
PHYSICAL REVIEW A 67, 062321 ~2003!
Tuning the entanglement for a one-dimensional magnetic system
with anisotropic coupling and impurities
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~Received 7 March 2003; published 30 June 2003!

We study a set of localized spins coupled through exchange interaction and subject to an external magnetic
field. We demonstrate, for such a class of one-dimensional magnetic systems, that entanglement can be con-
trolled and tuned by varying the anisotropy parameter in the Hamiltonian and by introducing impurities into the
systems. In particular, for certain parameters, the entanglement is zero up to a critical pointlc , where a
quantum phase transition occurs, and is different from zero abovelc .
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Entanglement is a quantum-mechanical property that
no classical analog@1–4#. A pure state of a pair of quantum
systems is called entangled if it is unfactorizable, for e
ample, the singlet state of two-spin-1

2 particles, 1/A2 (u↑↓&
2u↓↑&). A mixed state is entangled if it cannot be repr
sented as a mixture of factorizable pure states@5–8#. Since in
the seminal work of Einstein, Podolsky, and Rosen@9#, there
has been a quest for generating entanglement between q
tum particles@2,10#. Investigation of quantum entangleme
is currently a very active area and has been studied inten
due to its potential applications in quantum communicatio
and information processing@2# such as quantum teleportatio
@11,12#, superdense coding@13#, quantum key distribution
@14#, telecloning@15#, and decoherence in quantum comp
ers @16,17#.

Entanglement is the resource that enables quantum c
putation and quantum communication@18,19# and might lead
to novel methods of measurement. Considerable effort
been devoted to the study of different sources of errors
quantum computing, mainly dealing with their effect on t
quantum gates@20#. Therefore, it is of great interest to b
able to tune it by varying parameters in the system. T
feasibility of manipulating locally the exchange interacti
@21# or the magnetic field@22# has been used in the literatu
to discuss different issues on the actual implementation
quantum computation@23#. Here, we demonstrate that th
entanglement can be tuned in a class of one-dimensi
magnetic systems by varying the anisotropy parameter
by introducing impurities into the systems. The Ising co
pling is of great experimental importance, as it provides
basic quantum logic gate for many proposed implemen
tions of quantum computing@20#. Although, naturally, great-
est interest attaches to three-dimenstional lattices, the p
erties of one-dimensional magnetic systems with anistro
coupling and impurities are of both experimental and th
retical significance@24–27#.

We consider a set of localized spin-1
2 particles coupled

through exchange interactionJ and subject to an externa
magnetic field of strengthh. In the presence of impurities
the one-dimensional Hamiltonian is given by
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whereJi ,i 115J for all sites except the sites nearest to t
impurity site located ati m , Ji m ,i m115Ji m21,i m

5J(11a), a

measures the strength of the impurity which is located at
i m , sa are the Pauli matrices (a5x,y,z), andN is the num-
ber of sites. We assume periodic boundary conditions.
this model, it is convenient to define a dimensionless c
pling constantl5J/2h. g is an anisotropy parameter, fo
g51 Eq.~1! reduces to the Ising model, whereas forg50 it
is the XY model. For all the interval 0,g<1 the models
belong to the Ising universality class, forN5` they undergo
a quantum phase transition at the critical valuelc51, where
the correlation length@28# j diverges asj.ul2lcu21.

For the pure case,a50 andJi , j5J, Osterlohet al. @28#
examined the entanglement between two spins, of positii
andj, in the chain as the system goes through quantum ph
transition. They demonstrate that entanglement shows s
ing behavior in the vicinity of the transition point. Moreove
they verified the universality in the critical region of th
entanglement by considering the properties of the family
models for 0,g<1.

All the information needed for quantifying the entangl
ment in this case is contained in the reduced density ma
r( i , j ). Wootters@7# has shown, for a pair of binary qubits
that the concurrenceC, which goes from 0 to 1, can be take
as a measure of entanglement. The concurrence betw
sitesi and j is defined as@7#

C~r!5max$0,e12e22e32e4%, ~2!

where thee i ’s are the eigenvalues of the Hermitian matr
R[(Arr̃Ar)1/2. The spin-flipped stater̃, for a general state
r of two qubits, is given by

r̃5~sy^ sy!r* ~sy^ sy!, ~3!
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where ther* is the complex conjugate ofr and is taken in
the standard basis@7#, which for a pair of spin–12 particles is
$u↑↑&,u↑↓&,u↓↑&,u↓↓&%.

The structure of the reduced density matrix follows fro
the symmetry properties of the Hamiltonian. However,
this case the concurrenceC( i , j ) depends oni , j , andi m and
not only on the differenceu i 2 j u as for the pure case. Th
matrix elements of the reduced density matrix needed
calculating the concurrenceC( i , j ) are obtained numerically
using the formalism developed by Liebet al. @29#.

First, we examine the change of the entanglement for
Ising model (g51) for different values of the impurity
strengtha as the parameterl, which induces the quantum
phase transitions, varies. Figure 1 shows the change o
nearest-neighbor concurrenceC(1,2) with the impurity lo-
cated ati m53 as a function ofl for different values ofa.

FIG. 1. The nearest-neighbor concurrenceC(1,2) for different
values of the anisotropy parameterg51,0.7,0.3,0 with an impurity
located ati m53 as a function of the reduced coupling constanl
5J/2h, whereJ is the exchange interaction constant andh is the
strength of the external magnetic field. The curves correspon
different values of the impurity strengtha50,0.5,1,1.5 with system
sizeN5201.

