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ABSTRACT

We present the finite size scaling method for studying

the critical behavior of a quantum Hamiltonian H (Aq, - - -, Ag)

as a function of a set of parameters {\;}. In this con-
text, critical means the values of {A;} for which a bound
state energy is non-analytic. In this case, the finite size
corresponds to the number of elements in a complete
basis set used to expand the exact wave function of a
given Hamiltonian.

Finite size scaling, quantum phase transitions, sta-
bility of atomic and molecular systems.

1 Introduction

In statistical mechanics, the finite-size scaling method
gives a way to extrapolate information obtained from a
finite system to the thermodynamic limit. In the present
approach, the finite size corresponds not to the spatial
dimension but to the number of elements in a complete
basis set used to expand the exact eigenfunction of a
given Hamiltonian[1]. In this method, we assume that
the two lowest eigenvalues of the quantum Hamiltonian
can be taken as the leading eigenvalues of a transfer
matrix of a classical pseudo-system. Using finite-size
scaling arguments, the phenomenological renormaliza-
tion equation was used to obtain the critical properties
of the classical pseudo-system and therefore of the quan-
tum system|[2]. By searching for a fixed point of the
phenomenological renormalization equation, the critical
charge for two-electron atoms is found to be Z. ~ 0.911,
which is in complete agreement with previous calcula-
tions[1]. The fact that this critical charge is below Z =1
explains why H™ is a stable negative ion. For the three-
electron atoms, the critical nuclear charge for the ground
state was found to be Z, ~ 2.08, which explains why the
He™ is an unstable ion[3].

2 Finite Size Scaling in Quantum
Mechanics

In quantum mechanics, when using variation meth-
ods, one encounters the finite size problem in studying

the critical behavior of a quantum Hamiltonian H (A1, - - -, Ag)

as a function of its set of parameters {A;}. In this con-
text, critical means the values of {A;} for which a bound

state energy is non-analytic. This critical point is the
point where a bound state energy becomes absorbed or
degenerate with a continuum. Here the finite size corre-
sponds not to the spatial dimension but to the number
of elements in a complete basis set used to expand the
exact wave function of a given Hamiltonian[4].

In order to apply the finite size scaling method to
quantum mechanics problems, let us consider the follow-
ing Hamiltonian of the form H = Hy + V) , where Hy
is A-independent term and V) is the A-dependent term.
We are interested in the study of how the different prop-
erties of the system change as the value of A varies. In
quantum calculations, the variation method is widely
used to approximate the solution of the Schrodinger
equation. To obtain exact results, one should expand
the exact wave function in a complete basis set and take
the number of basis functions to infinity. In practice, one
truncates this expansion at some order N. For a given
complete orthonormal A-independent basis set {®,, }, the
ground state eigenfunction has the following expansion
Uy = > an(A)®,, where n represents the set of quan-
tum numbers. In order to approximate the different
quantities, we have to truncate the series at order N.
Then the Hamiltonian is replaced by a M(N) x M(N)
matrix H(M) | with M (N) being the number of elements
in the truncated basis set at order N. Using the stan-
dard linear variation method, the Nth-order approxi-
mation for the expectation value of any operator O at
order N is given by

O =3 an(W) am(N) Onm (1)

where O, ,, are the matrix elements of O in the basis set
{®,}. In general, the mean value (O) is not analytical
at A = A., and we can define a critical exponent, po, by
the relation

O~

A= AF

(A= A)He (2)

In statistical mechanics, the singularities in thermody-
namic functions associated with a critical point occur
only in the thermodynamic limit. In quantum mechan-
ics using the variation approach, singularities in the dif-
ferent mean values will occur only in the limit of infinite



basis functions.

As in the finite size scaling method ansatz in statis-
tical mechanics, we are now in a position to obtain the
critical parameters by defining the following function[4]
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Thus, for three different values N, N’ and N’ the
curves defined by Eq. (3) intersect at the critical point[2]

Ao()\c;N,Nl) = AO(AC;NllaN) (4)

In order to obtain the critical exponent «, which is
associated with the energy, we can take O = H. The
equations are valid only in the asymptotic limit N — oo,
but with a finite basis set, unique values of A. and the
critical exponents can be obtained as a succession of
values as a function of N, N’ and N”'. The extrapolated
values of the critical parameters can be obtain using the
algorithm of Bulirsch and Stoer[2].

