0.06 0.15

pIacemeanL=(x2)1’2 must scale with the macroscopic di-
mensionL. If the particle is boundR; must achieve a finite Nﬁ. 0.04 | S ot0}
value independent of. Hence,R, has a different scaling
behavior if the particle is free or bound. This, in principle, 002 1 005 1
may be used to determine the phase-transition point. 0 0.00
The correlation lengtt along the imaginary time direc- L A
tion is the other quantity we can use to determine the critical 5
region. The correlation length is defined as the asymptotic © 1 o
behavior of the correlation function 60 ]
jAT w40 1 r.zs
C<1AT>=<xOxj>—<xO>2~exp( - —) joe. (D) 2 ]
3 20 1 ]
The correlation length may be written in terms of the two 0 00 200 600 800 d000 o - 20 20
leading eigenvaluea!”) anda{") of the transfer matrix 5 L

1 FIG. 1. Upper panel¢A) and (B) show the scaled correlation
T— (8) length £/L.? and the scaled radial mean distariR®. as a function
In(a(,_l)/ a(,_o)) of the potential strength\ for different system sizes with
L=3,6,9...,30. The grid spacing is kept fixedlL=0.03 so the
When the system is critical, the quantum states must bemallest system has, =100 and the largest ha$; =1000 points.
correlated in all length scales along the time direction, and.ower panels(C) and (D) illustrate the scaling of¢ and R
thus, the correlation length must scale with T. Hence, in ~ with the system size L for different values of X
the true free-particle case with—«~ andL—« the correla- =1(0),1.02,1.04,1.06,1.08,1.10. All numerical values are in
tion length diverges. Sindeis finite, one cannot have a true atomic units.
divergence, but the scaling relations presented in Y. . ) o
should still apply ifL is finite and sufficiently large. Thus, erties of the correlation length_ and the mean radial dis-

the correlation length must scale &s L2 in the critical re- tanceR.. , _ _ ,
gion. The one-dimensional case is a straight forward applica-

For a given value of the critical parameteywe perform tipn _of Eq.(4). The lattice i_n thg posit_ion space is defined by
calculations with different system sizes.4f(\) scales with ~ Picking evenly spaced points in the intervet [ —L/2,L/2].
L2 andR_()\) scales withL, we call the system critical be- The results are obtained by exapt d|agonal|zat|on of the
cause the particle behaves like a free particle. When thi@nsfer matrix for every system size definedlby N, AL.
strength of the potential breaks down this scaling behavior] © investigate the trivial transition & =1, it is enough to
the system is not critical and the particle is bound. The valu&onsider only one grid spacinglL =0.03. For the remainder
of A=\, is the transition point. of this paper, we consider that the particle has a mass equal
The grid spacingAT and AL do not affect the scaling t© the eIectrqn mass an'd' atomic units=£€# =1) are implied
properties of any quantity. The smaller the grid spacing, thdor all numerical quantities. Thus, the values &f and R,
smoother is the representation we get from the actual Euclic®® calculated with ten different system sizes,
ean space. Because the potential function is not scaled, te100,200. ..,1000, wherel is measure in units ON-Z-
potential function range sets the magnitude of the real-spacEne results are shown in Fig. 1. In Figlal we plot &, /L

&L=—

L, which must be covered. So a smAIL means a bigN,,  andin Fig.. bR /L asa fgnction of\. The curves corre-
and thus, a large transfer matrix to be diagonalized. spond to different system sizés=100,200. . .,1000. For a
given value of\, it is clear that the only point wherB,
Ill. NUMERICAL EXAMPLE ~L and ¢, ~L2is A=1. Thus, the one-dimensional system

is critical only when the potential vanishes, and the patrticle

In order to illustrate this method, we study the case of &s free. Son =1 is regarded as a trivial critical point. In Figs.
single particle in the presence of theésebl-Teller[17] po-  1(c) and Xd), we showé, andR, as a function ol.? andL
tential V(x;\) = — N (A —1)/cosH(x), with \=1. This prob-  for fixed value of\. The curve with circles corresponds to
lem has an exact solution. In the one-dimensional case, thepe=1, the other five correspond to small deviations from the
is always a bound solution unleds=1 when the potential free-particle case witth=1.02, 1.04, 1.06, 1.08, and 1.10.
vanishes, and the particle is free. In three dimensions, th®he only case that can be adjusted to a straight ling is
behavior is much more interesting. Regardless of the pres=1. In the presence of a weak potential, the scaling,of
ence of an attractive potential in the intervakA <2, there  andR, deviates from the critical scaling represented by the
is no bound solution untik=2. Hence, there is a finite value straight lines.
of the potential strength parameter,=2, that defines the In order to solve the three-dimensional case, we obtained
stability limit of the bound solution. In the present approach,the transfer matrix using the spherical coordinates path inte-
this point may be obtained by investigating the scaling propgral which reads
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FIG. 2. Upper paneléA) and(B) show the scaled correlation lenggh_? and the scaled radial mean distaf®é. as a function of the
potential strength\ for different system sizes with=3,6,9 .. .,30. The grid spacing is kept fixedL=0.03, so the smallest system has
N, =100 and the largest ha = 1000 points. Lower panel€) and(D) illustrate the scaling of andR with the system sizé for different
values of\. The perfect linear fit withh =1 (O) andA =\ (OJ). The dashed lines correspond to valuea tfiat are smaller than the critical
value of 5, 10, 15, 20, and 25 %. The continuous lines have valuggofater than ;. by the same relative amounts. All numerical values
are in atomic units.

