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ABSTRACT: We present quantum phase transitions and critical phenomena at the
large-dimension (D) limit for three-body ABA Coulomb systems with charges (Q, q, Q) and
masses (M, m, M). The Hamiltonian depends linearly on two parameters λ = |Q/q| and
κ = [1 + (m/M)]−1. The system exhibits critical points with mean field critical exponents
(α = 0, β = 1

2 , δ = 3, γ = 1). We calculate the critical curve λc(κ) through which all systems
undergo a continuous-phase transition from the symmetrical configuration, the two like
particles have the same distance from the reference particle, to the unsymmetrical phase.
The critical curve at D → ∞ limit is a convex function of κ and very similar to the one
obtained at D = 3 with variational calculations. We also calculated the line of zero angular
correlation in the mass polarization term, which separates the symmetrical phase to an
atom-like region and a molecule-like region. © 2001 John Wiley & Sons, Inc. Int J Quantum
Chem 85: 307–314, 2001

Key words: ABA Coulomb system; Hamiltonian; reference particle;
zero angular correlation; atom-like region; molecule-like region

Introduction

Q uantum phase transitions are zero tempera-
ture phase transitions tuned by parameters in

the Hamiltonian [1, 2]. Examples from condensed
matter physics include the magnetic transitions of
cuprates, superconductor–insulator transitions in
alloys, and the quantum–Hall transitions [2, 3]. For
two-electron atoms, the parameter that tunes the
phase transition is the nuclear charge, Z. As the
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nuclear charge reaches a critical value Zc � 0.911,
which is the minimum charge necessary to bind two
electrons, one of the electrons jumps, in a first-order
phase transition, to infinity with zero kinetic en-
ergy [4]. For three-electron atoms, a second-order
phase transition [5] occurs at Zc � 2.0. The estima-
tion of critical nuclear charge for N-electron atoms
shows that, at most, only one electron can be added
to a free atom in the gas phase [6]. The study of
quantum phase transitions and critical phenomena
is of increasing interest in the field of atomic and
molecular physics. This is motivated by the recent
experimental searches for the smallest stable multi-
ply charged anions [7, 8], experimental and theoret-
ical work on the stability of atoms and molecules in
external fields [9, 10], the study of selectively break-
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ing chemical bonds in polyatomic molecules [9],
controlling electronic properties of materials [11],
and phase transitions of finite clusters [12].

Symmetry breaking, critical phenomena, and
phase transitions at large-dimension (D) limits for
many different models continue to be a subject of
great interest [6, 13]. This is motived by the fact
that as we treat real physical problems, exact treat-
ments are seldom realizable, and so one has to rely
on approximate methods. The large-D model and its
1/D expansion scheme have proven to be efficient in
dealing with a diverse class of the problems [14, 15].

Symmetry breaking of electronic structure con-
figurations at the large-D limit has been recently
shown to be completely analogous to the standard
phase transitions and critical phenomena in statisti-
cal mechanics [16]. For N-electron atoms [17] at the
large-D limit, the symmetry breaking is shown to
be a “first-order” phase transition. For the special
case of two-electron atoms, the first-order transition
shows a triple point where three phases with differ-
ent symmetries exist. Treatment of the Hartree–Fock
solution reveals a different kind of symmetry break-
ing where a “second-order” transition exists. The
Hartree–Fock two-electron atom in a weak external
electric field exhibits a critical point with mean field
critical exponents [16] (β = 1

2 , α = 0dis, δ = 3, and
γ = 1).

Symmetry breaking of the molecular electronic
structure configurations at the large-dimension
limit shows similar phase transitions. For the
Hartree–Fock hydrogen molecule at the large-D
limit [18], for example, the phase diagram in the
internuclear distance–nuclear charge plane shows
three different stable phases with a bicritical point
where the two continuous transition lines join a
first-order transition line.

The stability of three-body Coulomb systems is
an old but very important problem that has been
treated in many particular cases [19 – 23]. Recently
[24, 25] using the finite size scaling method we have
shown that ABA Coulomb systems with charges
(Q, q, Q) and masses (M, m, M) exhibit quantum
phase transitions and critical phenomena. They un-
dergo a first-order transition from the stable phase
of ABA to the unstable breakup phase of AB + A
as their masses and charges vary. We also accu-
rately calculate the transition line that separates the
two phases. For any combination of the three par-
ticles of the form ABA, one can read directly from
the phase diagram if the system is stable or unsta-
ble. Moreover, the transition line has a minimum at
κm = 0.35, which leads to a new proposed classi-

fication of the ABA systems to either molecule-like
systems or atom-like systems.

