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Tuning the entanglement for a one-dimensional magnetic system
with anisotropic coupling and impurities
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We study a set of localized spins coupled through exchange interaction and subject to an external magnetic
field. We demonstrate, for such a class of one-dimensional magnetic systems, that entanglement can be con-
trolled and tuned by varying the anisotropy parameter in the Hamiltonian and by introducing impurities into the
systems. In particular, for certain parameters, the entanglement is zero up to a criticak poinhere a
guantum phase transition occurs, and is different from zero abgve
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Entanglement is a quantum-mechanical property that has 1+7y N 1—vy N
no classical analofl—4]. A pure state of a pair of quantum H=— > > Jii+10707 1~ 5 > Jiivr0iol,y
i=1 =1

systems is called entangled if it is unfactorizable, for ex-
ample, the singlet state of two-spinparticles, 1A/§(|Tl> N
—[17)). A mixed state is entangled if it cannot be repre- —E ho!, (1)
sented as a mixture of factorizable pure st@fes8]. Since in =1
the seminal work of Einstein, Podolsky, and Ro§ef there . .
has been a quest for generating entanglement between qué’?ﬂher?‘]‘v‘ﬂ:‘J for aII_5|tes except the sites nearest to the
: S Impurity site located aity,, J; ;i +1=J; —1; =J(1+a), a
tum particleg2,10]. Investigation of quantum entanglement metm®L o Sim Ty )
is currently a very active area and has been studied intensef})$asUres the strength of the impurity which is located at site
due to its potential applications in quantum communicationdm: " are the Pauli matricesa=x,y,z), andN is the num-
and information processiri@] such as quantum teleportation er of Sites. We assume per|od|c_b0unda_1ry condmons. For
[11,17, superdense codinfl3], quantum key distribution th_|s model, it is convenient to defl_ne a dimensionless cou-
[14], telecloning[15], and decoherence in qguantum comput—pllng constant =J/2h. y is an anisotropy parameter, for
v=1 Eqg.(1) reduces to the Ising model, whereas fo6r 0 it
ers[16,17]. . .
Entanglement is the resource that enables quantum co IS the XY model. For_all the interval & y=<1 the models
. S . nB)elong to the Ising universality class, fidr= oo they undergo
putation and quantum communicatis, 19 end might lead a quantum phase transition at the critical valye=1, where
to novel methods of measurement. Considerable effort haﬂ;]e correlation lengthi28] ¢ diverges ast=|\ —\| L.
been devoted to'the study of dlf.feren'g sources of errors on" .. the pure casey=0 andJ; ;=J, Osterlohet al. [28]
quantum computing, mainly dealing with their effect on the oy amined the entanglement between two spins, of position
quantum gate$20]. Therefore, it is of great interest to be gnq; in the chain as the system goes through quantum phase
able to tune it by varying parameters in the system. Theransition. They demonstrate that entanglement shows scal-
feasibility of manipulating locally the exchange interaction jng pehavior in the vicinity of the transition point. Moreover,
[21] or the magnetic field22] has been used in the literature they verified the universality in the critical region of the
to discuss different issues on the actual implementation Oéntanglement by considering the properties of the family of
quantum computatioh23]. Here, we demonstrate that the models for 6< y=<1.
entanglement can be tuned in a class of one-dimensional All the information needed for quantifying the entangle-
magnetic systems by varying the anisotropy parameter anghent in this case is contained in the reduced density matrix
by introducing impurities into the systems. The Ising cou-p(i,j). Wootters[7] has shown, for a pair of binary qubits,
pling is of great experimental importance, as it provides thghat the concurrenc€, which goes from 0 to 1, can be taken
basic quantum logic gate for many proposed implementa@s a measure of entanglement. The concurrence between
tions of quantum computing20]. Although, naturally, great- ~ Sitesi andj is defined ag7]
est interest attaches to three-dimenstional lattices, the prop-

erties of one-dimensional magnetic systems with anistropic C(p)=max0,e;— €~ €3~ €4}, 2
coupling and impurities are of both experimental and theo- ) - )
retical significancd24—27. where thee;’s are the eigenvalues of the Hermitian matrix