FIG. 2. The spin-spin correlation functions and the eigenval
e i , see Eq.~2! in the text, for theXY model (g50) and the Ising
model (g51) as a function ofl for a50.
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One can see clearly in Fig. 1 that the entanglement can
tuned down by increasing the value of the parametera. For
a51.5, the concurrence approaches zero above the cri
point lc51. The system size was takenN5201 based on
finite-size scaling analysis. Analysis of all the results for t
pure case (a50) for different system size ranging fromN
541 up toN5401 collapse onto a single curve@28#. Thus,
all key ingredients of the finite-size scaling are present in
concurrence. This holds true for the impurity problem
long as we consider the behavior of the value ofl for which
the derivative of the concurrence attains its minimum va
versus the system size. As expected there is no divergenc
the derivativedC(1,2)/dl for finite N, but there are clear
anomalies. By examining ln(lc2lm) versus lnN for a
50.1, one obtains that the minimumlm scales aslm;lc
1N20.93 and dC(1,2)/dl diverges logarithmically with in-
creasing system size. For a system with the impurity loca
at larger distancei m510 and the samea50.1, lm;lc
1N20.85, showing that the scaling behavior depends on

to

s

FIG. 3. The next-nearest-neighbor concurrenceC( i ,i 12) for
both the Ising model and theXY model fora50.3. The different
curves show the location of the pair relative to the location of
impurity, which is located at positioni m .

FIG. 4. The next-nearest-neighbor concurrenceC( i m21,i m

11) as a function ofl for different values ofa for the Ising model
and theXY model.
1-2
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distance between the impurity and the pair of sites un
consideration.

Figure 1 also shows the variation of nearest-neighbor c
currence as the anisotropy parameterg decreases. For th
XY model (g50), the concurrence fora50 is zero up to
the critical pointlc51 and different from zero abovelc
51. However, asa increases the concurrence develops
steps and the results strongly depend on the system size
small system size, such asN5101, the steps and oscillation
are large but become smaller as the system size increas
shown in Fig. 1 forN5201. But they disappear in the lim
N→`.

To examine the different behavior of the concurrence
the Ising model and theXY model, we took the system siz
to be infinite,N→`, where the two models have exact s
lutions. However, the behavior is the same for a finite sys
with N5201. Figure 2 shows the behavior of the differe
spin-spin correlation functions and the eigenvaluese i as l
varies for the pure casea50. For theXY model, all the
spin-spin correlation functions and the eigenvalues in Eq.~2!
are zero up to the critical point and different above the cr
cal pointlc51. For the Ising model, the spin-spin correl
tion functions and the four eigenvalues are different fro
zero for all values ofl as shown in Fig. 2. However, for th
Ising model, the two leading eigenvalues,e1 and e3 ap-
proaches each other abovelc51 and the concurrence ap
proaches zero as shown in Fig. 1.

Up to now we examined the nearest-neighbor concurre
C(1,2) with an impurity located ati m53. Of course, for
larger values ofi m the concurrence gets larger and a
proaches its maximum value, the pure case witha50, at
large valuesi m@1. It is worth mentioning that for the Ising
model, the range of entanglement@30#, which is the maxi-
mum distance between spins at which the concurrenc
different from zero, vanishes unless the two sites are at m
next-nearest neighbors. ForgÞ1, the range of entanglemen
is not universal and tends to infinity asg tends to zero.

To examine the effect of the location of the impurity o
the next-nearest-neighbor concurrenceC( i ,i 12), we show
in Fig. 3 the results fori 5 i m21, i 5 i m , i 5 i m12, and i
5im110 for both models, the Ising and theXY for impurity
strengtha50.3. For g51, the next-nearest-neighbor co
currence tunned down as the pair (i ,i 12) is farther away
from the location of the impurity. However, forg50 the
C( i ,i 12) is zero up to the criticallc and it differs from zero
for l.lc as shown in Fig. 3.

A similar analysis can be carried out for the next neare
neighbor concurrenceC( i ,i 12) as the impurity strengtha
varies. Figure 4 shows the next-nearest-neighbor con
rence as a function ofl when the impurity is located be
tween the two sites,C( i m21,i m11). For the Ising model,
the maximum value of the concurrence increase as the v
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of a increases. However, the concurrence is zero above
critical point lc51 as shown in the left side of Fig. 4. Fo
the XY model, the picture is different. The concurren
C( i m21,i m11) is zero up to the critical point and is differ
ent from zero above it. Again the appearance of small step
related to the size of the system, they disappear in the infi
size limit.

To address the question what happens to the other spin
the system, we show in Fig. 5 the nearest-neighbor con
renceC( i ,i 11) for all the sites on the chain for a givena
50.9 andl50.75. For theXY model with one impurity
located ati m525, the entanglement is different from ze
only in a small region where the pure system has identic
zero entanglement between pairs of nearest- and n
nearest-neighbors spins. This fact allows for an almost lo
control of the entanglement: only few sites become
tangled with their nearest and next-nearest neighbors
shown in Fig. 5. For the Ising model, the concurrence~and
hence the entanglement! is rather insensitive to smal
changes in the exchange interaction. The entanglement
tween nearest neighbors tends to be reduced in the pres
of impurity, while the entanglement between next-neare
neighbors increases.

In summary, we have shown how entanglement can
tunned by changing the anisotropy parameterg by going
from the Ising model (g51) to theXY model (g50). For
the XY model, the entanglement is zero up to the critic
point lc , and is different from zero abovelc . Moreover, by
introducing impurities, the entanglement can be tunned do
as the strength of the impuritya increases.

We would like to acknowledge the financial support of t
Office of Naval Research Contract No.~N00014-97-2-0192!.

FIG. 5. The nearest-neighbor concurrenceC( i ,i 11) for all the
sites on the chain.N5101, a50.9, l50.75, and the impurity is
located ati m525.
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