In this study, we generalize the three-body
Hamiltonian to D-dimensional space and study the
symmetry breaking at the large-D limit as a func-
tion of both parameters λ = |Q/q| and κ = [1 +
(m/M)]−1. This large-D model is simple, has an an-
alytical solution for the critical curve λc(κ), which
separates the symmetrical configuration from the
unsymmetrical one, and yet contains a great deal
of similarity to that obtained numerically using
variational calculations at D = 3 with large basis
sets [25]. We also show that the symmetry break-
ing of three-body structure configurations for the
ABA systems in a weak electric field at the large-
D limit is described as standard phase transitions.
This symmetry breaking, which leads to dissocia-
tion or ionization, is completely analogous to phase
transitions and critical phenomena in statistical me-
chanics. This analogy is shown by allowing the
Coulomb strength parameter λ to play a role anal-
ogous to temperature in statistical mechanics. The
symmetry breaking is shown to be a “continuous"
phase transition with mean field critical exponents
(β = 1

2 , α = 0, δ = 3, and γ = 1) for κt ≤ κ ≤ 1.0
and a first-order transition for 0 ≤ κ ≤ κt, where
κt = 0.07 is a tricritical point.

Large-D Hamiltonian for Three-Body
Coulombic Systems

For three-body Coulombic systems with charges
(Q1, Q2, Q3) and masses (M1, M2, M3), the Hamil-
tonian (atomic units are applied unless otherwise
specified) is given by [24]

H = − 1
2µ1

	2
1 − 1

2µ2
	2

2 − 1
M1

	1 ·	2

+ Q1Q2

r1
+ Q1Q3

r2
+ Q2Q3

r12
, (1)

where the reference particle is the particle with
mass M1 and charge Q1, r1 and r2 are the relative
coordinates of M2 and M3, r12 = r1 − r2, and µ1, µ2

are the reduced masses µi = M1Mi/(M1 + Mi).
In this study, we consider three-body ABA

Coulombic systems with charges (Q, q, Q) and
masses (M, m, M). Without loss of generality, we
assume that Q/|Q| = −q/|q|, which may lead
to a bound Coulombic system depending on the
charges and masses of the particles. The correspond-
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ing Hamiltonian reads

H = − 1
2µ0

	2
1 − 1

2µ0
	2

2 − 1
m

	1 ·	2

+ qQ
r1

+ qQ
r2

+ Q2

r12
, (2)

where the reduced mass µ0 = mM/(m + M).
Herschbach [26] generalized this Hamiltonian to

D-dimensional space in the case of infinite mass
approximation, m → ∞. Let us generalize the
additional term, the mass polarization term, to
the D-dimensional space. In the D-dimensional
space, the Laplacian operator is defined by 	2 =∑D

i = 1(∂2/∂x2
i ) in terms of Cartesian coordinates xi

(i = 1, 2, . . . , D). For the ground state with to-
tal angular momentum L = 0, the motion takes
place on a plane spanned by the three particles, and
the eigenfunction depends only on three variables
and can be represented in polar coordinates 
 =

(r1, r2, θ ). The radial coordinate is the radius of a
D-dimensional sphere where r1 = x1i+x2j+· · ·+xDk
and r2 = y1i+y2j+· · ·+yDk. The Jacobian factor [14]
is given by JD = (r1r2)D−1 sinD−2 θ . If we now intro-
duce 
 = J−1/2

D � and carry out the calculations, the
mass polarization term has the following form:

− 1
m

	1 · 	2 �

= − 1
m

{
cos θ

∂2

∂r1 ∂r2
− sin θ

r2

∂2

∂r1 ∂θ
− sin θ

r1

∂2

∂r2 ∂θ

− cos θ

2r2

∂

∂r1
− cos θ

2r1

∂

∂r2
+ sin θ

r1r2

∂

∂θ
− cos θ

r1r2

∂2

∂θ2

+ 1
r1r2

[
cos θ

4
+

((
D − 3

2

)2

− 1
4

)
cos θ

sin2 θ

]}
�.