Traa(rj 0= =Mpan(ry,rj_)T(ry.r—), (9)  £&./L?curves exhibit a peak around=2, the biggest system
(L=1000) has the highest and sharpest peak, and the small-
wherer is the particle radial coordinate afidr;,rj_;) isthe  est systeml(=100) has the lowest and widest peak. Com-
same transfer matrix defined in Eq4). The factor paring the curves for different system sizes we see that the
My 3(rj,rj—1) is introduced by the discrete radifinc-  values ofé_ with \ to the left of the peak tend to a limiting

tional weight curve wheret scales with_2. In the other region, to the right
of the peak, the value af_ /L? tends to vanish as the system

2wmrirj_q mrrj_ size is increased. Thus, we may consider the valua of

Mis gl .rj-1)= AAT F{_ AAT } determined as the peak of tif¢ curve for a given system

size as a pseudocritical transition point, which must converge
to the true transition point in the thermodynamic limit. More-
over, it is important to note that the system is critical not
only whenh=X\. but is critical in the entire region £\
wherel |, 5, is the modified Bessel function. The quantum <A\.. This is because the scaling fvith the system size is
numberl sets the angular momentum. Since we are studyinghe same as the scaling of a free particle. In F{b),2ve turn

the ground state, it is enough to consider only the solutionsur attention to the scaling behavior Bfas a function oh

mrjrjl) 10

Xl'*S’Z(W

with 1 =0. for the ten different system sizes. The curves correspond to
Now, the discretization is done over the radial coordinatedifferent system sizesL(=100 for the highest curve tb
excluding the originr;=iAL, i=1,2,... N_, for each in- =1000 for the lowest curye As the system size increases,

stantt; . The quantityR, is now the ground-state expectation the R, /L curve tends toward a limiting curve that vanishes
valu R, =(r). The transfer matrix is obtained using different as\ increases and goes to a constant whenl. The value
values of grid spacindL=0.01, 0.02, 0.03, 0.04, 0.05, and of A where the particle changes its scaling behavior may be
0.06 for ten different system sizes. The system sizes set bigentified as the crossing point of thg /L curves for dif-
discretization numbers starting frohy =100,200,300..., ferent system sizes. The limiting scaling behavior of the
up to 1000. For each case, the two leading eigenvalues arfig] /L curves to the left of the limiting crossing point is the
its leading eigenvector are numerically evaluated and used tsame of a free particle whel®_ scales withL, hence the
compute the correlation length and radial mean distance. system is critical. For values of to the right of the limiting

In Fig. 2 we present the results using only the grid spacingrossing pointR, /L tends to vanish and the system is not
AL =0.03 of the three dimensional case. In Figa)2&, /L2  critical anymore. Looking to the scaling behavior Bf
is shown as a function of the potential parametereach  curves, we define a pseudocritical transition paiptas the
curve corresponds to a different system size. Notice thapoint where theR (\) andR,,(\) curves cross. In this pa-
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210 g g y is plotted as the straight liné#é) and(B). The linear adjust-

ments for large systems give the following estimates for the
@ I infinite system:\.=2.0000(2) when using thé, scaling

e oH B & & —9— & — & — O~ T and \,=1.9998(8) when using th® scaling. The two

schemes extrapolate to the the same result and are in very

good agreement with the exact resnj{=2. However, one

may notice that the convergence of the data obtained using

Q %, _ _— ) |
< 10T N\ 200 \%:Ww_ ] & is much faster than the data obtained usitig

