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Transport properties of arrays of metallic quantum dots are governed by the distance-dependent exchange
coupling between the dots. It is shown that the effective value of the exchange coupling, as measured by the
charging energy per dot, depends monotonically on the size of the array. The effect saturates for hexagonal
arrays of over 75 unit cells. The discussion uses a multistage block renormalization group approach applied
to the Hubbard Hamiltonian. A first-order phase transition occurs upon compression of the lattice, and the
size dependence is qualitatively different for the two phases.

Two-dimensional arrays with tailored electronic properties
are generating much current experimental and theoretical
interest.1-6 This was made possible by the development of
synthetic methods for the preparation of so-called quantum dots
(QDs). There is much current interest in the ability to engineer
nanoscale electronic devices, including quantum computers from
quantum dots. Quantum dots of nearly identical sizes self-
assemble into a planar array (the dots are passivated against
collapse by coating them with organic ligands). For Ag
nanodots, for example, the packing is hexagonal. The lower-
lying electronic states of an isolated dot are discrete being
determined by the confining potential (and therefore the size)
of the dot. Because of their larger size (100-1000 atoms each),
it takes only a relatively low energy to add another electron to
a dot, as revealed by scanning tunneling microscopy.7 This
energy is much lower than the corresponding energy for ordinary
atoms and most molecules. It follows that when dots are close

enough to be exchange coupled, which is the case in an array,
the charging energy can be quite low. We here propose and
implement a computational method that allows the contributions
of such ionic configurations even for extended arrays. The
technical problem is that the Coulombic repulsion between two
electrons (of opposite spins) that occupy the same dot cannot
be described in a one electron approximation. It requires
allowing for correlation of electrons. Most methods that
explicitly include correlation effects scale as some high power
of the number of atoms (here, dots) and are computationally
intractable. For example, a hexagonal array of only 19 dots,
three dots per side, has already 2 891 056 160 low electronic
configurations. So earlier,8 exact computations including charg-
ing energy were limited to a hexagonal array of only seven dots,
two dots per side. Yet current measurements of both static9 and
transport10 properties use arrays of at least 100 dots per side.
The simplest Hamiltonian that includes both the Coulombic (or
charging energy) effects and the exchange coupling is the
Hubbard model.11 This model can be solved exactly for a one-
dimensional chain, but for a two-dimensional array, it is, so
far, analytically intractable. In the absence of a closed solution,
various methods have been developed.12 Renormalization group
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(RG) methods are receiving increasing attention because of their
nonperturbative nature, which allows application to the inter-
mediate-to-strong coupling regime. This letter reports the
applications of a real-space block renormalization group (BRG)
method13-15 on a two-dimensional triangular lattice with
hexagonal blocks as shown in Figure 1. This enables us to
explore the evolution of size effects. Specifically, we demon-
strate how the effective exchange coupling between adjacent
dots is modulated by the size of the array. In other words, we
argue that for finite arrays of quantum dots their response will
be size-dependent, and we determine the scaling.

The essential physics of the collective low-energy electronic
structure of an array of metallic quantum dots has the following
ingredients. Each dot is characterized by the energy,µ, needed
to remove its higher most (valence) electron. Adjacent dots are
exchange-coupled with a strength,t, that decreases exponentially
at larger distances but saturates at very close packing. Transport
processes are facilitated by the coupling and are therefore
measured in the intermediate to strong coupling range,U/t.
When t is large, it can overwhelm the role of the charging
energy,U, and it is then possible to treat the lattice by a tight
binding approximation that can be easily applied to larger-size
arrays. However, over much of the experimentally available
compression range, it is the case thatt < U. Our letter
specifically addresses this intermediate coupling range in which
the correlation of electrons needs to be explicitly accounted for.

The Hubbard Hamiltonian is written as16

ciσ
† (ciσ) creates (annihilates) an electron with spinσ in the

valence (Wannier) orbital of the dot located at sitei; the
corresponding number operator isniσ ) ciσ

† ciσ. The angular
bracket〈...〉 on the first sum in eq 1 indicates that summation is
restricted to nearest-neighbor dots. This model Hamiltonian
allows only one orbital per dot. That orbital can be empty, or
it can accommodate one or two electrons.

The essence of the BRG method is to map the above many-
particle Hamiltonian on a lattice to a new one with fewer degrees
of freedom and with the same low-lying energy levels.17 Then
the mapping is repeated leading to a final Hamiltonian of a
seven-site hexagonal array for which we obtain an exact
numerical solution. The procedure can be summarized into three
steps: First, divide theN-site lattice into appropriatens-site
blocks labeled byp (p ) 1, 2, ..., N/ns), and separate the
HamiltonianH into intrablock partHB and interblockHIB:

whereHp is the Hamiltonian (eq 1) for a given block, and the
interblockp, p′ coupling is defined in eq 3.