(3)

Assembling the different terms gives the
Schrödinger equation for the probability amplitude
as [T1 +T2 +T12 +U+V]� = ED� where derivatives
appear only in Ti (i = 1, 2) [26]

Ti = − 1
2µ0

[
∂2

∂r2
i

+ 1
r2

i

∂2

∂θ2

]
; (4)

and T12 from Eq. (3)

T12 = − 1
m

[
cos θ

(
∂2

∂r1 ∂r2
− 1

2r2

∂

∂r1
− 1

2r1

∂

∂r2

− 1
r1r2

∂2

∂θ2

)

− sin θ

(
− 1

r2

∂2

∂r1 ∂θ
− 1

r1

∂2

∂r2 ∂θ
+ 1

r1r2

∂

∂θ

)]
.

(5)

The dimension dependence appears only in the cen-
trifugal term

U = 1
2µ0

(
1
r2

1

+ 1
r2

2

)[
−1

4
+ (D − 2)(D − 4)

4
1

sin2 θ

]

− 1
mr1r2

[
cos θ

4
+

((
D − 3

2

)2

− 1
4

)
cos θ

sin2 θ

]
(6)

and V is the Coulombic potential.
Finally at D → ∞, any scheme that scales the ra-

dial distances as D2 in such a way as to cancel the
D-dependence of the centrifugal potential will give
an effective Hamiltonian H0∞, which determines the
motion of the three particles on a surface { : r1,
r2, θ}. Using the scaling transformation fr −→ r and
energy H0∞/f |qQ| −→ H0∞ with scaling factor f =
µ0|qQ|/(�2 − 1

4 ), � = (D − 3)/2, the scaled Hamil-
tonian is given by

H0
∞ = 1

2 sin2 θ

(
1
r2

1

+ 1
r2

2

)
− κ

r1r2

cos θ

sin2 θ
− 1

r1

− 1
r2

+ λ

r12
, (7)

where r12 = (r2
1 + r2

2 − 2r1r2 cos θ )1/2. The scaled
Hamiltonian depends linearly on λ = |Q/q| and
κ = 1/(1 + m/M).

For finite κ , the mass-polarization term de-
pends on the angular-correlation factor cos θ . In
the Hartree–Fock (HF) approximation at D → ∞,
the wave function lacks any explicit dependence
on the angle θ ; hence the angle becomes fixed at
90◦and cos θ = 0. In this approximation the Hamil-
tonian becomes κ-independent and the correlation
is purely radial due to r12 = (r2

1 + r2
2)1/2. Here we

will treat the general case where cos θ �= 0 and
the Hamiltonian includes both the radial and the
angular correlations. Minimizing the H0∞ with re-
spect to (r1, r2, θ) gives the large-D approximation of
the ground-state energy. The results are in complete
agreement with the one obtained by Rost using
molecular Jacobian coordinates [27]. One can im-
prove this calculations through the 1/D expansion
[28, 29], but our main focus in this study is the sym-
metry breaking at the large-D limit and its analogy
to critical phenomena and phase transition in statis-
tical mechanics.

Symmetry Breaking

Symmetry breaking phenomena are well docu-
mented at the large-D limit for electronic struc-
ture configurations of atoms and simple molecules
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[14, 26, 30 – 33]. Recently [6], we have shown that
symmetry breaking of the configurations at the
large-D limit for HF two-electron atoms and two-
center molecules is completely analogous to stan-
dard phase transitions. This analogy was shown by
allowing the nuclear charge for atoms and the in-
verse internuclear distance for molecules to play a
role analogous to temperature in statistical mechan-
ics [16].

In this section, we consider symmetry breaking
of the large-D limit configuration for the three-body
Coulombic systems as a function of λ and κ . Min-
imizing H0∞(r1, r2, η = cos θ ) over 0 ≤ r1, r2 ≤ ∞,
and 0 ≤ θ ≤ π shows that there is one symmetrical
solution with r1 = r2 = rm and one unsymmetrical
solution r1 �= r2.

