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Abstract

We present a finite-size scaling approach for the calculations of the critical parameters for binding an electron to an
electric dipole field. This approach gives very accurate results for the critical parameters by using a systematic expansion
in a finite basis set. The approach is general and could be used to obtain the critical conditions for stable dipole-bound

dianions.
© 2003 Published by Elsevier Science B.V.

1. Introduction

The finite-size scaling (FSS) approach has been
used for studying the critical behavior of a quan-
tum Hamiltonian J#(4,, ..., /) as a function of its
set of parameters {4} [1-4]. In this context, critical
means the values of {/;} for which a bound state
energy is non-analytic. In many cases, this critical
point is the point where a bound state energy be-
comes absorbed or degenerate with a continuum
[4].

In order to apply the FSS to quantum me-
chanics problems, let us consider the following
Hamiltonian of the form [5]

H=Hy+ V), (1)
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where #, is A-independent and V) is the A-depen-
dent term. We are interested in the study of how
the different properties of the system change when
the value of 4 varies. Without loss of generality, we
will assume that the Hamiltonian, Eq. (1), has a
bound state E; for 4 > A, which becomes equal to
zero at A = .

In this case, the finite size corresponds to the
number of elements in a complete basis set used to
expand the exact wave function of a given Ham-
iltonian. For a given complete orthonormal A-in-
dependent basis set {&,}, the ground state
eigenfunction has the following expansion:

'I//l = Zan (’l)q)m (2)

where n represents the adequate set of quantum
numbers. In order to approximate the different
quantities, we have to truncate the series, Eq. (2) at
order N. Then the Hamiltonian is replaced by
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M(N) x M(N) matrix, with M(N) being the num-
ber of elements in the truncated basis set at order
N. In the FSS representation, we assumed that
there exists a scaling function for the truncated
magnitudes of any given operator ¢ such that

(O ~ (0),Fo(N)2 = 2] (3)

with a different scaling function F, for each dif-
ferent operator but with a unique scaling exponent
V.

Now, to obtain the critical parameters, we de-
fine the following function [5]:

n ((0)" /()"

AN N') = — s

(4)

If one takes the operator ¢ to be the Hamilto-
nian one can obtain the critical A, from the fol-
lowing function [5]:

PAENN) =GN N — Begys G NN

(5)

which is independent of the values of N and N' at
the critical point 2 = /.. Thus, for different values
of N the curves of I" as a function of 4 will intersect
at successions of pseudo-critical points /lEN) . The
successions of values of 2" can be used to obtain
the extrapolated value of /. [4].

This general approach has been successfully
applied to calculate the critical parameters for
two-electron atoms [1], three-electron atoms [2],
simple diatomic molecules [3], stability of three-
body Coulomb systems [6] and crossover phe-
nomena and resonances in quantum systems [7].

In this Letter, we applied the FSS approach to
obtain the critical conditions for stable dipole-
bound anions. Dipole-bound anions are unstable
relative to autodetachment unless the dipole mo-
ment strength exceeds a certain critical value. This
interesting problem has a long history with a
number of methods having been used to obtain the
critical value of the dipole moment [8-13]. Our
goal in this Letter is to present the FSS as an al-
ternative approach to obtain the critical conditions
for stable dipole-bound anions and to provide a
systematic approach to obtain critical parameters

for complex systems such as dipole-bound dia-
nions [14-16].

2. One electron in an electric-dipole field

The Hamiltonian, in atomic units, for an elec-
tron in a two-center Coulomb potential with a
charge +Z at =0 and a charge —Z localized
along the z-axis is given by

1 1 1
H(Z;RX) = -V —Z| —— ~ |, 6
(Z:R:%) = —5 ( |?_Rk) (©)

where R is the distance between the fixed charges
and k is a unitary vector in the z-direction.

After scaling the Hamiltonian has only one free
parameter, the electric dipole moment p = ZR,

1
H(Z;R;%) = 22 (1; w; ZX) = ﬁjf(,u; 1;X/R).
(7)

Eq. (7) gives the relation between values of the
energy calculated at fixed R and at fixed Z

[PE(Z=1LR=p) =E(Z=R=1). (8)

Of course the two are equivalent but different
results might appear depending on the approxi-
mate method used. For example, different values
of the critical dipole moment g, the minimum
dipole moment that can bind an electron, for
Z =1, 2 and 3 were reported by Ugalde and co-
workers [11] using configuration interaction cal-
culations.

3. Basis-set and matrix elements

In order to apply the finite size scaling method
one has to introduce an appropriate basis set.
Since the potential has a cylindrical symmetry, the
ground state wave function in spherical coordi-
nates can be written as

Po(F) = ¥o(r, 0). ©)

This ground-state wave function could be ex-
panded in a complete spherical basis-set using
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spherical harmonics with m = 0. We use a (non-
orthogonal) Slater basis-set of the form

a2n+3 1/2 o 0
i [e= ] R

n=0,1,...; 1=0,...,n, (10)
where « is a variational parameter used to optimize

the numerical results. The normalization of dif-
ferent basis functions is given by

(n+n+2)!
[(2n 4 2)!1(2n’ + 2)1]"/?

