
ems

currence
distribution
e external
uantum

al analog
otential
quantum

tance in
na with
t. They

ent shows
class of
arameter
rs, the
from
nsional
Physics Letters A 322 (2004) 137–145

www.elsevier.com/locate/pla

Entanglement of formation for one-dimensional magnetic syst
with defects

Zhen Huang, Omar Osenda, Sabre Kais∗

Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA

Received 3 November 2003; received in revised form 10 January 2004; accepted 12 January 2004

Communicated by R. Wu

Abstract

We present a study of the entanglement of formation for one-dimensional magnetic systems with defects. The con
was used as a measure of entanglement. Rather than locating the impurity at one site in the chain, there is a Gaussian
of disorder near a particular location. We demonstrate that the entanglement can be tuned by varying the strength of th
magnetic field and the distribution of impurities. The concurrence is a maximum close to the critical point, where a q
phase transition occurs, and for certain parameters can be tuned to zero above the critical point.
 2004 Elsevier B.V. All rights reserved.

Keywords: Entanglement of formation; Magnetic systems; Defects

1. Introduction

Quantum entanglement is regarded as the resource of quantum information processing with no classic
[1–4]. The corresponding investigation is currently a very active area of research [5–10] due to its p
applications in quantum communication, such as quantum teleportation [11,12], superdense coding [13],
key distribution [14], telecoloning [15] and decoherence in quantum computers [16,17].

The study of the entanglement as a function of the parameters in a system might be of great impor
quantum computation and communication. Osterloh et al. [18] connected the theory of critical phenome
quantum information by exploring the entangling resources of a system close to its quantum critical poin
demonstrated, for a class of one-dimensional magnetic systems modeled by the XY model, that entanglem
scaling behavior in the vicinity of the transition point. Recently [19], we have demonstrated that for such a
one-dimensional magnetic systems entanglement can be controlled and tuned by varying the anisotropy p
in the XY Hamiltonian and by introducing impurities into the systems. In particular, for certain paramete
entanglement is zero up to a critical pointλc, where a quantum phase transition occurs, and is different
zero aboveλc . Although, great interest attaches to three-dimensional lattices, the properties of one-dime
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magnetic systems with anisotropic coupling and impurities are of both experimental and theoretical sign
[20–23].

In this Letter, we consider a set of localized spin-1/2 particles coupled through exchange interaction and su
to an external magnetic field in the presence of impurities in the form of Gaussian distributions along the c

2. Solution of the XY model

In this section, we consider the numerical solution of the XY model on a one-dimensional lattice withN sites
in a transverse magnetic field and impurities. The Hamiltonian for such a system is given by

(1)H = −1+ γ
2

N∑
i=1

Ji,i+1σ
x
i σ

x
i+1 − 1− γ

2

N∑
i=1

Ji,i+1σ
y

i σ
y

i+1 −
N∑
i=1

hiσ
z
i ,

whereJi,i+1 is the exchange interaction between sitesi andi + 1, hi is the strength of the external magnetic fie
on sitei, σa are the Pauli matrices (a = x, y, z), γ is the degree of anisotropy andN is the number of sites. W
assume cyclic boundary conditions, so that

(2)σxN+1 = σx1 , σ
y
N+1 = σy1 , σ zN+1 = σz1 .

The standard procedure used to solve Eq. (1) is to transform the spin operators into fermionic operat
Let us define the raising and lowering operatorsa+

i , a−
i ,

(3)a+
i = 1

2

(
σxi + iσ yi

)
, a−

i = 1

2

(
σxi − iσ yi

)
in terms of which the Pauli matrices are

(4)σxi = a+
i + a−

i , σ
y
i = a+

i − a−
i

i
, σ zi = 2a+

i a
−
i − I.

Then, we introduce Fermi operatorsci , c
+
i , defined by

(5)a−
i = exp

(
−iπ

i−1∑
j=1

c+j cj

)
ci , a+

i = c+i exp

(
iπ

i−1∑
j=1

c+j cj

)
.

So that, the Hamiltonian assumes the following quadratic form

(6)H = −
N∑
i=1

Ji,i+1
[(
c+i ci+1 + γ c+i c+i+1

)+ h.c.
]− 2

N∑
i=1

hi

(
c+i ci −

1

2

)
.

