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Abstract

We examined the characteristics of a metal—insulator transition on a two-dimensional nonbipatrtite lattice when both disorders
and electron interactions are present. Using a real-space renormalization group method and finite-size scaling analysis we have
found that after the disordered system transits from the insulating state to the metal one, it can reenter an insulating state if there
is a further increase in the electron—electron interactions.
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Ever since the discovery of the metallic properties sition, namely the metal—insulator transition (MIT),
on effectively 2D electron systems in metal-oxide— with carrier density as the tuning parameter. But there
semiconductor field-effect transistor (MOSEFs) [1], are also other viewpoints, supported by some exper-
there have appeared a spate of discussions and invesiments [3,4], maintaining that there is no 2D MIT
tigations over its underlying physical mechanism [2]. at zero temperature and the metallic behavior is at-
In experiments, as the carrier densityis increased tributed to the conventional, though nontrivial, elec-
above a critical density., the conductivityo,. de- tron transport. For example, two of these models are
creases upon lowering the temperat@rdtypical of based upon electron scattering by impurities [5] and
an insulator) and as < n., o4, increases upon low- the effect of temperature dependent screening [6,7].
eringT (typical of a conductor). Because the data can Thus there is, as yet, no general consensus about the
be scaled onto two curves, one for the metal and the origin of the metallic behavior and it remains a con-
other for the insulator, this phenomenon is seen as ev-troversial topic.
idence for the occurrence of a quantum-phase tran-  According to the conventional one-parameter scal-

ing theory of noninteracting electrons [8], any amount
of disorders will localize the 2D electronic state and
~* Corresponding author. make it insulating. Moreover, the metallic state has
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concentrations. Thus it is expected that the combining the other is the bond disorder related to the hopping
effect of both electron—electron interactions and the terms. Here we will only consider the former one. The
disorders are very likely to play an important role. In Hamiltonian for Anderson—Hubbard model in our case
fact, the role of electron—electron interactions in dis- can be written as,

ordered systems was recognized long ago by Finkel- .

stein [9] and Castellanic [10], who treated the disor- H = —1 Z [eicjo +H.c]

der in lowest order, where all interactions contributed {i.jo
to the leading logarithmic behavior were summed. Re- + UZ - 1 o }
cently, Siand Varma [11] calculated a correction to the " Y72

compressibility of a disordered system by considering

the ring diagrams. Because of the perturbation nature - Zé‘i(nm +niy), (1)

of these methods, they cannot deal with the regime i

with the disorder and the interactions having compara- where ¢ is the nearest-neighbor hopping (exchange
ble magnitudes. Hence most recent work has used ex-coupling) term,U is the local repulsive interaction
act diagonalization [12,13] and Monte Carlo methods and . is the chemical potentlalc+ (ciy) creates
[14] in the investigations. As we know, both methods (annihilates) an electron with spim in the valence
suffer from intensive calculations and it is very dif- orbital of the dot located at site the corresponding
ficult to apply them to large-size systems. To resolve number operator s, = C,-T;Cia- (---) on the first
this difficulty, we resort to the real-space block renor- sum in Eq. (1) indicates that summation is restricted
malization group (BRG) method [19]. Although this to nearest-neighbor dots. H.c. denotes the Hermitian
method has uncontrollable approximations, it can give conjugate. Note that this model Hamiltonian allows
us many qualitative and insightful results and show only one orbital per dot. That orbital can be empty or
us the direction for further more accurate work. The accommodate one or two electrofsis the repulsion
model we use is the Anderson—Hubbard model, which of two electrons (of opposite spins) placed in the same
is the most simple one to include the essential ingredi- dot. ¢; measures the fluctuation of the site energies. It

ents for our purpose, i.e., the disorder and the electron—is assumed that; follows a Gaussian distribution with
electron interactions. We will use this model to study the width to beW, i.e.,
the charge gap and the electron localization and delo-

calization on a triangular half-filled lattice as shownin  p(g;) = ig—(si—@z/(z""), (2)
Fig.1. Normally there are two kinds of disorders. One V2w

is the site disorder related to the site fluctuations and in which the bar overs means its average value.
Initially, we usez = 0.

The essence of the BRG method is to map the
/\/ \ above many-particle Hamiltonian on a lattice to a new
one with fewer degrees of freedom and with the same
\ / low-lying energy levels [18]. Then the mapping is
repeated leading to a final Hamiltonian of a seven-
S5 4 site hexagonal array for which we obtain an exact
17 numerical solution.