(n,n',I'y = oLy, (11)

and the kinetic energy matrix elements are given
by

’oN ocz(n—i—n/)!
T ) = 2 + 2] <I(H1)
1 N2 / S
3= =)= 1) Yo
(12)

For the dipole potential matrix elements we obtain
the following expression:
a(n+n + 1)! 5
[(2n+2)! 2n +2)]2 "
For the last term in the Hamiltonian, Eq. (1),
we use the well known expansion of the inverse

distance in terms of Legendre polynomials as a
constant times spherical harmonics with m = 0.

e k
_ 0 .

rs = max(r,r). (14)

(1|l 1y = (13)
r

ro = mm(r, r);

After a straightforward calculation, we obtain

<n,l n, l'>

1
|F — Rk|

where I'(m,z) is the incomplete gamma function
[17].

The bound state energy was calculated using the
Ritz-variational method for non-orthogonal basis-
set [18]. The Slater basis-set is truncated allowing a
maximum value of » in Eq. (10) n = 0,..., N, with
the restriction over / =0, ..., n, we obtain the size
of the truncated Hamiltonian matrix to be M(N) =
(N+1)(N+2)/2.

As expected, the best choice of o depends on the
value of u. For large values of y, the ground-state
is well localized and it is convenient to choose a
large value of o. But near the critical value yu,, the
energy is close to the threshold and the wave
function is different zero even for large values of r,
therefore, it is better to choose a small value of o in
order to get accurate results for the critical pa-
rameters. In order to show the importance of the
parameter « and that the scaling relation Eq. (7) is
valid only asymptotically for Ritz-variational so-
lutions, we show in Fig. 1 the plot of Ey(1; 1) and
the scaled energy Eo(u;1)/u? calculated with the
basis-set truncated at N = 10, that means the
Hamiltonian is a 66 x 66 matrix. Although from
the scaling relation, Eq. (7) both expressions of the
energy must be equal, as in Eq. (8), in a truncated
basis-set calculations they are different as shown in
Fig. 1. Thus, different results might be obtained
depending on the approximation method used in
the calculations.

4. Finite size scaling calculations

At this point by identifying the parameter 4 in
Eq. (5) by the dipole moment u we are ready to
estimate its critical value. As discussed in the
previous section, to study the critical region, where

I'(n+n+k+3;0R)

I+ 1D2r+1)

k=|1=1]

li[f (n+n +2)! + (R T (n + 1 — k +2;0R) —
(@R) (20 + 2120 +2)'72

)

(15)
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Fig. 1. Scaled ground-state energy, as defined in Eq. (8) in the
text, as a function of o of the electric dipole potential for a fixed
value of = 5.

the value of the energy is very close to zero (the
threshold value), we used a small value of «. We
did several runs as shown in Fig. 1, and we choose
o = 0.01 for the finite size scaling calculations.
FSS calculations for spherically symmetric po-
tentials show strong parity effects. We also find
parity effect for the dipole potential, then Eq. (5)
was used with N’ = N 4+ 2. In Fig. 2 we show the

Fig. 2. I'( = 0.01; u) as a function of u for the ground state
energy of the electric dipole potential for even values of

Fig. 3. I'(e = 0.01; u) as a function of u for the ground state
energy of the electric dipole potential for odd values of

results of the FSS calculations for even values of
N=2,...,28 and in Fig. 3 for odd values of
N =1,...,27. Plotting I'y as a function of u for
different values of N gives a family of curves with
an intersection at .. Since the intersection between
two consecutive curves depends on the size of the
basis set N, in Fig. 4 we show the extrapolation
curves for the pseudo-critical dipole moment
M (e = 0.01) as a function of 1/N for even and
odd values of N. The scaling was done with E(u; 1)

T | T | T | T
0.741— A

s
- //' —
0.721— N even // ]
- ///( -

(N)
u, o 07— ‘/ —
B (( e — —————— —_<
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Fig. 4. u™ (o = 0.01) as a function of 1/N for the ground state
energy of the electric dipole potential for even and odd values of
N =5,...,28. The extrapolated value y, ~ 0.655 a.u. is shown
by a square.
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and the extrapolated value is 4" ~ 0.655 a.u. This
value of the critical dipole is in a good agreement
with results obtained using other methods [8-10].

In summary, we have shown that the finite size
scaling method can be used to estimate directly the
critical parameters for binding an electron to an
electric dipole field. Results show the method is
accurate in predicting the critical dipole moment.
The approach is simple and can be generalize to
estimate the critical conditions for stable dipole-
bound dianions. Research is underway in this di-
rection and to estimate the relevant critical expo-
nents.
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