We consider a set of localized spjnparticles coupled R=(\pp\p)Y2 The spin-flipped statp, for a general state
through exchange interactiah and subject to an external p Of two qubits, is given by
magnetic field of strength. In the presence of impurities, 5
the one-dimensional Hamiltonian is given by p=(oy®0y)p*(oy®@0y), 3
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FIG. 1. The nearest-neighbor concurreriggl,2) for different FIG. 3. The next-nearest-neighbor concurreiig,i+2) for

values of the anisotropy parameter1,0.7,0.3,0 with an impurity 41 the Ising model and théY model fora=0.3. The different
located ati,=3 as a function of the reduced coupling constnt  ¢,es show the location of the pair relative to the location of the
=J/2h, whereJ is the exchange interaction constant dni the impurity, which is located at position, .

strength of the external magnetic field. The curves correspond to ’

different values of the impurity strength=0,0.5,1,1.5 with system . .
sizeN=201. purty g y One can see clearly in Fig. 1 that the entanglement can be

tuned down by increasing the value of the parameteFor
a=1.5, the concurrence approaches zero above the critical
point A\=1. The system size was takéi=201 based on
finite-size scaling analysis. Analysis of all the results for the
pure case ¢=0) for different system size ranging froid

=41 up toN=401 collapse onto a single cury28]. Thus,

all key ingredients of the finite-size scaling are present in the
concurrence. This holds true for the impurity problem as
long as we consider the behavior of the value.dbr which

: S . : the derivative of the concurrence attains its minimum value
calculating the concurrendg(i,|) are obtained numerically versus the system size. As expected there is no divergence of

using the formalls_m developed by Liett al. [29). the derivativedC(1,2)/d\ for finite N, but there are clear
First, we examine the change of the entanglement for the

Ising model (y=1) for different values of the impurity anomalies. By examining In(-Ay) versus IMN for «

Lo =0.1, one obtains that the minimuivy, scales as\,~ A\,
strengtha as the parameter, which induces the quantum _ \ 093 5 dC(1,2)/d\ diverges logarithmically with in-
phase transitions, varies. Figure 1 shows the change of the

nearest-neighbor concurren@1,2) with the impurity lo- Creasing system size. For a system with the impurity located

S . . at larger distancd,,=10 and the samexr=0.1, A\~
cated ati,,=3 as a function of\ for different values ofx. +N-985 showing that the scaling behavior depends on the

where thep* is the complex conjugate @f and is taken in
the standard basfg], which for a pair of spin particles is
{1 T

The structure of the reduced density matrix follows from
the symmetry properties of the Hamiltonian. However, for
this case the concurren€Xi,j) depends om, j, andi,, and
not only on the differencéi —j| as for the pure case. The
matrix elements of the reduced density matrix needed fo
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FIG. 2. The spin-spin correlation functions and the eigenvalues FIG. 4. The next-nearest-neighbor concurrerCéi,—1,i,
€, see Eq(2) in the text, for theXY model (y=0) and the Ising +1) as a function ol for different values ofx for the Ising model
model (y=1) as a function o\ for a=0. and theXY model.
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distance between the impurity and the pair of sites under T T T T T T T T T
consideration. — XY model
Figure 1 also shows the variation of nearest-neighbor con- oo ﬂ 7]
currence as the anisotropy paramejedecreases. For the
XY model (y=0), the concurrence for=0 is zero up to
the critical pointA,=1 and different from zero above, o4
=1. However, ase increases the concurrence develops atx |
steps and the results strongly depend on the system size. F& o3k - .
small system size, such k=101, the steps and oscillations e, T T S
are large but become smaller as the system size increases o2f- ER -
shown in Fig. 1 forN=201. But they disappear in the limit - .