For the symmetrical solution the two equal parti-
cles have equal distance from the reference particle.
This distance is given by

rm = 1 + κ

(1 + η)2 , (8)

and the scaled energy becomes

E∞ = − (1 + η)3(κη − 1)
(1 + κ)2(η − 1)

, (9)

where η is determined by

λ = 4[κ(1 + η2) − 2η]
(1 + κ)[2(1 − η)]1/2 . (10)

Note that in the infinite-mass approximation for
the reference particle, such as for two-electron
atoms, the above equations reduce to Herschbach’s
equations [26] 1/rm = (1 + η)2 and E∞ =
−(1 + η)3/(1 − η) with η = 1

64 [−λ2 − λ(λ2 + 128)1/2].
By investigating the eigenvalues of the Hessian

matrix, we find that the symmetry breaking takes
place when the angular factor η satisfying the fol-
lowing equation:

3(1 + κ)η2 − 2(3 + κ)η − (1 − 3κ) = 0, (11)

which gives an analytic solution for ηc = (3 +
κ − 2c)/3(1 + κ) with c = (3 − 2κ2)1/2. Now the crit-
ical value for λ is readily available using ηc:

λc = 4
3c

(
1 + κ

κ + c

)1/2[
κ3 + κ2(9 − 2c) + 3κ + 6c − 9

]
.

(12)
In Figure 1, we compare the critical curve λc as a
function of κ obtained at D → ∞ with the one ob-
tained at D = 3 using large basis set calculations
(20,336 basis functions) with Laguerre polynomi-
als [25]. Note the similarity between the two curves;

FIGURE 1. Comparison of the critical curve λc(κ) at
D = 3 and D = ∞. Note that κ = 0 corresponds to the
He atom, κ = 1

2 to Ps− and κ = 1 to H2
+. The solid line

at D = ∞ corresponds to a continuous-phase transition
from the symmetrical phase to the unsymmetrical phase.
The dotted line is a first-order line that meets the
continuous line at a tricritical point λtc.

both are convex functions with one minimum. At
the large-D limit, there is a minimum at κm =
3(12 − 211/2)/41 ≈ 0.5427 while at D = 3, the min-
imum is at κm ≈ 0.35. This critical curve separates
the (λ − κ)-plane into a symmetrical phase (bound
region at D = 3 ) for λ < λc, and an unsymmetrical
phase (breakup region at D = 3 ) for λ > λc.

In the bound region, the curve λη = 0 (η =
cos θ = 0) where the mass polarization term in
Eq. (7) is zero, divides the symmetrical phase into
two regions as shown in Figure 2. In region I, η < 0,
and for region II, η > 0 as shown in the lower part
of Figure 2. So we may apply the angular correla-
tion factor to distinguish between atom-like systems
if κ < κη = 0 = 1

3 and molecule-like systems if κ >

κη = 0. This proposed classification of atom-like and
molecule-like systems is of great importance in ex-
ploring the resonance spectrum and dynamics of
three particles where there is neither an obvious
point of reference as the heavy nucleus in H− nor a
line of reference as the internuclear axis in H2

+. Rost
and Wintgen [34] have shown that the resonance
spectrum of positronium negative ion Ps− (κ = 0.5)
can be understood and classified with the molecule
H2

+ quantum numbers by treating the interelectron
axis of Ps− as an adiabatic parameter. Our phase di-
agram at the large-D limit shows that for κ > 1

3 the
system belongs to the molecule-like region.

Furthermore one can introduce an external weak
static electric field to break the symmetry of Eq. (7).
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FIGURE 2. Stability diagram in the (λ − κ) plane is
shown in the upper part with the zero angular correlation
line λη = 0 separating the symmetrical phase into
atom-like region I and molecule-like region II. In the
lower part the angular correlation factor η = cos θ is
shown as a function of κ with the two regions I and II
bounded by the curve λ = 0 and λ = λc. Note the
atom-like region I has a negative domain while the
molecule-like region II is positive.

With the presence of an external electric field E the
Hamiltonian reads

H∞ = H0
∞ − E(r1 − r2). (13)

The direction of the electric field is chosen in or-
der to preserve the symmetry of the Hamiltonian
H∞(r1, r2, E) = H∞(r2, r1, −E).

At E �= 0 there exists only one unsymmetrical so-
lution. The deviation from the symmetrical solution
can be expressed by introducing a new parameter s
such that r1 = r and r2 = (1 − s)r with 0 ≤ s ≤ 1.

