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Abstract

We present a study of the entanglement of formation for one-dimensional magnetic systems with defects. The concurrence
was used as a measure of entanglement. Rather than locating the impurity at one site in the chain, there is a Gaussian distributior
of disorder near a particular location. We demonstrate that the entanglement can be tuned by varying the strength of the external
magnetic field and the distribution of impurities. The concurrence is a maximum close to the critical point, where a quantum
phase transition occurs, and for certain parameters can be tuned to zero above the critical point.
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1. Introduction

Quantum entanglement is regarded as the resource of quantum information processing with no classical analog
[1-4]. The corresponding investigation is currently a very active area of research [5-10] due to its potential
applications in quantum communication, such as quantum teleportation [11,12], superdense coding [13], quantum
key distribution [14], telecoloning [15] and decoherence in quantum computers [16,17].

The study of the entanglement as a function of the parameters in a system might be of great importance in
guantum computation and communication. Osterloh et al. [18] connected the theory of critical phenomena with
quantum information by exploring the entangling resources of a system close to its quantum critical point. They
demonstrated, for a class of one-dimensional magnetic systems modeled by the XY model, that entanglement shows
scaling behavior in the vicinity of the transition point. Recently [19], we have demonstrated that for such a class of
one-dimensional magnetic systems entanglement can be controlled and tuned by varying the anisotropy parametel
in the XY Hamiltonian and by introducing impurities into the systems. In particular, for certain parameters, the
entanglement is zero up to a critical point, where a quantum phase transition occurs, and is different from
zero above... Although, great interest attaches to three-dimensional lattices, the properties of one-dimensional
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magnetic systems with anisotropic coupling and impurities are of both experimental and theoretical significance
[20-23].

In this Letter, we consider a set of localized spif2 particles coupled through exchange interaction and subject
to an external magnetic field in the presence of impurities in the form of Gaussian distributions along the chain.

2. Solution of the XY model

In this section, we consider the numerical solution of the XY model on a one-dimensional lattic¥ witbs
in a transverse magnetic field and impurities. The Hamiltonian for such a system is given by

1+y _y )
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whereJ; j;+1 is the exchange interaction between sitesdi + 1, h,~ is the strength of the external magnetic field
on sitei, o are the Pauli matrices:(= x, y, z), y is the degree of anisotropy amd is the number of sites. We
assume cyclic boundary conditions, so that

ONp1 =01, 01{/+1 =oj, ON4t1 =07 )
The standard procedure used to solve Eq. (1) is to transform the spin operators into fermionic operators [24].
Let us define the raising and lowering operatofsa ,
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Then, we introduce Fermi operaturrsc defined by

i-1 i-1
a; =eXp(—ian;rcj>c,-, af =c;r exp(ian;rc,). (5)

j=1 j=1
So that, the Hamiltonian assumes the following quadratic form

N

ZJ,,+1 c; c,+1+yc Cz+1 +hc ZZh (c c,——). (6)
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In this study the exchange interaction has the fdr,ml = J (14w iy1), Wherea introduces the impurity in a
Gaussian form centered 5(}1 with strength or height,

o1 =2¢ exp{—e (l - NT-’-:L) } (7

The external magnetic field takes the fokm= (1 + B;), whereg has the following Gaussian form

ﬂ,-=sexp{—e(i —NT”)Z}. ®)

Wheno = 8 = 0 we recover the pure case. For both distributions of the impurity and the magnetic field, we fixed
the value of the width of the distribution at= 0.1 in all the calculations.
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By introducing the dimensionless parametet J/2h, the symmetrical matriA
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and the antisymmetricél
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. . 0
0
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the Hamiltonian becomes
N 1
H= Z |:ci+A,"jCj + E(CTB"JCY + h.C.)i|. (1))

i,j=1
The quadratic Hamiltonian can be diagonalized by making a linear transformation of the fermionic operators,

N N
me= Y guci+huct, 0= el +huci, (12)
i=1 i=1

wheregy; andhy; are real. Then the Hamiltonian becomes

N

H =" A ni + const (13)
k

with the following two coupled matrix equations which satisfy

k(A — B) = Ay, Uik (A + B) = Ak, (14)
where the components of the two column vecttysandyy; are given by