The second step is to solveHp exactly for the eigenvalues,
Epi, and eigenfunctions,Φpi (i ) 1, 2, ..., 4ns). Then, the
eigenfunctions ofHB are constructed by direct multiplication
of Φpi. The last step is to treat each block as one site on a new
lattice and the correlations between blocks as hopping interac-
tions.

The original Hilbert space has four states per site. If we are
only concerned with lower-lying states of the system, as when
studying the metal-insulator-transition,18 it is not necessary to
keep all of the states for a block.

To make the new Hamiltonian tractable, the reduction in size
should not be accompanied by a proliferation of new couplings.
Then one can use an iteration procedure to solve the model. To
achieve this, it is necessary to keep only four states in step 2.
Their energies areEi (i ) 1, 2, 3, 4). To avoid proliferation of
additional couplings in the new Hamiltonian, the four states kept
from the block cannot be arbitrarily chosen. Some definite
conditions as discussed in ref 16 must be satisfied. For example,
the states must belong to the same irreducible representation of
C6ν symmetry group of the lattice. In particular, to copy the
intrasite structure of the old Hamiltonian, one must have that
E3 ) E4. Furthermore, particle-hole symmetry of a half-filled
lattice requires thatE1 ) E2. Further restrictions follow from
the need to make extra couplings vanish. Operators in the
truncated basis are denoted by a prime so that the interblock
coupling of eq 2 is

whereν represents the number of couplings between neighbor-
ing blocks. The coupling strength for the border sites of a block
by λ and the renormalization group equation for the coupling
strength is

The other renormalization relations are

K sets the zero of energy with the initial value ofK ) -U/4.
For the half-filled lattice,µ ) U/2. Below, we will compute
the energy gap for adding or removing an electron from a half-
full lattice. The gap is independent of the choice forµ.

The results of the procedure are applied to a finite array of
7n sites in Figure 2. The coupling constants for the initial array
areU ) U0 andt0 ) 1 so that the abscissa spans the intermediate
coupling rangeU0 > t0. The ordinate gives the renormalized
U0 coupling constants,U′/t′, on a logarithmic scale for various
values of the size,n, of the original lattice (n ) 1 being shown
for reference because it is the lineU′/t′ ) U0/t0). There are two
features to note. One is that there is a phase transition at
U0/t0 ) 12.5. This is quite near the recent resultU0/t0 ) 12.07
obtained with exact diagonalization method.19 The other feature
of the results is the one that we want to focus on. It is the
variation of the renormalized coupling constants with size of
the array. The reason for drawing attention to this scaling is as
follows.

The low-lying electronic states of the large array are computed
by an exact diagonalization8 of the Hubbard-like Hamiltonian
of a seven site array, the smallest hexagonal structure, with the
renormalized coupling constants. In the (albeit approximate) real
space group renormalization procedure that we use, the only
way that the size of the original array comes in is in the value
of the renormalized coupling constants. Arrays of all sizes can

Figure 1. Schematic diagram of the triangular lattice with hexagonal
blocks. Only two neighboring blocks,p andp′, are drawn here. The
dotted lines represent the interblock interactions, and solid lines
represent intrablock ones.
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therefore be made to fall on a common universal plot in which
they differ only in the input values of the coupling constants.
To be sure, the actual value of the coupling constantU′/t′
depends onn and quite systematically and dramatically so,
Figure 3, but for given initial coupling constant,U0/t0, there is
no other dependence. In our earlier work, we have argued on
the basis of perturbation theory and also exact computations
that in the regimet > U the effects of the charging energy can
be neglected, particularly so in application to larger arrays.6,9,20

Figure 3 indicates that this should be the case anywhere to the
left of the phase transition, at whichU′/t′ decreases strongly
with increasingn. As discussed below, the low-lying electronic
states are determined by the value ofU′/t′ and therefore, in the
intermediate to strong coupling regime, the importance of the
dot-dot exchange coupling increases with the size of the lattice.
The converse is so in the weak coupling regime.

