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We present a study, employing high levelab initio methods, of electron localization–delocalization
transitions along the dissociation path of the C4

2 anion to C2 and C2
2 . We find that at the equilibrium

geometry, the symmetrical and nonsymmetrical configurations of the linear C4
2 anion are almost

isoenergetic. However, along a collinear dissociation path, the dipole moment drops abruptly to zero
when the separation between the two middle carbon nuclei reaches aboutR52.15 Å. The dipole
moment remains zero until aboutR52.78 Å, and then continuously increases as dissociation
proceeds. This behavior is analogous to critical phenomena: The abrupt drop to zero of the dipole
moment resembles a first-order phase transition, the later steady rise resembles a continuous phase
transition. We show that a simple sub-Hamiltonian model, corresponding to the large-dimension
limit for an electron in the field of four collinear carbon atoms, exhibits both kinds of phase
transitions along the dissociation path. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1637581#

I. INTRODUCTION

Electron localization–delocalization transitions have a
long history and remain a prime focus for both experimental
and theoretical research.1 This phenomenon was studied by
Anderson who showed that an electron diffuses over only a
finite length in one dimension in the presence of an arbitrary
disorder potential.2 Subsequently, a scaling theory was devel-
oped to investigate this transition and related localization
problems.3,4 This transition was also observed in solids,5

liquids,6 quantum Hall systems,7 semiconductor
super-lattices,8 surface plasmons in nanosystems,9 quasiperi-
odic driven systems,10 quantum dots,11,12 and in the tris-
(2,28-bipyridine!ruthenium~II ! complex.13 Here, we examine
electron localization–delocalization transitions along the dis-
sociation path of the C4

2 anion to C2 and C2
2 .

Many theoretical studies have treated electronic structure
and thermodynamic properties of the C4 molecule;15–20these
have been extensively reviewed.21–23 Most experimental
and theoretical work on C4 has determined that the linear
cumulene, with two unpaired electrons in a
3sg

23su
24sg

21pu
44su

25sg
21pg

2 , 3Sg
2 ground state, and the cy-

clic rhombic structure, with all electrons paired in a1Ag

ground state, are nearly isoenergetic.22 Bartlett et al. per-
formed large scale calculations on C4 using coupled-cluster
singles, doubles and triples, CCSD~T!, with a large basis
set.14 The rhombic isomer was found to be preferred by
about 1 kcal/mole. Usingab initio calculations: Hartree–
Fock~HF! and fourth-order perturbation theory MP4, Ragha-
vachari showed that for the C4

1 cation, like the neutral mol-

ecule, the linear chain and a rhombic isomer are nearly
isoenergetic.24 However, using multireference configuration
interaction, Hogreve found that the carbon tetramer dication
C4

21 is metastable.25

Experiment and theory have confirmed that the structure
of the C4

2 anion is linear with a
3sg

23su
24sg

21pu
44su

25sg
21pg

3 , 2Pg ground state.14,22Bartlett
et al., using large scale coupled-cluster calculations, found
that the linear is lower than the cyclic structure by more than
30 kcal/mol.14 For linear C4

2 the terminal bonds are predicted
to be shorter than the central bond, which is opposite to what
is found for the neutral C4 molecule. All theoretical
calculations26,27and experiments28,29have predicted that C4

22

is metastable with a short lifetime, about 0.7 fs.29

In this paper, we study critical phenomena associated
with electron localization–delocalization transitions along
the dissociation path of the C4

2 anion. After describing, in
Sec. II, the computational methods and geometry optimiza-
tion used for C4

2 , we investigate in Sec. III the variation of
the dipole moment along the dissociation path. In Sec. IV we
show similar critical behavior can be obtained from a sub-
Hamiltonian model representing the large-dimension limit
for an electron in the field of four collinear carbon atoms. In
Sec. V, we emphasize the semiclassical character of the
large-dimension limit, and the general correspondence of
symmetry breaking atD→` with electron–delocalization
transitions atD53.