3 Applications
3.1 Stability of N-electron atoms

To carry out the finite size scaling procedure, one has
to choose a convenient basis set to obtain the two lowest
eigenvalues and eigenvectors of the finite Hamiltonian
matrix. For two-electron atoms, we choose the following
basis set functions|1]
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where 4 and d are variational parameters, ri5 is the in-
terelectronic distance and Fy(612, £2)is a suitable func-
tion of the angle between the positions of the two elec-
trons 012 and the Euler angles = (4, ¢, ¢). This func-
tion Fy is different for each orbital-block of the Hamilto-

nian. For the ground state Fy(f12, Q) = 1 and Fy(012,9) =

sin(f12) cos(d) for the 2p? 3P state. These basis sets are
complete for each f-subspace. The complete wave func-
tion is then a linear combination of these terms mul-
tiplied by variational coefficients determined by matrix
diagonalization.

By diagonalizing the finite Hamiltonian matrix, one
can obtain the lowest two energy eigenvalues as a func-

tion of the order of the truncated basis set, E(()N) and

E%N). Using equation (3), one can look for the fixed
point of equation (4) by taking the ratio of these two

eigenvalues raised to a power N as a function of A. Fig-
ure (1) shows the crossing points, which are the fixed
points of equations (4), for N = 6,7,8,...,13. The
values of the fixed points as a function of N can be
extrapolated to the limit N — oo by using the Bu-
lirsch and Stoer algorithm [2]. The extrapolated value
is Ae = 1.0976 £0.0004. This result is in excellent agree-
ment with the best estimate of A, = 1.09766079[1]. The
behavior of the ground state energy and its first and sec-
ond derivatives resemble the behavior of the free energy
at a first order phase transition. For A < A. the nu-
clear charge is large enough to bind two electrons, and
this situation remains until the system reaches a critical
point A., which is the maximum value of A for which the
Hamiltonian has a bound state or the minimum charge
necessary to bind two electrons. For A > A, one of the
electrons jumps to infinity with zero kinetic energy. The
fact that this critical charge is below Z = 1 explains why
H~ is a stable negative ion.

For three-electron atoms, similar finite size scaling
calculations were performed using Hylleraas-type func-
tions[3],

Wiikimn (£1, 82, F3) = CA(rt ¥ rhrl, v
6—06(7‘1+7'2)e—ﬁ7‘3xl) (6)

where o and [ are variational parameters, y; is the
spin function with spin angular moment 1/2, C a nor-
malization constant and A the usual three-particle an-
tisymmetrizer operator. For larger atoms, we introduce
a simple effective interaction potential to calculate the
critical nuclear charges[5]. This potential approximates
both the short-range potential of a negative ion core
with Z = N — 1 electrons and the partially screened
long-range Coulomb potential for Z # N — 1. The crit-
ical charge can be found from the following equation
Ei(Z.)=E(N,Z.)— E(N-1,Z;) =0, Ze=1/Ac

(7)
where E7 is the extrapolated ionization energy. Results
for the critical charges[5], for atoms with 2 < N < 18
are in good agreement (mostly within an accuracy of
0.01) with the ab initio multireference configuration in-
teraction calculations [2]

Our computations of critical charges were extended
to atoms up to N=86. Our goal here is to perform
a systematic check of the stability of atomic dianions.
In order to have a stable doubly negatively charged
atomic ion one should require the surcharge, S.(N) =
N—-Z.(N) > 2. We have found that the surcharge never
exceeds two. The maximal surcharge, S.(86) = 1.48, is
found for the closed-shell configuration of element Rn
and can be related to the peak of electron affinity of the
element N = 85. The results of the surcharges clearly
exclude the existence of any stable doubly negatively
charged atomic ions in the gas phase and confirms the



previous speculations that at most, only one electron
can be added to a free atom in the gas phase. The sec-
ond extra electron is not bound by the singly charged
negative ion because of the repulsive potential surround-
ing the isolated negative ion.