Q\ 1.98 ]
® \ %%@ IV. CONCLUSIONS
180 1 o N\ 1 1

\ 0 0.002 0004 We have shown that the path-integral approach to quan-
\ tum mechanics for a system composed of only one particle in
_° N\ , , the presence of an attractive potential with strength set by a
0.01 0.02 0.03 0.04 continuous parameter is a natural approach to describe and
1/L " .
understand phase-transition phenomena. In this case, the
FIG. 3. The value of the pseudocriticah evaluated “collective” phenomena behind the phase transition is a
at different system sizes and different gridAL property of the space-time lattice. The transition is between a
=0.01 (©0),0.02 d), 0.03 (¢), 0.04 (1), 0.05(V), 0.06 ¢>). critical phase, where the paths that effectively contribute to
Note that the extrapolated valueNg=2. All numerical values are the Feynman’s path integral have the same scaling behavior
in atomic units. as the Brownian paths that describe a free quantum particle,
and a noncritical phase, where only paths around the attrac-
per, we fixed the value of the grid spacing and consMgr  tion center effectively contribute to the Feynman’s path in-
=1.IN;, and the\ this way determined is regarded a func- tegral. Like the wave function, paths in the path integral are
tion of AL andN, . not observables. However, one may say that the experimen-
In Figs. 4c) and 2d), we stress the existence of a rangetal fact that a particle is bound or not are special averages
of values ofA where the system preserves the same scalingver these experimentally inaccessible quantities. Conse-
behavior of a free particle and may be called critical. In thesejuently, the stability limit of the bound state of a single-
two plots we fix the value ok and preseng, as a function quantum particle reflects the phase transition in the paths
of L? andR, as a function ol. The data plotted as circles used to describe it in Feynman’s approach. We have illus-
are for the free-particle case=1 and the squares faxr  trated these ideas by a numerical study of a single-quantum
=\¢, Where\. is the pseudocritical transition point deter- particle in the presence of the &uhl-Teller potential in one
mined as discussed above. By examining the scaling behaand three dimensions.
ior of ¢ in Fig. 2(c) andR, in Fig. 2(d), we clearly see that Furthermore, we showed that the study of the scaling be-
these two sets of data each fit perfectly to straight lineshavior of the space-time lattice may provide other numerical
showing that the system is critical. This is illustrated by thetools to determine the ground-state stability limit of a bound
dashed lines in Figs.(2) and 2d) which correspond to val- solution. In this numerical example, we saw that besides the
ues of lambda that are smaller than the critical value of 5, 10gorrelation lengthé one may look at the scaling behavior of
15, 20, and 25 %. Their linear behavior shows that systemthe radial mean distand® The extrapolated numerical re-
with 1<A <\ are critical. The continuous lines have valuessults for the three-dimensional &hl-Teller potential for the
of N greater than\ by the same relative amounts, the linescritical lambda are\.=2.0000(2) when estimated usirgg
eventually bend from the linear behavior showing that forand \,=1.9998(8) when usindR, , with the exact result
N>\, the system critical-scaling behavior is destroyed. Nc=2. Thus, we showed that both quantities may be used to
In Fig. 3, we present all the numerical estimates of thedetermine the transition point within the same accuracy.
critical phase-transition point, for the three-dimensional However the convergence of tHg data is much slower,
Poschl-Teller system. Along the straight liid) are plotted because depending on the grid spacing, it is necessary to go
the values of\, determined as the peak of the correlationto bigger systems compared to tfjedata in order to observe
length curve. Along the straight lin@) are plotted the val- the large system asymptotic behavior. Moreover, one must
ues of\. determined by the crossing points of the curRgs  calculate the the ground-state and first excited-state energies
andR_, . As discussed above, the values\@fdepend on the to estimatef, while we need only the ground-state properties
discretization numbeX_ and the grid spacingL. However, to obtainR, .
we plotted the data as a function ofL%/ becauselL This approach is based on the breakdown of the free-
=N_AL is the relevant scaling dimension. In this plot, eachparticle scaling properties as the strength of the attractive
symbol corresponds to a different grid spacing. Despite thexternal potential is made strong enough. This general idea
fact that they were evaluated with different grid spacing,can certainly be applied to systems with more than one par-
when plotted against l17, the set of data obtained using the ticle as long as the unbound solution can be well represented
scaling of¢, are grouped along one curve and the set of datdy noninteracting free particles. This would be the case of a
obtained using theR, scaling are grouped along another few particles that interact with each other by repulsive forces
curve. Only the linear behavior of this curve for large systenmthat decay with the distance between them. Hence, in the

2.00

2.02

1.70
0
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absence of any external attractive potential, the particles wil{7) may not be used to identify these intermediate transitions
be far away from each other and consequently will behavéecause it is associated with the correlation function among
like free particles. In particular, we expect that the radii ofquantum states of the whole system. However, the particle
the closed path of each particle will scale according to theyath radii may still be used to investigate if there are some
relations given in Eq(3). Now we consider what will hap-  particles that behave like free particles and others that do not.
pen when the particles are also under the influence of aRjaturally, this method is not suitable to study transitions

external attractive pOtential. If the pOtential is made Strong)etween two kinds Of |0ca|ized states. Th|s approach iS gen_
enough, it will eventually localize the particles, destroyingeral and might be used with other simulation techniques,
the scaling behavior of the free-particle paths. The transitiogch as Monte Carlo methofis8], to obtain critical param-

from the states where all partiCIeS are localized to the Stat%[ers for few-electron atoms and Simp|e molecular systems.
where all particles are free will be qualitatively the same as

the transition of the one-particle system presented in this
paper. This transition may be studied either by looking at the
correlation length or at the radii of the particle paths. How-
ever, the phase diagram of the many-body system could be We would like to acknowledge the financial support of
much richer, because not all particles may be localized at ththe National Science Foundation and the Office of Naval
same time. In this case, the correlation length defined in EqResearch.
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