II. COMPUTATIONAL METHODS AND GEOMETRIES

Our initial calculations employed the unrestricted
Hartree–Fock~UHF! method, followed by high levelab ini-
tio correlated methods, including configuration interaction
with singles and doubles~QCISD! and coupled clusters
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~CCSD!. In all the calculations, we examined the effect of
changing basis sets using theGAUSSIAN98 suite of
programs.30 The 6-3111G(d) basis set proved sufficient to
describe the characteristics of the C4

2 anion. We first reex-
amined the structure of C2

2 and C3
2 . We found that in their

optimized geometries the charge distributions are symmetri-
cal no matter what initial guess for the geometry was tried.
However, as seen in Fig. 1, geometry optimization of the
linear C4

2 anion showed that the nonsymmetrical nuclear
configuration ~with vÞu) is almost isoenergetic with the
symmetrical one~with v5u). In all previousab initio calcu-
lations the C4

2 anion was assumed to be symmetrical.14,22

Table I compares the symmetrical and nonsymmetrical opti-
mized configurations at the UHF, UCCSD, and UQCISD
level of approximation. For all the optimized structures we
carried out vibrational analysis to confirm that all the har-
monic frequencies are real numbers. The differences in both
energy and bond lengths are very small, but the UCCSD and
UQCISD results consistently indicate that the symmetrical
form is lower at the equilibrium geometry.

Figure 1 plots the potential energy along the collinear
dissociation coordinateR, with v and u optimized at each
distanceR. At the optimized geometry corresponding to the
equilibrium R, denoted byReq, the separation between the

symmetrical and nonsymmetrical forms is only a few cm21,
barely at the edge of numerical accuracy for the calculation.
As R increases slightly aboveReq, the nonsymmetrical form
very soon becomes lower in energy. We do not consider this
a phase transition like those atR1c and R2c ~shown below!
because this switch occurs well within a ground-state vibra-
tional amplitude. In this region nearReq we may expect the
actual molecule suffers breakdown of the Born–
Oppenheimer approximation; the electronic and nuclear mo-
tions are no longer separable.

Simons31,32 has shown that molecular anions possessing
excess internal vibrational or rotational energy can lose their
extra electron through radiationless transitions involving
non-Born–Oppenheimer coupling. We considered electron
detachment during vibrational motion of C4

2 as well as all
possible fragmentation channels, and found that C4

2→C2

1C2
2 is the energetically favored fragmentation channel.33

As the dissociation coordinateR increases away from its
equilibrium value, with the terminal bond lengthsv and u
optimized along the path, the nonsymmetrical form almost
immediately becomes lower in energy, as seen in Fig. 1.
BetweenR1c52.15 Å andR2c52.78 Å, however, the low-
est energy form of the anion becomes symmetrical. ForR
.R2c the lowest energy form is again nonsymmetrical. In
Fig. 2 we show the variation of the asymmetry parameter

FIG. 1. Potential energy, obtained from QCISD with the 6-3111G(d) basis
set, along collinear dissociation path of the C4

2 anion leading to C2 plus C2
2 .

The solid curve pertains to the symmetrical configuration (v5u), the dots
to the nonsymmetrical configuration (vÞu). Terminal bond distancesv and
u were optimized at eachR. The inset shows the two critical pointsR1c and
R2c whereDE15E(R)2E(R1c) andDE25E(R)2E(R2c). DE is given in
atomic units.

TABLE I. Equilibrium geometry and energy of C4
2 obtained fromab initio methods.

Methoda Symmetry E~a.u.! v5r 12 ~Å! R ~Å! u5r 34 ~Å!

UHF Sym 2151.309 999 5 1.256 057 88 1.335 024 11
Nonsym 2151.310 026 5 1.256 041 84 1.335 044 63 1.256 031 86

UCCSD Sym 2151.812 975 9 1.282 329 17 1.345 752 4
Nonsym 2151.812 974 6 1.282 218 38 1.345 710 04 1.282 425 86

UQCISD Sym 2151.815 624 7 1.283 999 68 1.345 900 88
Nonsym 2151.815 623 3 1.284 025 9 1.345 885 99 1.283 995 12

aIn each case the 6-3111G(d) basis set was used.

FIG. 2. Asymmetry parameteruv2uu as a function of the dissociation co-
ordinateR of the C4

2 anion, obtained from Hartree–Fock~UHF! calculations
with different basis sets~upper panel! and from configuration interaction
~UQCISD! with single and double excitations~lower panel!. Terminal bond
distancesv andu were optimized at eachR.
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uv2uu as a function ofR using both UHF theory with dif-
ferent basis sets and the UQCISD method. The abrupt
change between symmetrical and nonsymmetrical forms at
R1c resembles a ‘‘first-order’’ phase transition, the steady rise
that sets in atR2c resembles a ‘‘continuous’’ or ‘‘second-
order’’ phase transition.