To emphasize the universal scaling, we discuss the gap,∆,
between the highest occupied and lowest empty state of the
entire array. The closing of this gap is the signature of the Mott
insulator to metal transition. We define the gap as usual by the
energy cost difference between adding or removing one electron
from the half-filled array. This gap is the limiting value ofU′

after a large number of iterations, but it can also be computed
for any finite value of lattice sizen. As is to be expected, such
a plot of the scaled gap,∆n/t′ vs U0 looks remarkably similar
to Figure 2, which showed the scaled coupling constant,U′/t′
vs U0. In particular, such a plot establishes the phase transition
at U0/t0 ) 12.5. Here, we present it as a universal plot, Figure
4, showing the scaled gap vs the scaled coupling constant. The
results for the gap for different values ofn (identified in the
legend) all fall on the same curve. The line going through the
individual points is not a fit but is the results of exact
computations of the gap for a hexagonal array of seven dots,
n ) 1. Larger arrays are renormalized first, and then the results
are put in as discrete points, corresponding to the series of values
of U0 shown in Figures 2 and 3. The kink in the plot is the
memory of the phase transition forn f ∞. The points for
n > 1 are all for the same common set of values ofU0, and
their spread on this plot is another manifestation of the size
effect. Specifically, note how points for larger values ofn
congregate toward the two extremes of the plot.

Figure 4 shows that the value ofU0/t0 for which the transition
occurs depends on the size of the lattice. The value (U0/t0 )
1.5) is quite low forn ) 1 and increases withn saturating at
12.5 forn f ∞. The physics of this increase is that originally
made by Mott21 in identifying the insulator to metal transition.
It is a competition between localization, measured byU, and
delocalization, measured byt. Other things being equal, the
bigger the lattice the more an electron can delocalize. From the
point of view of renormalization, at each iteration, we lump
seven dots into one. Such a bigger dot has a lower charging
energy and furthermore a renormalized dot is more strongly
coupled to its neighbors, compare eq 4. Both effects reduce the
critical value of U0/t0. It should be mentioned here that, to
increase the accuracy, the hexagonal blocks instead of the most-
used triangular ones are utilized. In fact, for triangular blocks,
similar scalings are also found. There is no qualitative difference,
which gives us much confidence upon the consistency of the
results between the RG procedures with difference kind of
blocks. Nanoscale devices are finite arrays of quantum dots.
The results of the renormalization group approach suggest that
such arrays can be usefully treated and discussed by renormal-
izing the effective coupling strength down to the unit cell of
the array. The scaling with size is predicted to vary depending
on the coupling regime. The dot-dot exchange coupling

Figure 2. The renormalized coupling strength,U′/t′, logarithmic scale,
starting from a lattice ofn hexagons of seven dots each vs the initial
value of the charging energyU0/t0 (measured in units of the exchange
coupling t0 so that the renormalization equations begin witht0 ) 1).
The solid line is that for a single hexagon for whichU′/t′ ) U0/t0. The
results show that there is a phase transition atU0/t0 ) 12.5. Note how
the size effect is different at the two sides of the transition and how
the role of the exchange coupling is increasingly important for
compressed (U0/t0 smaller) lattices.

Figure 3. The renormalized coupling strength,U′/t′, logarithmic scale,
for a lattice ofn hexagons of seven dots each vsn for different values
of the charging energyU0 of the full lattice. Note the qualitatively
different trends in the weak and the intermediate coupling regimes.

Figure 4. The gap (difference between the energy needed to add or to
remove an electron from a half-filled lattice) for a lattice ofn hexagons,
logarithmic scale, vs the renormalized coupling strength. The discrete
points are computed for different values ofn and charging energyU0

of the full lattice. The line is the exactly computed value of the gap
for a single hexagon, for whichU′/t′ ) U0/t0. The kink is the remnant
of the phase transition forn f ∞.
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becomes of lesser importance for larger arrays that are weakly
coupled (or have a higher charging energy), and it is of
increasing effective strength for intermediate to strong coupling.
The available computational and experimental evidence6,9,22 is
that the coupling regimes and the resulting phase diagram are
far richer than the single-phase transition that we here discussed.
This is for two reasons. One is that there are additional control
variables (e.g., external electrical field,9 temperature6) that we
have not introduced here. The other is the inherent size
fluctuations of quantum dots22 that can induce a transition to a
domain-localized phase.23 It corresponds to charge transfer
between not-near-neighboring dots and is similar to the super-
exchange coupling in molecular charge transfer. This transition
in which the electronic states are not localized but are neither
extensively spread out seems to have been experimentally
detected.9 We plan to extend the RGB procedure to allow us to
treat the role of disorder. Preliminary results already verify that
this second transition can be seen by renormalization of larger
lattices. Equally, we seek additional experimental signatures of
the variation of the effective coupling strength with the size of
the array. In conclusion, we note that a single quantum dot is
made up of tens to hundreds of atoms (or molecules). Yet its
very low-lying electronic states can be simply and usefully
described by the idea of a quantum confinement. Here, we tried
to do the same for a finite array of quantum dots. A larger
number of hexagons was scaled down to a single hexagon with
an effective coupling. This scaling is achieved by collapsing
seven dots into one at each stage of the iteration.
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