0.5 =1

N—co. 01~ -

To examine the different behavior of the concurrence for [ . | . | . | ]
the Ising model and thXY model, we took the system size % 20 40 60 80 100
to be infinite, N— o, where the two models have exact so- i

lutions. However, the behavior is the same for a finite system g5 5 The nearest-neighbor concurrei®@,i +1) for all the
with N=201. Figure 2 shows the behavior of the differentgjieg on the chainN=101, a=0.9, A=0.75, and the impurity is
spin-spin correlation functions and the eigenvalégss A located aii,,= 25.

varies for the pure case=0. For theXY model, all the

spin-spin correlation functions and the eigenvalues in(BX.  of « increases. However, the concurrence is zero above the
are zero up to the critical point and different above the criti-itical pointA.=1 as shown in the left side of Fig. 4. For

cal pointA.=1. For the Ising model, the spin-spin corréla- the Xy model, the picture is different. The concurrence
tion functions and the four eigenvalues are different fromc(im_ 1i,+1) is zero up to the critical point and is differ-
zero for all values oh as shown in Fig. 2. However, for the ent from zero above it. Again the appearance of small steps is
Ising model, the two leading eigenvalues, and €3 ap-  related to the size of the system, they disappear in the infinite
proaches each other abo¥g=1 and the concurrence ap- sjze limit.

proaches zero as shown in Fig. 1. To address the question what happens to the other spins in
Up to now we examined the nearest-neighbor concurrencgye system, we show in Fig. 5 the nearest-neighbor concur-
C(1,2) with an impurity located at,=3. Of course, for yenceC(i,i+1) for all the sites on the chain for a given
larger values ofip, the concurrence gets larger and ap-=0.9 and\=0.75. For theXY model with one impurity
proaches its maximum value, the pure case with0, at  |gcated ati,,=25, the entanglement is different from zero
large values,>1. It is worth mentioning that for the Ising only in a small region where the pure system has identically
model, the range of entangleme80], which is the maxi-  zero entanglement between pairs of nearest- and next-
mum distance between spins at which the concurrence igearest-neighbors spins. This fact allows for an almost local
different from zero, vanishes unless the two sites are at mo%ntrcﬂ of the entang|ement: 0n|y few sites become en-
next-nearest neighbors. Fer~ 1, the range of entanglement tangled with their nearest and next-nearest neighbors as
is not universal and tends to infinity gstends to zero. shown in Fig. 5. For the Ising model, the concurref@ed
To examine the effect of the location of the impurity on hence the entangleménis rather insensitive to small
the next-nearest-neighbor concurrer€@,i+2), we show changes in the exchange interaction. The entanglement be-
in Fig. 3 the results foi =i,—1,i=iy, i=i,+2, andi  tween nearest neighbors tends to be reduced in the presence
=in*10 for both models, the Ising and th€Y for impurity  of impurity, while the entanglement between next-nearest-
strengtha=0.3. Fory=1, the next-nearest-neighbor con- neighbors increases.
currence tunned down as the pairi{-2) is farther away In summary, we have shown how entanglement can be
from the location of the impurity. However, foy=0 the tunned by changing the anisotropy paramejeby going
C(i,i+2) is zero up to the critical; and it differs from zero  from the Ising model ¥=1) to theXY model (y=0). For
for N>\, as shown in Fig. 3. the XY model, the entanglement is zero up to the critical
A similar analysis can be carried out for the next nearestpoint\ ., and is different from zero above.. Moreover, by
neighbor concurrenc€(i,i+2) as the impurity strengter  introducing impurities, the entanglement can be tunned down
varies. Figure 4 shows the next-nearest-neighbor concugs the strength of the impurity increases.
rence as a function ok when the impurity is located be-
tween the two sitesC(i,,—1,i,+1). For the Ising model, We would like to acknowledge the financial support of the
the maximum value of the concurrence increase as the valu@ffice of Naval Research Contract NONO0014-97-2-019R
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