Usually wave functions obtained from mean-field theory
need not obey the invariances present in the full Born–
Oppenheimer Hamiltonian. A common manifestation of this
‘‘symmetry dilemma’’ is found where variationally optimal
spin restricted and unrestricted open shell Hartree–Fock
wave functions often do not transform as pure irreducible
representations of the molecular point group for nondegen-
erate electronic states, a phenomenon which has been termed
‘‘artifactual symmetry breaking’’ by Davidson and Borden.34

The manifestation of this phenomenon has been discussed
extensively in the literature for a number of molecules.34–39

The ground state of C4
2 anion is linear with a2Pg sym-

metry. The computational point groupD`h allows px to be-
come different thanpy ; this particular type of spatial sym-
metry breaking is common for linear molecules and is not
generally considered to be a significant problem.37,40 It has
been found empirically that breaking inversion symmetry is
much more serious; this lowers the wave function symmetry
from D`h to C`n . We have checked the symmetry breaking
near the equilibrium geometry using UHF, UQCISD, and
UCCSD. Taking the equilibrium geometry of the UCCSD
results as a reference, we checked each of the symmetrical
and nonsymmetrical energies~UHF, UQCISD, UCCSD! as a
function of the asymmetry stretching coordinate. The energy
differences are defined as

DE5ED`h
~r 5r 15r 2!2ED`h

~r 15r 25r eq!,

DR5r eq2r , ~1!

with DE(2x)5DE(x) for the symmetrical solution, and for
the nonsymmetrical one

DE5EC`n
~r 5r 1!2EC`n

~r 25r eq!, DR5r 2r eq, ~2!

DE5EC`n
~r 5r 2!2EC`n

~r 15r eq!, DR5r eq2r . ~3!

In order to understand the artifactual symmetry breaking, we
have followed Gwaltney and Head-Gordon35 by plotting the
energies of the three solutions to the self-consistent field
~SCF! equations in the left panel of Fig. 3. The vertical axis
is the energy difference with respect to the symmetric solu-
tion at equal bond lengths and the horizontal axis is the an-
tisymmetric stretch coordinate. This plot exhibits the symme-

try dilemma of the Hartree–Fock theory: Do we have to
follow the higher energy curve which possesses correct sym-
metry atD`h geometry, or the lower energy curves which do
not.41 In Fig. 3 we present also the UCCSD and UQCISD
curves corresponding to the three UHF solutions. The two
solutions now lie much closer but we still see the unphysical
existence of artifactual states. Moreover, we extended the
calculations to include the Bruecker-orbital coupled cluster
doubles method~BDT!, which is commonly used to elimi-
nate the artifactual symmetry breaking problem.35 At the
equilibrium geometry, the symmetrical structure is lower in
energy~by 0.001 07 a.u.! compared with the nonsymmetrical
form. However, along the dissociation path,Req,R<R1c ,
the nonsymmetrical is lower in energy. Moreover, all the five
harmonic frequencies for both the symmetrical and nonsym-
metrical are real and in good agreement with the experimen-
tal results as shown in Table II. Density-functional calcula-
tion, using Becke three~B3LYP! functional, give very
similar results. The nonsymmetrical and symmetrical energy
difference at the equilibrium geometry is20.000 02 a.u. or
20.014 kcal/mol. The density-functional results are consis-
tent with theab initio results.

At the nonsymmetrical equilibrium geometry, UQCISD
results show that the spin contamination isS250.7516 com-
pared tos(s11)50.75 for the ground state2Pg of C4

2 with
s51/2. In the range 1.4 Å,R,R1c the S2'0.75 but close
to the critical pointR1c52.16 Å the value ofS2 jumps to a
higher valueS2'5.5 which indicates that some other spin
state is mixed in. However, it is important to mention that for

FIG. 3. UHF, UCCSD, and UQCISD energies around the C4
2 anion mini-

mum geometry as a function of the antisymmetyric stretch coordinate.