Sri = 8ki + i s Vki = gki — P (15)
Finally, the ground state of the systéthy) can be written as

nk|%o) = 0. (16)

3. Spin—spin correlation functions

A great deal of information about the preponderance of up-spin on one sublattice to down-spin on the
other sublattice, can be obtained by investigating the different spin—spin correlation functions and the average
magnetization per spin [24].
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The spin—spin correlation functions for ground state are defined as

1
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and the average magnetization per spin
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In order to calculate these correlation functions, we must first calculate the following quantities:

(WolA; Aj|Wo), (Yol B; Bj|¥0), (Yol B; A j|¥0)

whereA; = c;r +c¢; andB; = c;r —cj.
From Egs. (12) and (15), sinak, and¢; are orthonormal, we can get
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Thus, using Eqg. (16), we obtain

N
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Using Wick’s theorem [25] we obtain
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4. Entanglement of formation

The concept of entanglement of formation is related to the amount of entanglement needed to preparethe state
wherep is the density matrix. It was shown by Wootters [7] that

E(p) =E(C(p)). (30)
where the functio€ is given by
g_h<1+\/1—cz)

: (3D)

whereh(x) = —xlog,x — (1 —x)log,(1 — x), andC is the concurrence. SinéC) is monotonically increasing
and ranges from 0 to 1 @& goes from 0 to 1, so the one can take the concurrence as a measure of entanglement in
its own right [6]. The concurrencg is given by [7]

C(p) =maxO0, k1 — k2 — A3 — Aal. (32)

For a general state of two qubits,'s are the eigenvalues, in decreasing order, of the Hermitian matrix

R=\/\/P P, (33)

wherep is the density matrix angd is the spin-flipped state defined as

p = (0y ® 0y)p*(0y ® ay), (34)

where thep* is the complex conjugate of and is taken in the standard basis, which for a pair of %)p"&rticles
is{I11), I14), L1, L)} Alternatively, thex;’s are the square roots of the eigenvalues of the non-Hermifan

The structure of the reduced density matrix follows from the symmetry properties of the Hamiltonian. However,
for this case the concurrenc¢ki, j) depends on, j and the location of the impurity and not only on the difference
li — j| as for the pure case. Using the operator expansion for the density matrix and the symmetries of the
Hamiltonian [26] lead to the general form

pri 0 0 p1a
0 p22 p23 O

0 p23 p33 O
p14 O 0 a4
with
Aa = /p1,104,4+ | 1,4, A = /02,2033 + |02,3],
Ae = |/PL1paa — |prall, ra =|/P2.2033 — |p23l|. (36)

Using the definition{A) = Tr(pA), we can express all the matrix elements in the density matrix in terms of
different spin—spin correlation functions:

1.1 1

pra=sM{+ My + 5, + 7, (37)
1 1 1

p22=5Mj = SMy =S, + 7, (38)
1 1 .1

P33= 35 ,f,—EMIZ—Sj'm—i‘Z, (39)
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1 i 1
p4’4=—§ IZ_EM;1+Si}n+Z’ (40)
P2.3= Sjyy + Siyys (41)
pL4= Slxm — Slym. (42)

5. Resultsand discussions

For the sake of clarity, we focus our discussions on the transverse Ising model, which arises as theslitit
This system is the simplest quantum lattice system to exhibit a quantum phase transition. For the pure case with
a = 0, Osborne and Nielsen [26] argue that the Ising model provide the clearest evidence for the conjecture that
the critical point corresponds to the situation where the lattice is most entangled [26]. Our goal is to examine
this system in the presence of impurities. In Fig. 1 we show the results of the nearest neighbor concurrence and its
derivative, between the sites 49 and 50, as a function of the parainetéy 2h for different Gaussian distributions
of the impurity (see Eq. (7)) and for different strengths of the external magnetic field (see Eq. (8)). In the left panel
of Fig. 1, the parameter of the Gaussian distribution of the impurity was varied from the pure case;witl to
¢ = 1. In the right panel of Fig. 1, the parameteof the Gaussian distribution for the external magnetic field was
varied fromé =0to& = 1.