/\)/\ When there is no disorder, namely = 0, the
procedure can be summarized into three steps: first

6« 7 »3 divide theN -site lattice into appropriate-site blocks

\5‘1 > / labeled byp (p =1,2,..., N/ns) and separate the

4 Hamiltonian H into a intrablock partHg and an

Fig. 1. Schematic diagram of the triangular lattice with hexagonal interblock Hg,

blocks. Only two neighboring blocks and p’ are drawn here. The

dotted lines represent the interblock interactions and the solid lines H=Hp+ Hp = Z H)p + Z Vo.p's 3)
the intrablock couplings. P (p.r")
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where H, is the Hamiltonian (1) for a given block
and the interbloclp, p’ coupling is defined in Eq. (4)
below.

The second step is to solvE, exactly for the
eigenvalue€ ,, and eigenfunction®,; (i =1,2,...,
4"). Then the eigenfunctions dflz are constructed
by direct multiplication of®,;. The last step is to
treat each block as one site on a new lattice and the
correlations between blocks as hopping interactions.

The original Hilbert space has four states per site.
If we are only concerned with lower lying states of the
system as when studying the metal—-insulator transition
[17], it is not necessary to keep all the states for a
block.

To make the new Hamiltonian tractable, the reduc-
tion in size should not be accompanied by a prolifer-
ation of new couplings. Then one can use an iteration
procedure to solve the model. To achieve this, itis nec-

267
average. In details, let us useand g to be the block
indices. Then for one block, we can have

U® = E + E — 2E%,

o _ o o
e =E; — EY.

)
8
After the renormalization, the new energie$ do
not obey a Gaussian distribution. In order to iterate

the RG, as in Ref. [19], we adopt the following
procedures:

(1) &% is forced back into a Gaussian distribution
with the new width

W' = (e2)? — (7). )

The new Gaussian is not centered at zero since there
will be a constant shift due to the electron interactions.
But we can still take it to be zero by formally

essary to keep only 4 states in step 2. Their energiesintroducing the chemical potential.

arek; (i =1, 2, 3,4).Inorder to avoid proliferation of
additional couplings in the new Hamiltonian, the four
states kept from the block cannot be arbitrarily cho-
sen. Some definite conditions as discussed in Ref. [15]

(2) U* is forced back to be constant:
U =U-. (10)

(3) To get the renormalized hopping term, we will

must be satisfied. For example, the states must belonghave to consider all the possible non-zero average

to the same irreducible representatiorGgh symme-
try group of the lattice. In particular, in order to copy
the intrasite structure of the old Hamiltoniaity = E4
is a necessary condition. Furthermore, particle—hole
symmetry of a half-filled lattice requires thBf{ = E».
Further restrictions follow from the need to make ex-
tra couplings vanish. Operators in the truncated basis
are denoted by a prime so that the interblock coupling
of EqQ. (2) is
Vi = VA2t Z c;; c;,a, (4)

o
wherev represents the number of couplings between
neighboring blocks. The coupling strength for the
border sites of a block by and the renormalization
group equation for the coupling strength is

' = vt (5)
The other renormalization relation is
U =2(E1— E»). (6)

Once we introduce the disorders, because there
is no exact particle—hole symmetry any more, the
parameters, U andeg; have to be renormalized on

values of the coupling between the block states. For
two neighboring blocks, there are 4 possibilities:

1P =110 " [efi cpio]|1P07), (11)
(ai,Bj).o

5f =it 10| Y [ehpcmio] 1PV (12)
(ai,Bj).0

P =11 Y [efiacio]|14POF) (13)
(ai,Bj),o

i =tV YT [edocnial[14P10) (4)
(ai,Bj),0

We also force the distribution af? into a Gaussian
with mean

(15)
and width

_ (B2 a2
h=")"— ")
In principle, to use more blocks for averaging is

always desirable. In our work, we use 7 unit blocks,
which themselves form a hexagonal block.

(16)
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Fig. 2. Influence of the disorder (measure Wy¢) over the charge 1.0-
gap Ag/t dependence upon the electron—electron interactions ’
U/t). /
84) /
For clean systems, we have shown in our former 0-5',
work [15] the existence of Mott MIT at/ = 12.5
by investigating the charge gap,, which can be
expresses as the limiting value of the renormalized 0.03 2 10 150
. Ukt
Ag = lim U'™, a7)
n—oo

Fig. 3. Variation of the inverse participation rate (IFH‘Q‘,‘)) against
For disordered systems, as we know from the orthodox the electron—electron interactions for different disorders with (a)

scaling theory [8], the noninteracting electrons will W/z =1 (solid line), 3 (dashed line) and (by/s = 5 (solid line),
be localized, which leads to another kind of insulator, 10 (dashed line).

namely the Anderson insulator. The localization fea-

ture can be exposed by the inverse participation rate

(IPR) [16] £ defined as mechanism. Our resultis obtained in a strong coupling
N regime with the charge gap to measure MIT (Mott

W= = (18) MIT). As will be shown below, for weak electron—
2ol ) electron interactions, the disorders really stabilize the

whereN, is the total number of the electrons, which insulating state witl§ ® to signature MIT (Anderson

is equal to the site numbe¥; andy the system wave  MIT).

function. For totally localized electronic states in the Fig. 3 displays the evolving of electron localization
half-filled system, half of the sites haye |7;|v¥) = 2. and delocalization as we tune both the disorder and
On the other hand, when the electron is totally de- electron—electron interaction in the whole coupling
localized, the average number of electrons per site regime. It is easy to see that all the curves follow

should be(y |7;|¥) = 1. Hence the IPR® will sat- almost the same variation patterns as we incréase
isfy 0.125< £ < 1 between the above two limiting  for fixed disorderW. Generally speaking, there are
cases. three stages.