TABLE II. Vibrational frequencies~in cm21) for symmetrical~SY! and nonsymmetrical~NS! forms of C4
2

anion.

f~vib.!

UBD~T! UB3LYP

Expt. ~Refs. 53 and 54!NS SY NS SY

n1(sg) 2053.7 2060.9 2098.6 2098.2 2047~20!
n2(sg) 890.3 888.9 919.4 919.2 936~20!
n3(su) 1702.0 1705.5 1768.9 1768.7 1699.8
n4(pg) 311.0/255.8 346.7/268.1 507.2/439.2 504.4/434.8 396~20!
n5(pu) 211.4/193.7 200.5/198.7 241.7/221.3 239.6/218.9
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R.R1c we follow the symmetrical solution withD`h sym-
metry.

Because we evaluated the energy at points closely
spaced inR, it was feasible to determine the critical expo-
nent for the continuous transition by expanding the differ-
ence of the UQCISD energies,DE5Esym2Enonsym, about
the critical radius,R2c . This gave

DE5a1b~R2R2c!1c~R2R2c!
b1¯ , ~4!

the best-fit values obtained for the coefficients were~in mi-
crohartree units!: a586.7; b52677.5; c51931.5; the ex-
ponentb52.06, which is close to the value 2 corresponding
to a mean-field approximation.42 The nonzero value of the
a-coefficient is a measure of the errors in energies given by
the Gaussian program and the fitting procedure. When the
data were fit with the constraintb50, we obtaineda59.4,
c51319.6, andb52.58; as the error becomes smaller, this
fit is appreciably better and thus indicates the exponentb is
significantly larger than the mean-field value.

III. DIPOLE MOMENT ALONG DISSOCIATION PATH

The transitions between symmetrical and nonsymmetri-
cal forms for the ground state seen in Figs. 1 and 2 have a
direct effect on the dipole moment. Figure 4 shows the varia-
tion of absolute values of the calculated dipole moment
along the collinear dissociation path. Much as in Fig. 2 for
the asymmetry parameter, the dipole moment drops abruptly
to zero atR1c52.15 Å, remains zero up toR1c52.78 Å,
and thereafter rises steadily to infinity as the dissociation
fragments separate. An expansion of the UQCISD results for
the dipole moment analogous to Eq.~4! with b50 gave~in
atomic units! a520.06; c51.88; andb50.69, or ;2/3.
The same expansion of the Hartree–Fock results, represent-
ing the mean-field approximation, gave values ofb near 1/3,
increasing from 0.35 up to 0.4 as the basis sets used became

larger. The difference between the UQCISD and UHF re-
sults, which appears large enough to be significant, indicates
that electron correlation substantially affects the critical ex-
ponent for the dipole moment transition.

Some insights into the dramatic changes seen in the di-
pole moment can be obtained by examining how the corre-
sponding Mulliken charge distributions43 vary with R, as
shown in Fig. 5. The dipole moment is zero when the charge
distribution is symmetrical, as atR52.4 Å, but nonzero for
nonsymmetrical charge distributions. At a large distance,
such asR54.5 Å, the charge distribution has nearly sepa-
rated into that for the neutral C2 and the anion C2

2 ; for the
latter, the Mulliken charges are close to21/2 and Req

51.2797 Å is notably shorter than the length of a terminal
bond in the C4

2 anion.
Interestingly, the Mulliken charges suggest the dipole

moment at the equilibrium distance,Req51.346 Å, should
be nonzero. There the symmetrical form, which has zero di-
pole, is very slightly lower in energy than the nonsymmetri-
cal form, which hasm51.6431024 a.u., anduu2vu55.54
31025 a.u. However, as noted above, as R increases slightly
aboveReq, the nonsymmetrical form becomes the lower one
and the dipole moment begins to increase appreciably. This
situation allows the Mulliken charges to be nonsymmetrical;
at Req the values areQ1520.90; Q250.93; Q3520.31;
andQ4520.71. As the dipole moment involves the product
of charge and distance, integrated over the charge distribu-
tion and weighted by the volume element, a point charge
model has difficulty simulating behavior when asymmetries
in the distributions of charge and spatial positions distribu-
tions are shifting rapidly.