In this study the exchange interaction has the formJi,i+1 = J (1+ αi,i+1), whereα introduces the impurity in a
Gaussian form centered atN+1

2 with strength or heightζ ,

(7)αi,i+1 = ζ exp

{
−ε
(
i − N + 1

2

)2}
.

The external magnetic field takes the formhi = h(1+ βi), whereβ has the following Gaussian form

(8)βi = ξ exp

{
−ε
(
i − N + 1

2

)2}
.

Whenα = β = 0 we recover the pure case. For both distributions of the impurity and the magnetic field, w
the value of the width of the distribution atε = 0.1 in all the calculations.
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By introducing the dimensionless parameterλ= J/2h, the symmetrical matrixA

(9)A = −




(1+ β1) λ(1+ α1,2) λ(1+ αN,1)
λ(1+ α2,1) (1+ β2) λ(1+ α2,3)

· · · 0

· · ·
0 · · ·

λ(1+ αN−1,N−2) (1+ βN−1) λ(1+ αN−1,N )

λ(1+ α1,N ) λ(1+ αN,N−1) (1+ βN )




and the antisymmetricalB

(10)B = γ




0 −λ(1+ α1,2) λ(1+ αN,1)
λ(1+ α2,1) 0 −λ(1+ α2,3)

· · · 0

· · ·
0 · · ·

λ(1+ αN−1,N−2) 0 −λ(1+ αN−1,N )

−λ(1+ α1,N ) λ(1+ αN,N−1) 0



,

the Hamiltonian becomes

(11)H =
N∑

i,j=1

[
c+i Ai,j cj + 1

2

(
c+i Bi,j c

+
j + h.c.

)]
.

The quadratic Hamiltonian can be diagonalized by making a linear transformation of the fermionic oper

(12)ηk =
N∑
i=1

gkici + hkic+i , η+
k =

N∑
i=1

gkic
+
i + hkici ,

wheregki andhki are real. Then the Hamiltonian becomes

(13)H =
N∑
k

 kη
+
k ηk + const,

with the following two coupled matrix equations which satisfy

(14)φk(A − B)= �kψk, ψk(A + B)= �kφk,

where the components of the two column vectorsφki andψki are given by

(15)φki = gki + hki , ψki = gki − hki .
Finally, the ground state of the system|Ψ0〉 can be written as

(16)ηk|Ψ0〉 = 0.

3. Spin–spin correlation functions

A great deal of information about the preponderance of up-spin on one sublattice to down-spin
other sublattice, can be obtained by investigating the different spin–spin correlation functions and the
magnetization per spin [24].
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The spin–spin correlation functions for ground state are defined as

(17)Sxlm = 1

4
〈Ψ0|σxl σ xm|Ψ0〉,

(18)S
y

lm = 1

4
〈Ψ0|σyl σ ym|Ψ0〉,

(19)Szlm = 1

4
〈Ψ0|σzl σ zm|Ψ0〉,

and the average magnetization per spin

(20)Mz
i = 1

2
〈Ψ0|σzi |Ψ0〉.

In order to calculate these correlation functions, we must first calculate the following quantities:

(21)〈Ψ0|AiAj |Ψ0〉, 〈Ψ0|BiBj |Ψ0〉, 〈Ψ0|BiAj |Ψ0〉
whereAi = c+i + ci andBi = c+i − ci .

From Eqs. (12) and (15), sinceψk andφk are orthonormal, we can get

(22)Ai =
N∑
k

(
ηk + η+

k

)
φki, Bi =

N∑
k

(
η+
k − ηk

)
ψki.

Thus, using Eq. (16), we obtain

(23)〈Ψ0|AiAj |Ψ0〉 =
N∑
k

φkiφkj = δij ,

(24)〈Ψ0|BiBj |Ψ0〉 = −
N∑
k

ψkiψkj = −δij ,

(25)〈Ψ0|BiAj |Ψ0〉 = −〈Ψ0|AjBi |Ψ0〉 = −
N∑
k

ψkiφkj ≡Gij .

Using Wick’s theorem [25] we obtain

(26)Sxlm = 1

4



Gl,l+1 Gl,l+2 · · · Gl,m
...

...
. . .

...

Gm−1,l+1 Gm−1,l+2 . . . Gm−1,m


 ,

(27)S
y
lm = 1

4



Gl+1,l Gl+1,l+1 . . . Gl+1,m−1

...
...