One can see that the concurrence is close to zero above the criticakpaimd a maximum close to.. As ¢
increases the concurrence tends to increase faster ang, ttvéhere concurrence approaches maximum, shift to
zero very rapidly. However, the concurrence increases slowly anil,titends to move to infinity by increasing
the value of the parametér The derivative of concurrence for different valueg afndé with respect ta., is also
presented in the Fig. 1. We find that the derivative of concurrence starts at a maximum value, then approaches a

- b

'

P I P
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Fig. 1. The nearest neighbor concurreric@9, 50) and its derivative for different values of the Gaussian distribution in the external magnetic
field, &, and the impuritiess, as a function of the reduced coupling constarthe system siz&/ = 101 and the anisotropy paramejee= 1.
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Spin-spin Correlations

Fig. 2. The spin—spin correlation functions and the average magnetization per spin for different Gaussian distributions in the impurities, with
the parametetr =0.0,0.1, 0.5, 1.

minimum at the critical point and finally disappears in the limit>- co. For the pure case, the critical pot= 1.
But it shifts to zero for increasing values ofand to infinity for increasing values §f

In order to examine the change of the critical point as the paramgtansi¢ varies, we calculated the three
spin—spin correlation functiors, , S,y,'n, Sy, and the average magnetization per sfin Fig. 2 shows the behavior
of different spin—spin correlation functions for different values of the parangetEor the pure Ising model at
N = o0, the system exhibit a quantum phase transition.at 1. The spin—spin correlation functid is different
from zero fori > 1 and it vanishes at the transition. On the contrary the magnetization alongdihection is
different from zero for any value df. As expected, the spin—spin correlation functig¢fs) and (S¢) are almost
zero for all values of.. As the value of the parameterincreases, the magnetizatioft becomes different from
zero for smaller values of, < 1. Similar analysis shows that on the contrary the spin—spin correlation function
(S*) becomes different from zero for larger values\pf> 1 as the value of the parameteincreases.

Up to now we examined the nearest neighbor concurrénd8, 50) with different Gaussian distributions for
impurities and strengths of the magnetic field. It is interesting to see the effect of the different Gaussian distributions
on the concurrence for the rest of the sites in the chain. Fig. 3 shows the nearest neighbor concurrence for all sites in
the chain with different ati = 0.2 andx = 0.9. At A = 0.2, the nearest neighbor concurrences near the center of
the Gaussian distribution increases and reaches their maximumawh@n Then they become smaller agurther
increases. When ~ 20, the concurrence near the center of Gaussian distribution approaches zero; Wien
the concurrence peak splits into two. The height of the two peaks decrease by incegeasitiyjthey disappear
for ¢ > 1. However, ab. = 0.9 the nearest neighbor concurrences near the center of Gaussian distribution always
decrease whed increase. This fact indicates that the nearest-neighbor concurrence in the one-dimensional Ising
model can be controlled by tuning the impurity for specific external magnetic field.

To examine the effect of the Gaussian distribution in the magnetic field on all sites of the chain, we show in
Fig. 4 the results for the nearest neighbor concurreén@ei + 1) for all the sites forx = 0.5 andAx = 1.5. For
A = 0.5, the concurrences near the center of the Gaussian distribution can be tuned down by increasing the value
of £. However, the concurrence for the other sites approach zero §vget. Fori = 1.5 the results similar to one
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Fig. 3. The nearest neighbor concurrertg, ; + 1) for all sites on the chain with system size= 101 for A = 0.2 andA = 0.9. The curves
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Fig. 4. The nearest neighbor concurreritg, ; + 1) for all sites on the chain with system size= 101 for A = 0.5 andA = 1.5. The curves
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in Fig. 3 for the case with impurity at = 0.2. The concurrence peak at the center of the distribution splits into two
by increasing the value &f.

In summary, we have focused our calculations on the Ising madeh 1, although the method for the
numerical solution is general and cover the XY model. In our previous publication [19] we examined the change
of entanglement as the degree of the anisotrppsaries between zero and one. The concurrence was used as a
measure of entanglement. In this Letter, rather than locating the impurity at one site in the chain [19], we introduce
a Gaussian distribution of disorder near a particular location. We have shown that the entanglement can be tunned
by varying the strengths of the magnetic field and the impurity distribution in the system. The concurrence is
maximum close ta.. and can be tuned to zero above the critical point.
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