Comparing the ordinate scales for Figs. 2 and 4 indicates
that only a small part of the change in dipole moment comes
from the difference in the terminal bond lengths. Most of the
variation in the dipole moment thus must result from the
shift of the center of charge relative to the origin, which is
taken midway between the central pair of carbon atoms. This
aspect is readily examined using the Mulliken charges. For

FIG. 4. Dipole moment of the linear C4
2 anion as a function of the distance

R, obtained from both UHF and UQCISD approximations, as in Fig. 2.
Terminal bond distancesv andu were optimized at eachR. The origin for
the dipole moment is midway between the two central carbon nuclei.@Note:
1 dipole a.u. (Bohr2Electron)52.54 Debye].

FIG. 5. Mulliken chargesQi(R) along the collinear dissociation path for
C4

2 . R1c andR2c values are marked with vertical dashed lines. Note how the
Qi(R) vary strongly outside the band betweenR1c and R2c and nearR1c

~see upper inset!, whereas within the bandQ15Q4 andQ25Q3 , thus mak-
ing very clear the origin of the behavior seen in Fig. 4.
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four collinear chargesQi along thez axis, the dipole moment
is simply given bym5( iQi zi ; then with the two terminal
C–C lengthsv, u and the middle C–C distanceR, we have

m5Q1S 2
R

2
2v D1Q2S 2

R

2 D1Q3S R

2 D1Q4S R

2
1uD

5m11m2 , ~5!

with

m15
R

2
~2Q12Q21Q31Q4!, m25Q4u2Q1v. ~6!

Thus,m1 arises from the displacement of the center of
charge from the origin,m2 from any difference in the charges
on the terminal atoms or asymmetry in the terminal bond
distances. With the atoms numbered as in Fig. 4, whenR
becomes sufficiently large,Q15Q2;0, and Q35Q4;
21/2; hencem1;2R/2 and m2;2u/2 and the totalm;

2(R1u)/2, which is just the dipole moment of C2
2 as mea-

sured from the origin. Even for modestR.R2c , typically
um1u is much larger thanum2u. For example, atR53 Å, we
see from Fig. 5 thatQ1'Q3'Q4'21/2; Q2'11/2 and
thus Eq. ~6! gives m1'2R/2522.8 a.u. andm2'2(u
2v)/2520.02 a.u., roughly in agreement with the UHF re-
sult of Fig. 4. AsR approachesR2c from above, in Fig. 5 we
find Q11Q2'Q31Q4 with Q2'Q3 and u'v; these rela-
tions become exact for the approach from below. Thus, Eq.
~6! requires that just above the critical pointm1 becomes
very small because the Mulliken charges nearly cancel
whereasm2 becomes small because the terminal bond dis-
tances approach equality. Even for this simple model, these
different dependences ofm1 andm2 cause the total dipole to
mimic the small kink and curvature just aboveR2c that are
seen in the UQCISD results of Fig. 4.

Figure 6 displays the variation along the dissociation

FIG. 6. ~Color! Contour plots of the
electrostatic potential for the C4

2 an-
ion, defined in Eq.~1!, vs z ~in Å;
along internuclear axis, origin midway
between two central carbon nuclei!
and y ~in Å; coordinate perpendicular
to internuclear axis!, for different val-
ues of R along the dissociation path.
For comparison a plot for C2

2 at its
equilibrium internuclear distance is in-
cluded at lower right.
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path for another property, related to the dipole moment. This
is the electrostatic potential for C4

2 , which is defined as

V~r !5 (
a51

K
Za

ur 2r au
2(

i 51

N E f i* f i

ur 2r i u
dt. ~7!

The first term describes the electrostatic repulsion between
the K54 carbon nuclei and the probing charge while the
second term corresponds to the electrostatic attraction be-
tween the probing charge and theN525 electrons in the
molecular orbitals (f i) of the C4

2 anion.
The peaks appearing in the contour plots in Fig. 6 indi-

cate the relatively high concentration of the extra electron
charge21. At equilibrium, the distribution of the potential
of the anion felt by a negative probing charge is symmetrical.
Thus the extra electron could be on either side of the C4

molecule. As the distance along the dissociation path in-
creases, betweenR1c andR2c the electron moves to the cen-
ter. However, at larger distances exceeding aboutR56 Å,
the electron shifts completely to one side and the electro-
static potential looks like that for the C2

2 anion as shown in
the lowest panel of Fig. 6.