The total symmetrical solution with r1 = r2 = rm

at E = 0 is obtained by taking s = 0. For E �= 0
minimizing energy about r, s, and η = cos θ gives
the following equation:

λ(κ , s, η) = r3/2
12

s0

η0

(s2 − 2s + 2)η + κ(s − 1)(η2 + 1)
s2 + sη0 + κ(s − 1)η0 − η + 1

,

(14)
where

s0 = − 2 − 2s + s2

(s − 2)(s − 1)2 , η0 = η − 1,

r12 = s2 + 2s(η − 1) − 2η + 2,

and

r(κ , s, η) = s2 + sη0 + κ(s − 1)η0 − η + 1

s0(s − 1)3(η − 1)(η + 1)2 , (15)

FIGURE 3. Asymmetry parameter s as a function of the
Coulombic parameter λ for κ = 0, 1

3 , 2
3 , and 1.0. The

solid curves with η �= 0 and the dashed curves
with η = 0.

and for

E∞ = H∞(κ , s, η); E = E(κ , s, η). (16)

Explicit expressions are given in Appendix A.
For external filed E = 0, we show in Figure 3 the

asymmetry parameter s as a function of the parame-
ter λ for different values of κ . The parameter s = 0
for all λ < λc, which means we have the symmetrical
solution, but once the system reaches λc the symme-
try breaking occurs. Figure 4 shows the behavior of
the asymmetry parameter as a function of the exter-
nal field E for different values of κ . The behavior of
the asymmetry parameter s is completely analogous

FIGURE 4. Asymmetry parameter s as a function of the
external electric field E for three different values of
λ = λc − 0.05 < λc (dashed line), λ = λc (solid line),
and λ = λc + 0.05 > λc (dot-dashed line) at κ = 0, 1

3 , 2
3 ,

and 1.0.
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to figures representing the behavior of magnetiza-
tion as a function of temperature in the mean field
theory.

Mapping to Critical Phenomena

In statistical mechanics of quantum systems, the
quantities of interest are the partition function of the
system Z(β) = Tr e−βH and the expectation values of
an arbitrary operator A, 〈A〉 = [1/Z(β)] Tr(Ae−βH),
where H is the Hamiltonian of the system and β is
the inverse of temperature β = 1/kT. Upon taking
the limit T → 0, the free energy F = −(1/β) ln Z(β)
becomes the ground-state energy, and the various
thermal averages become ground-state expectation
values [6]. Now a mapping between symmetry
breaking for three-body Coulombic systems and
critical phenomena in statistical mechanics is read-
ily given by

Coulomb strength λ ⇐⇒ Temperature T,

Asymmetry s ⇐⇒ Ordering parameter m,

External field E ⇐⇒ Ordering field h,

Ground state
energy E∞(λ, E) ⇐⇒ Free energy f (T, h),

Stability limit point λc ⇐⇒ Critical point Tc.

Using this scheme of mapping between the two
problems, one can define the four critical exponents
(α, β, δ, γ ) in the following way:

−∂2E∞
∂λ2 (E = 0, λ)

∣∣
λ→λ

−
c

∼ |λc − λ|−α , (17)

s(E = 0, λ)
∣∣
λ→λ−

c
∼ |λc − λ|β , (18)

E(λc, s)
∣∣
s→0 ∼ |s|δ, (19)

∂s
∂E (E = 0, λ)

∣∣
λ→λ−

c
∼ |λc − λ|−γ . (20)

To obtain the critical exponents we start with
Eq. (16) at E = 0, which gives η = η(κ , s):

η = (−s4 + 5s3 − 2κs2 − 11s2 + 4κs + 12s

+ f − 2κ − 6
)

× (
2(κ + 1)(s − 1)(s2 − 3s + 3)

)−1, (21)

where f = (2 − s)(f1 + κ2f2)1/2, f1 = (s2 − 3s + 3)(s4 −
3s3 + 7s2 − 8s + 4), and f2 = −4(s − 1)2(s2 − 2s + 2)
with the restriction that s ≤ 1 and 0 ≤ κ ≤ 1.

Taking the asymptotic limit of Eq. (14), s → 0,
we find that λc − λ ∼ s2, which gives the critical
exponent β = 1

2 . In order to obtain the critical expo-
nent α, we have to expand energy E∞ in Eq. (16) as

a function of (λc −λ) in order to get its second deriv-
ative at E = 0. Unfortunately, we could not have
an explicit expression for s = s(λ) from Eq. (14). We
have to find an approximate solution s = s(λ) from
λ = λ(s) at s → 0 and then put the solution into
an s sequence of energy. We noted that the energy
sequence does not include s1 terms and for the real
solution of equation c2s2 + c3s3 − (λ − λc) = 0, the s3

terms in the sequence are canceled. For the real so-
lution of equation c2s2 + c3s3 + c4s4 − (λ − λc) = 0
at s ≤ 1 the s3 terms are canceled too, and we get
an approximate expansion of E∞ which is exact up
to s4 or (λc − λ)2. Here c2, c3, and c4 are functions of
the parameter κ from Eq. (14). Using ∂2E∞/∂λ2 at
E = 0 and comparing it to Eq. (17) we finally iden-
tify α = 0. We evaluate δ = 3 and γ = 1 without
approximations.

