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Abstract

We present a finite-size scaling approach for the calculations of the critical parameters for binding an electron to an

electric dipole field. This approach gives very accurate results for the critical parameters by using a systematic expansion

in a finite basis set. The approach is general and could be used to obtain the critical conditions for stable dipole-bound

dianions.

� 2003 Published by Elsevier Science B.V.

1. Introduction

The finite-size scaling (FSS) approach has been

used for studying the critical behavior of a quan-
tum Hamiltonian Hðk1; . . . ; kkÞ as a function of its

set of parameters fkig [1–4]. In this context, critical

means the values of fkig for which a bound state

energy is non-analytic. In many cases, this critical

point is the point where a bound state energy be-

comes absorbed or degenerate with a continuum

[4].

In order to apply the FSS to quantum me-
chanics problems, let us consider the following

Hamiltonian of the form [5]

H ¼ H0 þ Vk; ð1Þ

where H0 is k-independent and Vk is the k-depen-
dent term. We are interested in the study of how

the different properties of the system change when

the value of k varies. Without loss of generality, we
will assume that the Hamiltonian, Eq. (1), has a

bound state Ek for k > kc which becomes equal to

zero at k ¼ kc.

In this case, the finite size corresponds to the

number of elements in a complete basis set used to

expand the exact wave function of a given Ham-

iltonian. For a given complete orthonormal k-in-
dependent basis set fUng, the ground state
eigenfunction has the following expansion:

Wk ¼
X
n

anðkÞUn; ð2Þ

where n represents the adequate set of quantum
numbers. In order to approximate the different

quantities, we have to truncate the series, Eq. (2) at

order N . Then the Hamiltonian is replaced by
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MðNÞ �MðNÞ matrix, with MðNÞ being the num-

ber of elements in the truncated basis set at order

N . In the FSS representation, we assumed that

there exists a scaling function for the truncated

magnitudes of any given operator O such that

Oh iðNÞ
k 
 Oh ikFOðN jk � kcjmÞ ð3Þ

with a different scaling function FO for each dif-

ferent operator but with a unique scaling exponent

m.
Now, to obtain the critical parameters, we de-

fine the following function [5]:

DOðk;N ;N 0Þ ¼
ln Oh iðNÞ

k = Oh iðN
0Þ

k

� �
ln N 0=Nð Þ : ð4Þ

If one takes the operator O to be the Hamilto-
nian one can obtain the critical kc from the fol-

lowing function [5]:

Cðk;N ;N 0Þ ¼ DHðk;N ;N 0Þ
DHðk;N ;N 0Þ � DoVk=okðk;N ;N 0Þ ;

ð5Þ

which is independent of the values of N and N 0 at

the critical point k ¼ kc. Thus, for different values

of N the curves of C as a function of k will intersect

at successions of pseudo-critical points kðNÞ
c . The

successions of values of kðNÞ
c can be used to obtain

the extrapolated value of kc [4].
This general approach has been successfully

applied to calculate the critical parameters for

two-electron atoms [1], three-electron atoms [2],

simple diatomic molecules [3], stability of three-

body Coulomb systems [6] and crossover phe-

nomena and resonances in quantum systems [7].

In this Letter, we applied the FSS approach to

obtain the critical conditions for stable dipole-
bound anions. Dipole-bound anions are unstable

relative to autodetachment unless the dipole mo-

ment strength exceeds a certain critical value. This

interesting problem has a long history with a

number of methods having been used to obtain the

critical value of the dipole moment [8–13]. Our

goal in this Letter is to present the FSS as an al-

ternative approach to obtain the critical conditions
for stable dipole-bound anions and to provide a

systematic approach to obtain critical parameters

for complex systems such as dipole-bound dia-

nions [14–16].

2. One electron in an electric-dipole field

The Hamiltonian, in atomic units, for an elec-

tron in a two-center Coulomb potential with a

charge þZ at ~rr ¼ 0 and a charge �Z localized

along the z-axis is given by

HðZ;R;~xxÞ ¼ � 1

2
r2 � Z

1

r

 
� 1

j~rr � Rk̂kj

!
; ð6Þ

where R is the distance between the fixed charges

and k̂k is a unitary vector in the z-direction.
After scaling the Hamiltonian has only one free

parameter, the electric dipole moment l ¼ ZR,

HðZ;R;~xxÞ ¼ Z2Hð1; l; Z~xxÞ ¼ 1

R2
Hðl; 1;~xx=RÞ:

ð7Þ

Eq. (7) gives the relation between values of the
energy calculated at fixed R and at fixed Z

l2EðZ ¼ 1;R ¼ lÞ ¼ EðZ ¼ l;R ¼ 1Þ: ð8Þ

Of course the two are equivalent but different

results might appear depending on the approxi-

mate method used. For example, different values

of the critical dipole moment lc, the minimum

dipole moment that can bind an electron, for

Z ¼ 1; 2 and 3 were reported by Ugalde and co-

workers [11] using configuration interaction cal-

culations.

3. Basis-set and matrix elements

In order to apply the finite size scaling method

one has to introduce an appropriate basis set.

Since the potential has a cylindrical symmetry, the

ground state wave function in spherical coordi-
nates can be written as

W0ð~rrÞ ¼ W0ðr; hÞ: ð9Þ
This ground-state wave function could be ex-

panded in a complete spherical basis-set using
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spherical harmonics with m ¼ 0. We use a (non-

orthogonal) Slater basis-set of the form

Un;lð~rrÞ ¼
a2nþ3

ð2nþ 2Þ!