IV. MODEL FOR LARGE-DIMENSIONAL LIMIT

Dimensional scaling theory46 provides a natural means
to examine electron localization–delocalization transitions.
At the large-dimension limit (D→`), in a suitably scaled
space electrons become fixed in position but their geometri-
cal configuration typically undergoes marked changes for
certain ranges of the nuclear charges44 or molecular
geometry.45,46 Recently, the symmetry breaking of electronic
structure configurations at the large-D limit has been shown
to be completely analogous to phase transitions and critical
phenomena in statistical mechanics.47–50 Because the large-
D limit is pseudoclassical, the analysis deals with a point
charge representation rather than a differential equation;
thus, energies are obtained simply by finding the minimum
of a scalar effective potential. However, the previous treat-
ments of phase transitions47–50 dealt only with two-electron
atoms and one- or two-electron diatomic molecules. In order
to carry out an analogous treatment for the C4

2 anion, with 25
electrons, we employ a sub-Hamiltonian method developed
by Loeser.51,52 We find this provides an explicit demonstra-
tion of the two kinds of transitions found atD53 along the
dissociation path of the C4

2 anion to C2 and C2
2 .

Loeser’s method51 provides a systematic procedure to
construct large-D limit Hamiltonians that are internally
modified to reflect major finite-D effects. These functions,
termed sub-Hamiltonians, are obtained by scaling the kinetic
terms represented by generalized centrifugal potentials at the
D→` limit. As applied to molecules, the method considers
the nuclear framework to be fixed and strictly three-
dimensional, in accord with the Born–Oppenheimer approxi-
mation. For our purpose, it is sufficient to consider the sim-
plest sub-Hamiltonian variant;52 this employs the Hartree–
Fock approximation and has the form

H5(
i

ni
2

2r ni

2 1
1

2 S (
I

(
J

ZIZJ

RIJ
2(

I
(

j

ZI

RI j

1(
i

(
j

1

Ri j
D . ~8!

The first term arises from a hydrogenic scaling of the cen-
trifugal potential, whereni are the atomic principal quantum
numbers andr ni

are radii associated with the corresponding
shells. The other terms comprise the Coulombic interactions
among the electrons and nuclei, involving distances defined
by

RIJ5~~xI2xJ!
21~yI2yJ!

21~zI2zJ!
2!1/2,

RI j 5~~xI2xj !
21~yI2yj !

21~zI2zj !
21r nj

2 !1/2, ~9!

Ri j 5~~xi2xj !
21~yi2yj !

21~zi2zj !
21r ni

2 1r nj

2 !1/2,

with I ,J indices for nuclei andi , j for electrons. Here the
x,y,z coordinates pertain to the ordinaryD53 subspace,
whereas the radiir ni

of the electron shells also containD
23 auxiliary components specifying projections outside of
and perpendicular to thex,y,z subspace. These ‘‘extra’’ com-
ponents simulate the effects of quantum mechanical delocal-
ization within the localized representation of the sub-
Hamiltonian.

In the simplest level of approximation, the degrees of
freedom for the electrons withinx,y,z space can be elimi-
nated by fixing those spatial coordinates to coincide with
those of the nearest nucleus; this corresponds to omitting
polarization effects.52,51 The sub-Hamiltonian for the linear
C4

2 cation then can be written as H5Hs1He , where the 24
shell electrons appear in

Hs5(
I 51

4

(
s51

2 NIsns
2

2r Is
2 1

1

2 S (
I ,J51

4

(
s51

2
ZINJs

RI ,Js
2

1 (
I ,J51

4

(
s,t51

2
NIsNJt

RIs,Jt
D . ~10!

Herens denotes the shell quantum number;NIs the number
of electrons in shells about nucleusI ; indicess and t des-
ignate either of the two shellsn51 ~with 2 electrons! or n
52 ~with 4 electrons! of each carbon atom. The shell radii
r Is now contain just theD23 auxiliary components; the dis-
tanceRI ,Js between a nucleusI and a shell electron about
another nucleus is

RI ,Js5~~xI2xJs!
21~yI2yJs!

21~zI2zJs!
21r Js

2 !1/2,
~11!

and the distances between intershell and intrashell electrons
are

RIs,Jt5~~xIs2xJt!
21~yIs2yJt!