. . .
...

Gm,l Gm,l+1 . . . Gm,m−1


 ,

(28)Szlm = 1

2
(GllGmm −GmlGlm),

(29)Mz
i = 1

2
Gii .
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4. Entanglement of formation

The concept of entanglement of formation is related to the amount of entanglement needed to prepare thρ,
whereρ is the density matrix. It was shown by Wootters [7] that

(30)E(ρ)= E
(
C(ρ)

)
,

where the functionE is given by

(31)E = h
(

1+ √
1−C2

2

)
,

whereh(x)= −x log2x − (1− x) log2(1− x), andC is the concurrence. SinceE(C) is monotonically increasing
and ranges from 0 to 1 asC goes from 0 to 1, so the one can take the concurrence as a measure of entangle
its own right [6]. The concurrenceC is given by [7]

(32)C(ρ)= max{0, λ1 − λ2 − λ3 − λ4}.
For a general state of two qubits,λi ’s are the eigenvalues, in decreasing order, of the Hermitian matrix

(33)R ≡
√√

ρ ρ̃
√
ρ,

whereρ is the density matrix and̃ρ is the spin-flipped state defined as

(34)ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy),
where theρ∗ is the complex conjugate ofρ and is taken in the standard basis, which for a pair of spin-1

2 particles
is {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉}. Alternatively, theλi ’s are the square roots of the eigenvalues of the non-Hermitianρρ̃.

The structure of the reduced density matrix follows from the symmetry properties of the Hamiltonian. Ho
for this case the concurrenceC(i, j) depends oni, j and the location of the impurity and not only on the differen
|i − j | as for the pure case. Using the operator expansion for the density matrix and the symmetrie
Hamiltonian [26] lead to the general form

(35)ρ =



ρ1,1 0 0 ρ1,4

0 ρ2,2 ρ2,3 0

0 ρ2,3 ρ3,3 0

ρ1,4 0 0 ρ4,4


 ,

with

λa = √
ρ1,1ρ4,4 + |ρ1,4|, λb = √

ρ2,2ρ3,3 + |ρ2,3|,
(36)λc = ∣∣√ρ1,1ρ4,4 − |ρ1,4|

∣∣, λd = ∣∣√ρ2,2ρ3,3 − |ρ2,3|
∣∣.

Using the definition〈A〉 = Tr(ρA), we can express all the matrix elements in the density matrix in term
different spin–spin correlation functions:

(37)ρ1,1 = 1

2
Mz
l + 1

2
Mz
m + Szlm + 1

4
,

(38)ρ2,2 = 1

2
Mz
l − 1

2
Mz
m − Szlm + 1

4
,

(39)ρ3,3 = 1

2
Mz
m − 1

2
Mz
l − Szlm + 1

4
,
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(40)ρ4,4 = −1

2
Mz
l − 1

2
Mz
m + Szlm + 1

4
,

(41)ρ2,3 = Sxlm + Sylm,
(42)ρ1,4 = Sxlm − Sylm.

5. Results and discussions

For the sake of clarity, we focus our discussions on the transverse Ising model, which arises as the limiγ → 1.
This system is the simplest quantum lattice system to exhibit a quantum phase transition. For the pure c
α = 0, Osborne and Nielsen [26] argue that the Ising model provide the clearest evidence for the conjec
the critical point corresponds to the situation where the lattice is most entangled [26]. Our goal is to e
this system in the presence of impurities. In Fig. 1 we show the results of the nearest neighbor concurrenc
derivative, between the sites 49 and 50, as a function of the parameterλ= J/2h for different Gaussian distribution
of the impurity (see Eq. (7)) and for different strengths of the external magnetic field (see Eq. (8)). In the le
of Fig. 1, the parameterζ of the Gaussian distribution of the impurity was varied from the pure case withζ = 0 to
ζ = 1. In the right panel of Fig. 1, the parameterξ of the Gaussian distribution for the external magnetic field
varied fromξ = 0 to ξ = 1.