The continuous-phase transition discussed above
and the related mean field critical exponents are
valid over the range κt = 0.07 < κ ≤ 1.0, where
κt = 0.07. This special point, κt, where the second-
order line meets the first-order line over [0, κt) in
Figure 1 is called a tricritical point. Our further cal-
culations of E∞ at E = 0 show that over 0 ≤ κ ≤ κt

there are two local minima at s1 �= 0 and s2 �= 0
with a maximum at s = 0, and over κt ≤ κ ≤ 1.0
there is only one global minimum at s = 0. As κ in-
creases to κt, two local minima merge into a global
minimum at s = 0, and the energy transition takes
place between the symmetrical and the unsymmet-
rical regions as shown in Figure 1.

Concluding Remarks

We have shown that there is a universal behavior
of all ABA Coulomb systems at the large-dimension
limit. They exhibit a continuous quantum phase
transition as the parameter λ varies. The critical
line, λc(κ), between the symmetrical and the unsym-
metrical phases is analytically calculated using the
large-D model Hamiltonian. The critical line is a
convex function of the mass parameter κ and has
a minimum at κm � 0.5. The transition line is a
second-order line over the range κt ≤ κ ≤ 1.0 and
a first-order line over the range 0 ≤ κ ≤ κt where
the point κt = 0.07 is a tricritical point. It is interest-
ing to note that the ABA Coulomb systems exhibit
a first-order quantum phase transition at D = 3
as the parameter λ varies. This suggests that there
is a transition crossover as the physical dimension
varies between D = ∞ and D = 3 over κt ≤ κ ≤ 1.0.
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The line with the zero angular correlation (η = 0)
crosses the critical line at κ = 1

3 and separates the
symmetrical phase into two regions: atom-like and
molecule-like regions. One is of negative η, which
includes the helium atom, and the other has a posi-
tive η and covers the hydrogen molecule ion. This
finding is very similar to the proposed classifica-
tion of the three-body Coulombic systems at D = 3:
molecule-like systems with κ > κm = 0.35 and
atom-like systems with κ < κm. This might be
a powerful result in understanding the dynamics
and resonances of ABA three-body Coulombic sys-
tems.

Appendix A

The explicit expressions for the energy and the
external fields at the large-D limit as a function of
parameters s, κ , and η in Eq. (16) are given by

E∞ = (2 − 2s + s2)(1 + η)2h0

2(−1 + s)h2
1

, (22)

where h0 is a polynomial in s:

h0 = c0 + c1s + c2s2 + c3s3 + c4s4 + c5s5 + c6s6

with coefficient

c0 = 4(−1 + κη)
(−1 + η2),

c1 = −12(−1 + κη)
(−1 + η2),

c2 = 2
(
2
(
5 + 6η − 7η2) + κ

(−6 − 3η − 6η2 + 7η3)),

c3 = −4
(
5 + 12η − 9η2 + 2κ

(−3 + η − 3η2 + η3)),

c4 = 9 + 44η − 21η2 + 2κ
(−8 + 3η − 8η2 + η3),

c5 = −1 − 20η + 5η2 + 4κ
(
1 + η2),

c6 = 4η,

and h1 is given by

h1 = (−2 + s)
(
1 + s2 + κ(−1 + s)(−1 + η)

+ s(−1 + η) − η
)
.

The external field has the following form:

E = s
(
2 − 2s + s2)2(−1 + η)(1 + η)4e0

×(
(−2 + s)3(1 + s2 + κ(−1 + s)(−1 + η)

+ s(−1 + η) − η
)3)−1, (23)

where

e0 = 1 + 6η − 3η2 + e1 + e2,
e1 = s4η + s3(−5 + η)η + s2(1 + 11η − 4η2)

+ 2s
(−1 − 6η + 3η2),

e2 = κ(−1 + s)
(
3 − 2η + 3η2

+ s
(−3 + 2η − 3η2) + s2(1 + η2)),

where η is given by Eq. (21), s ≤ 1 and 0 ≤ κ ≤ 1.
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