21~zIs2zJt!
21r Is

2

1r Jt
2 !1/2. ~12!

The four nuclei are arranged collinearly along thez-axis;
thus xI5yI50 and zI52R/22v;2R/2;R/2;R/21u, re-
spectively, forI 51,2,3,4.

The 25th electron of the anion appears in
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He5
n0

2

2r 0
2 2(

I 51

4 S ZI

R0I
1(

s51

2
NIs

R0,Is
D , ~13!

wheren052; the radiusr 0 contains theD23 auxiliary com-
ponents of the electron, but itsz-component in 3-space is not
required to coincide with that of any of the nuclei. The dis-
tanceR0I between the electron and nucleusI thus may be
written as

R0I5~~z2zI !
21r 0

2!1/2, ~14!

and the distanceR0,Is between the lone electron and those in
shell Is is given by

R0,Is5~R0I
2 1r Is

2 !1/2. ~15!

In the point charge representation provided by the sub-
Hamiltonian formalism, the electronic symmetry actually is
determined by thez-coordinate of the lone extrashell elec-
tron.

The energy of the sub-Hamiltonian H5Hs1He for any
conformation of the nuclei, as specified byR, u, andv, is
obtained by finding the global minimum as a function of ten
variables: the eightr Is ~with I 51 – 4 ands51 – 2) andr 0 ,z.

At the large-D limit the axial dipole moment, measured
from the midpoint between the two central carbon nuclei, is
given by thez-component of the vector

m`5(
I 51

4 S Z2(
s51

2

NIsD r Is2r , ~16!

where the vectorr denotes the location of the lone extrashell
electron of Eq.~13!; its magnitude is given by (r21z2)1/2,
with r the perpendicular distance of the electron from the
internuclear axis. In the simplistic approximation employed
here, the shell electrons of Eq.~10! do not contribute to the

dipole moment, because in Eq.~16! the coefficient ofr Is

vanishes for each carbon atom~as Z56, NI152, NI254).
Accordingly, in this simplest sub-Hamiltonian model, the di-
pole moment is determined solely byr , and thus must vanish
whenever the lone electron lies in the plane midway between
the two central carbon atoms~i.e., whenz50).

Figure 7 shows the variation of dipole moment with the
distanceR between the central carbon nuclei, as obtained
from this large-D limit for fixed v51.25 Å and different
values of u (51.25, 1.35, and 1.5 Å!. Qualitatively, the
simple sub-Hamiltonian model exhibits behavior similar to
Fig. 4. However, the transition points,R1c andR2c , obtained
from the global minimum of Hs1He were found to be unre-
alistically small. Accordingly, in Fig. 7 we shifted the scale
for R upwards by adding 1.82 Å, twice the average radius of
a carbon atom. This adjustment emphasizes the crudeness of
the point charge model but does not detract from its heuristic
utility. Table III lists the corresponding values ofR1c andR2c

and the associated energies, obtained for choices ofv andu
equal to or near to those found from ourab initio UQCISD
calculations.

In Fig. 7, the dipole moment is nearly constant forR
,R1c , before dropping abruptly to zero, then rising again
for R.R2c and climbing steadily with concave curvature
corresponding tob50.58. The onset of the transition atR
.R2c is gradual forv5u but becomes abrupt forvÞu, just
as it does atR1c . In most aspects, these features are remark-
ably similar to theab initio results of Fig. 4, although the
point charge model yields very poor estimates of the magni-
tude of the dipole moment. A major handicap for the model
is the simplifying assumption adopted in Eq.~10!; as noted,
this eliminates any contributions from the 24 shell electrons
in Eq. ~16!, so that the dipole moment arises only from the
single extrashell electron.

Figure 8 displays energy contours for the sub-
Hamiltonian of Eq.~13! pertaining to that electron, asR, v,
andu are varied. These plots help elucidate two notable as-
pects of Fig. 7, wherein~i! the dipole moment is zero forR
appreciably aboveR1c even whenvÞu there, and~ii ! the
dipole moment becomes nonzero forR.R2c even whenv
5u. In essence, the single extrashell electron is behaving in
a way analogous to that in H2

1 . In region ~i! the electron
remains midway (z50) between the middle two carbon at-
oms, even when distances to the terminal carbons differ. In
region~ii !, at largerR, the electron shifts to one of the sepa-
rating pairs of carbon atoms~so z.0), even when the bond
length is the same for both pairs. The actual transition atR
5R2c occurs withv5u, after which the bond length of the

FIG. 7. The axial dipole moment at the large-D limit as a function ofR
~shifted by 1.82 Å! for an electron in the field of four collinear carbon
atoms, withv fixed atv51.25 Å and three values ofu (51.25, 1.35, and
1.5 Å!.