� �1=2
e�ar=2rnY 0

l ðh;/Þ;

n ¼ 0; 1; . . . ; l ¼ 0; . . . ; n; ð10Þ

where a is a variational parameter used to optimize

the numerical results. The normalization of dif-

ferent basis functions is given by

hn; ljn0; l0i ¼ ðnþ n0 þ 2Þ!
ð2nþ 2Þ!ð2n0 þ 2Þ!½ �1=2

dl;l0 ; ð11Þ

and the kinetic energy matrix elements are given

by

hn;ljT jn0;l0i ¼ a2ðnþn0Þ!
2 ð2nþ2Þ!ð2n0 þ2Þ!½ �1=2

lðl
�

þ1Þ

�1

4
ððn�n0Þ2�ðnþ1Þ�ðn0 þ1ÞÞ

	
dl;l0 :

ð12Þ

For the dipole potential matrix elements we obtain

the following expression:

hn; lj 1
r
jn0; l0i ¼ aðnþ n0 þ 1Þ!

ð2nþ 2Þ! ð2n0 þ 2Þ!½ �1=2
dl;l0 : ð13Þ

For the last term in the Hamiltonian, Eq. (1),
we use the well known expansion of the inverse

distance in terms of Legendre polynomials as a

constant times spherical harmonics with m ¼ 0.

1

j~rr � r0
!
j
¼
X1
k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4p

2k þ 1

r
rk<
rkþ1
>

Y 0
k ðh;/Þ;

r< ¼ minðr; r0Þ; r> ¼ maxðr; r0Þ: ð14Þ

After a straightforward calculation, we obtain

where Cðm; zÞ is the incomplete gamma function

[17].

The bound state energy was calculated using the

Ritz-variational method for non-orthogonal basis-

set [18]. The Slater basis-set is truncated allowing a
maximum value of n in Eq. (10) n ¼ 0; . . . ;N , with

the restriction over l ¼ 0; . . . ; n, we obtain the size

of the truncated Hamiltonian matrix to beMðNÞ ¼
ðN þ 1ÞðN þ 2Þ=2.

As expected, the best choice of a depends on the

value of l. For large values of l, the ground-state

is well localized and it is convenient to choose a

large value of a. But near the critical value lc, the
energy is close to the threshold and the wave

function is different zero even for large values of r,
therefore, it is better to choose a small value of a in

order to get accurate results for the critical pa-

rameters. In order to show the importance of the

parameter a and that the scaling relation Eq. (7) is

valid only asymptotically for Ritz-variational so-

lutions, we show in Fig. 1 the plot of E0ð1; lÞ and
the scaled energy E0ðl; 1Þ=l2 calculated with the

basis-set truncated at N ¼ 10, that means the

Hamiltonian is a 66� 66 matrix. Although from

the scaling relation, Eq. (7) both expressions of the

energy must be equal, as in Eq. (8), in a truncated

basis-set calculations they are different as shown in

Fig. 1. Thus, different results might be obtained

depending on the approximation method used in
the calculations.

4. Finite size scaling calculations

At this point by identifying the parameter k in

Eq. (5) by the dipole moment l we are ready to

estimate its critical value. As discussed in the
previous section, to study the critical region, where

n; l
1

j~rr � Rk̂kj

�����
�����n0; l0

* +

¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þ

p Xlþl0

k¼jl�l0 j

ðnþ n0 þ 2Þ!þ ðaRÞ2kþ1Cðnþ n0 � k þ 2; aRÞ � Cðnþ n0 þ k þ 3; aRÞ
ðaRÞkþ1 ð2nþ 2Þ!ð2n0 þ 2Þ!½ �1=2

;

ð15Þ
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the value of the energy is very close to zero (the

threshold value), we used a small value of a. We

did several runs as shown in Fig. 1, and we choose

a ¼ 0:01 for the finite size scaling calculations.
FSS calculations for spherically symmetric po-

tentials show strong parity effects. We also find

parity effect for the dipole potential, then Eq. (5)

was used with N 0 ¼ N þ 2. In Fig. 2 we show the

results of the FSS calculations for even values of

N ¼ 2; . . . ; 28 and in Fig. 3 for odd values of

N ¼ 1; . . . ; 27. Plotting CN as a function of l for

different values of N gives a family of curves with

an intersection at lc. Since the intersection between

two consecutive curves depends on the size of the

basis set N , in Fig. 4 we show the extrapolation
curves for the pseudo-critical dipole moment

lðNÞ
c ða ¼ 0:01Þ as a function of 1=N for even and

odd values of N . The scaling was done with Eðl; 1Þ

Fig. 2. Cða ¼ 0:01; lÞ as a function of l for the ground state

energy of the electric dipole potential for even values of

N ¼ 2; . . . ; 28.

Fig. 3. Cða ¼ 0:01;lÞ as a function of l for the ground state

energy of the electric dipole potential for odd values of

n ¼ 1; . . . ; 27.

Fig. 4. lðNÞ
c ða ¼ 0:01Þ as a function of 1=N for the ground state

energy of the electric dipole potential for even and odd values of

N ¼ 5; . . . ; 28. The extrapolated value lc ’ 0:655 a:u: is shown

by a square.

Fig. 1. Scaled ground-state energy, as defined in Eq. (8) in the

text, as a function of a of the electric dipole potential for a fixed

value of l ¼ 5.
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and the extrapolated value is lðextÞ
c ’ 0:655 a:u:This

value of the critical dipole is in a good agreement

with results obtained using other methods [8–10].

In summary, we have shown that the finite size

scaling method can be used to estimate directly the

critical parameters for binding an electron to an
electric dipole field. Results show the method is

accurate in predicting the critical dipole moment.

The approach is simple and can be generalize to

estimate the critical conditions for stable dipole-

bound dianions. Research is underway in this di-

rection and to estimate the relevant critical expo-

nents.
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