One can see that the concurrence is close to zero above the critical pointλc and a maximum close toλc. As ζ
increases the concurrence tends to increase faster and theλm, where concurrence approaches maximum, shi
zero very rapidly. However, the concurrence increases slowly and theλm tends to move to infinity by increasin
the value of the parameterξ . The derivative of concurrence for different values ofζ andξ with respect toλ, is also
presented in the Fig. 1. We find that the derivative of concurrence starts at a maximum value, then appr

Fig. 1. The nearest neighbor concurrenceC(49,50) and its derivative for different values of the Gaussian distribution in the external mag
field, ξ , and the impurities,ζ , as a function of the reduced coupling constantλ, the system sizeN = 101 and the anisotropy parameterγ = 1.
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Fig. 2. The spin–spin correlation functions and the average magnetization per spin for different Gaussian distributions in the impur
the parameterζ = 0.0,0.1,0.5,1.

minimum at the critical point and finally disappears in the limitλ→ ∞. For the pure case, the critical pointλc = 1.
But it shifts to zero for increasing values ofζ and to infinity for increasing values ofξ .

In order to examine the change of the critical point as the parametersζ andξ varies, we calculated the thre
spin–spin correlation functionsSxlm, Sylm, Szlm and the average magnetization per spinMz

i . Fig. 2 shows the behavio
of different spin–spin correlation functions for different values of the parameterζ . For the pure Ising model a
N = ∞, the system exhibit a quantum phase transition atλc = 1. The spin–spin correlation functionSx is different
from zero forλ > 1 and it vanishes at the transition. On the contrary the magnetization along thez direction is
different from zero for any value ofλ. As expected, the spin–spin correlation functions〈Sy〉 and〈Sz〉 are almost
zero for all values ofλ. As the value of the parameterζ increases, the magnetizationMz becomes different from
zero for smaller values ofλc < 1. Similar analysis shows that on the contrary the spin–spin correlation fun
〈Sx 〉 becomes different from zero for larger values ofλc > 1 as the value of the parameterξ increases.

Up to now we examined the nearest neighbor concurrenceC(49,50) with different Gaussian distributions fo
impurities and strengths of the magnetic field. It is interesting to see the effect of the different Gaussian distr
on the concurrence for the rest of the sites in the chain. Fig. 3 shows the nearest neighbor concurrence for a
the chain with differentζ atλ= 0.2 andλ= 0.9. At λ= 0.2, the nearest neighbor concurrences near the cen
the Gaussian distribution increases and reaches their maximum whenζ ≈ 2. Then they become smaller asζ further
increases. Whenζ ≈ 20, the concurrence near the center of Gaussian distribution approaches zero. Wheζ > 2
the concurrence peak splits into two. The height of the two peaks decrease by increasingζ , until they disappea
for ζ � 1. However, atλ= 0.9 the nearest neighbor concurrences near the center of Gaussian distribution
decrease whenζ increase. This fact indicates that the nearest-neighbor concurrence in the one-dimension
model can be controlled by tuning the impurity for specific external magnetic field.

To examine the effect of the Gaussian distribution in the magnetic field on all sites of the chain, we s
Fig. 4 the results for the nearest neighbor concurrenceC(i, i + 1) for all the sites forλ = 0.5 andλ = 1.5. For
λ = 0.5, the concurrences near the center of the Gaussian distribution can be tuned down by increasing
of ξ . However, the concurrence for the other sites approach zero whenξ � 1. Forλ= 1.5 the results similar to on
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Fig. 3. The nearest neighbor concurrenceC(i, i + 1) for all sites on the chain with system sizeN = 101 forλ = 0.2 andλ= 0.9. The curves
correspond to different values ofζ = 0.1,2.0,4.0,20.0.

Fig. 4. The nearest neighbor concurrenceC(i, i + 1) for all sites on the chain with system sizeN = 101 forλ = 0.5 andλ= 1.5. The curves
correspond to different values ofξ = 0.1,1.0,5.0,20.0.
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in Fig. 3 for the case with impurity atλ= 0.2. The concurrence peak at the center of the distribution splits into
by increasing the value ofξ .

In summary, we have focused our calculations on the Ising model,γ → 1, although the method for th
numerical solution is general and cover the XY model. In our previous publication [19] we examined the
of entanglement as the degree of the anisotropyγ varies between zero and one. The concurrence was used
measure of entanglement. In this Letter, rather than locating the impurity at one site in the chain [19], we in
a Gaussian distribution of disorder near a particular location. We have shown that the entanglement can b
by varying the strengths of the magnetic field and the impurity distribution in the system. The concurr
maximum close toλc and can be tuned to zero above the critical point.
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