TABLE III. Transition point geometry and energy of C4
2 obtained from UQCISD method and from sub-

Hamiltonian model.

Methods v ~Å! u ~Å! R1c ~Å!, E1c ~a.u.! R2c ~Å!, E2c ~a.u.!

UQCISD 1.2683 1.2947 2.15,2151.6480
1.2588 1.2591 2.78,2151.6003

sub-Hamiltonian 1.2683 1.2947 2.10,2129.5 2.55,2143.2
1.2588 1.2688a 2.08,2128.3 2.54,2143.0

aHere, for purpose of comparison,u is chosen larger thanv by 0.1 Å.
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C2
2 fragment exceeds that of the C2 fragment~so u.v, for

the labeling adopted in Fig. 1!. The model is consistent with
the second-order character of the transition atR2c ; with v
5u, it is evident from Eqs.~13!–~15! that He(r,z)5He(r,
2z) is an even function ofz, so a Taylor expansion about
z50 contains only even powers ofz. Despite the drastic
simplifications of the sub-Hamiltonian model, it does serve
to exemplify that the charge distribution becomes symmetric
for R1c,R,R2c and nonsymmetric elsewhere, in accord
with Fig. 5.

V. CONCLUDING REMARKS

Our ab initio calculations, using UHF, UQCISD,
UCCSD with different basis sets, all exhibit the same critical
phenomena: As we move outward along the collinear disso-
ciation path, the dipole moment of C4

2 drops abruptly to zero
at R1c , remains zero up toR2c , then becomes nonzero again
and gradually climbs to infinity asR→`. The abrupt drop at
R1c resembles a ‘‘first-order’’ phase transition, the sedate
change that sets in atR2c resembles a ‘‘continuous,’’ second-
order phase transition. However, the complexity of such
electronic structure computations renders them unsuitable for
detailed study of the origin and character of the phase tran-
sitions.

The large-dimension limit offers a tractable approach.
Although theD→` limit may appear arcane, it seems to
capture the chief physical features of electron localization–
delocalization behavior atD53, as shown in several
applications.47–50This likely stems from three aspects of di-
mensional scaling.46 ~1! When employed either for dimen-
sional interpolation or perturbation expansions, the pertinent
variable is 1/D. Thus, in relation to other dimensions the
large-D limit actually represents the origin (1/D→0), sub-
stantially closer to the ‘‘real world’’~at 1/D51/3) and there-

fore more realistic than are one-dimensional models~at
1/D51) of the kind customarily invoked.~2! When treating
problems involving Coulombic interactions, the distance
scale is taken proportional toD2, hence the conjugate mo-
menta are scaled asD22 and thereby the uncertainty prin-
ciple remains unaffected. Accordingly, although in theD
→` limit the electrons are at rest in fixed positions in the
scaled space, quantum fluctuations still occur as usual in the
corresponding unscaled space.~3! The limit D→` is tanta-
mount to swelling the electron mass to infinity or to shrink-
ing Planck’s constant to zero. Accordingly, this limit repre-
sents a semiclassical regime, but it is different in character
from the more familiar Wentzel–Kramers–Brillouin~WKB!
approximation. WithD-scaling, the limit is taken in a way
that converts centrifugal terms in the kinetic energy into a
scalar electrostatic potential that augments the usual Cou-
lombic terms. The net potential obtained in this unconven-
tional classical limit appears to provide, via analysis of its
symmetry breaking properties, a reliable heuristic model for
electronic phase transitions.

For the case of collinear dissociation of the C4
2 anion,

the sub-Hamiltonian for the large-D limit suggests a simple
model, with a single electron in the field of four collinear
atoms. We find that this model exhibits symmetry breaking
analogous to both a first order and a continuous phase tran-
sition. Likewise, the model displays aspects akin to the
charge redistribution seen during dissociation of the H2

1 mo-
lecular ion.49
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