Proceeding from the fact of the nonexistence of gas
phase atomic dianions, it is natural to ask under which
conditions, if any, one could have stable atomic dianions.
One possibility is to place these atoms in strong mag-
netic fields. Initial results for the critical magnetic field
B., the minimum field necessary to obtain the surcharge
Se = 2, show that dianions with closed shell configura-
tions such as 072, S=2, Se=2, Te~?, and Po~2 became
stable at about 1 to 2 a.u. (1 au. = 2.35 10° G).
However, dianions with an external s-electron such as
Ne~2, Ar~? and Kr~? do not exist at any magnetic field
strength.

3.2 Stability of small molecules

Molecular systems are challenging from the critical
phenomenon point of view. Several investigators have
performed calculations on the stability of Hf-like sys-
tems in the Born-Oppenheimer approximation. Criti-
cal charge parameters separating the regime of stable,
metastable and unstable binding were calculated using
ab initio methods. However, we have shown[6], using
the finite size scaling approach that this critical charge
is not a critical point (here a critical point, in the lan-
guage of phase transitions, means a point of nonanalyt-
icity in the energy). But, without making use of the
Born-Oppenheimer approximation the H;’-like system
does exhibit a critical point. In order to use finite size
scaling we introduce the following basis set[6]

Noon(2)om(y) o1 (2)
Ln(aj)e_x/2
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where Ny is the normalization coefficient and ¢, () is
given in terms of Laguerre polynomials L,(x). The
coordinates (z,y, z) are expressed in perimetric coordi-
nates[6]. Calculating the matrix elements of the Hamil-
tonian in this basis set gives a sparse, real, and sym-
metric M(N) x M(N) matrix of order N. By system-
atically increasing the order N we obtained the lowest
two eigenvalues at different basis lengths M (N). Using
the finite size scaling equation we can obtain the fixed
point[6]. The crossing points between two different sizes
N and N + 1 give a series for {\(M)}. By systemati-
cally increasing the order N, one can reach the critical
point A.=1.2286. This result shows that for one-electron
molecules, HY is the only stable system. Thus, systems
like HeH*2, He;?’ etc. are all unstable. However, these
systems might be stable in external fields. Exposure to
electric and magnetic fields will lead to a dramatic vari-
ation of both the electronic structure and the dynamic

processes of such systems. As an initial system, we stud-
ied the electronic stability of simple linear molecules in
homogeneous stationary magnetic fields. The critical
field is near 11 x 10°G (4.7 a.u.) where the molecular
potential energy curve begins to have a local minimum.
The distance for bonding is near 1.95 a.u.

In order to apply the finite size scaling method for
larger molecular systems, we have tested several types
of Gaussian basis sets. Research is still underway to
combine this method with the ab initio methods using
Gaussian basis sets.

3.3 Search for stable multiply-charged
anions in the gas phase

Small dianions such as O~2 or CO;2 are very com-
mon in solution and solid-state chemistry, but are un-
stable in the gas phase[7]. This instability is due to the
strong Coulomb repulsion between the excess negative
charges. Thus there is still an open question concerning
the smallest molecule that can bind two or more ex-
cess electrons with both electronic, against electron de-
tachment, and thermodynamic, against fragmentation,
stability[7]. A number of multiply-charged anions with
relatively large size, more than 10 atoms, have been ob-
served in the gas phase. However, experimentally there
are only a few stable small dianions[7], consisting of less
than 10 atoms, including C;%(n = 7 — 9), S205 %, and
most recently found, four penta-atomic dianions, PtX‘I2
and PdX;? (X=Cl and Br)[8]. Extensive theoretical
works have been carried out on small gaseous multiply-
charged anions. We used the finite size scaling method
along with a model potential to investigate the stability
of spherical molecular systems.

Initial results using WKB theory give an estimate of
the lifetimes of the dianions as a function of their size.
We estimate the transition from stable to metastable di-
anions to occur when the radius of the spherical molecule
is about 6A. This finding is consistence with the esti-
mated repulsive Coulomb barrier from the photoelectron
spectra of the citric acid doubly charged anion[9]. By
choosing a convenient basis set for the finite size scaling
procedure, research is underway to calculate the critical
radius of the sphere, R., for stable dianions as a function
of molecular parameters.
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