In Fig. 2, we demonstrated how the disorders influ-
ence the Mott MIT. Itis interesting to note that the dis- (1) WhenU is very small, the electron—electron

order shows the effect of destablizing the Mott insulat- interactions will help with the electron delocalization.
ing state, namely, as we increase the disorder, part of This is physically understandable since the on-site
the insulating region appears “melted” into a “metal- repulsion will tend to rearrange the charges and
lic” state, in which the charge gap is nearly zero. At make the charge-density more homogeneous. This
first sight, this feature quite contradicts the generally result is consistent with the findings by Ma [19] and
accepted viewpoints that the disorder should stabilize Caldara [20], but is different from the results from
the insulating state. But actually they are talking about Berkovits [21] and Benenti [22]. The reason for this
different interaction regimes with two different MIT  difference might be because Berkovits and Benenti
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use spinless electrons and only consider the neighbor- Y
site repulsion, which does not have the homogenizing 102: ]
effect like the on-site interaction. 8 ] ]
(2) As we increasé further to about/ ~ W, the E 10° ]
electron become maximally delocalized and becomes 2“ ]

localized again whety > W. The delocalization peak
in the diagram is very apparent whnis, again when

'
Gapless Insulator Gap Insulator

U for example, bigger than 10. If we interpret the 303070010 2030
shallow region around the peak to be in a metallic . Uit-(Uit),
state, the system will then experience here a three- 10 ] T
phase transition: insulator-metal—insulator, which is 101
quite consistent with the experimental findings [24, ?2 ]
25]. Another interesting fact we might note is that, = 10°
as the disorders increases, the metallic region moves 33 ]
further to the right of the axis, which implies that the 1024 g
initial insulating state becomes more stabilized. This B 77 (b)
is what we have mentioned before. 10 - ; ! K -

(3) After the two phase transitions, the system =0 -0 '1ou/t(.)(U/t;f) 20 0
continues to exhibit Anderson insulating behavior 10 T Wit=10
until finally it evolves into a Mott insulating state with 1 1 (UK)=4.6
very strong electron couplings. In this regime, every = 10°, 1 (Ui)=22
site has one electron on average because of the strong £ . o :
on-site electron interactions. ‘3":»10 :

13

From the above discussion, we should be able 10: 3

to summarize four different electronic features as 107 N ()

U increases from zero to infinity, namely, Ander-

Uit 100

150

son insulator-metal-Anderson insulator—Mott insula-
tor. This full scenario from weak to strong coupling is Fi9- 4. Finite-size scaling analysis over the charge gapr against
quite consistent with the present experiments [24,25]. ?é?cvg??;eéeig)og, /'?t:erf‘gt'ons for fixed disorders. {#)r = 1.
One of the advantages of the BRG method is that
it can be adapted easily to carry out finite-size scaling
analysis of the system [23]. Thus more fundamental
physics can be explored and displayed. identify the two phase transitions as discussed above,
Fig. 4 presents our calculation results with respect i.e., insulator—-metal and metal-insulator transitions.
to the charge gap for each fixed disorder. It is very in- But the last phase transition, Anderson insulator—-Mott
teresting to note that as we increase the disorders, theinsulator is still absent in the finite-size scaling dia-
finite-size scaling analysis provide us one critical point grams up to the magnitude of the disorders we have
while W is small, which clearly represents quantum considered. It should be expected that one more criti-
phase transition. Then the system enters some disor-cal point might appear if stronger disorders are consid-
der/interaction range where no clear critical transition ered. More extensive calculations are needed before a
point can be identified. We call this region a “mixed” final conclusion can be drawn.
region since the two pure phases that is necessary to In summary, by using the BRG technique, we have
characterize the phase transition are difficult to define. investigated in detail the delicate interplay between
this is demonstrated by the absence of a clear crossingdisorders and electron—electron interactions on a half-
point from the finite-size scaling analysis. As the dis- filled triangular quantum dot lattice. The insulator—
orders become stronger, two critical points are evolved metal-insulator transition has been well demonstrated
out of the mixed region. From here, we can easily by the finite-size scaling analysis.
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