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Abstract

We present the finite-size scaling approach for the calculations of the critical
parameters for quantum systems. As an example of how this approach can
be used we calculate critical conditions for stable dipole-bound anions. The
approach is general and can be used to calculate critical parameters for any
given quantum system.

6.1 Introduction

The existence of phase transitions is associated with singularities of the free en-
ergy. These singularities occur only in the thermodynamic limit[1, 2]. In statistical
mechanics, the finite size scaling method provides a systematic way to extrapolate
information obtained from a finite system to the thermodynamic limit[3, 4, 5, 6].
Recently, considerable attention has concentrated on a qualitatively different class
of phase transitions, transitions which occur at the absolute zero of temperature.
These are quantum phase transitions which are driven by quantum fluctuations as
a consequence of Heisenberg’s uncertainty principle[7, 8]. These new transitions are
tuned by parameters in the Hamiltonian.

In quantum mechanics, we have shown that the finite size corresponds not
to the spatial dimension, as in statistical mechanics, but to the number of ele-
ments in a complete basis set used to expand the exact eigenfunction of a given
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Hamiltonian and calculate the quantum critical parameters[9, 10]. This method
is efficient and very accurate for estimating the critical screening length for one-
electron screened Coulomb potentials[9], the critical nuclear charges for two-electron
atoms[11, 12], three-electron atoms[13] and simple diatomic molecules[14]. For
three-body Coulomb systems with charges (Q, q, Q) and masses (M , m, M), full
numerical results, using finite size scaling method, with an arbitrary mass ratio
0 ≤ κ = (1 + m

M )−1 ≤ 1 show that there exists a transition curve λc(κ) through
which all systems undergo a first-order phase transition from stable to unstable.
This approach lead to a new proposed classification of the three-body Coulomb
systems: molecule-like systems and atom-like systems[15].

In the next section we will introduce the finite size scaling approach for quantum
systems followed by an example of how this approach can be used to calculate critical
conditions for stable dipole-bound anions. The approach is general and can be used
to calculate critical parameters for any given quantum system.

6.2 Finite Size Scaling in Quantum Mechanics

In order to apply the finite size scaling to quantum mechanics problems we will
consider the following Hamiltonian[16]

H = H0 + Vλ . (6.1)

where H0 is λ-independent and Vλ is the λ-dependent term. We are interested in
the study of how the different properties of the system change when the value of
λ varies. A critical point λc will be defined as a point for which a bound state
becomes absorbed or degenerate with a continuum. Without loss of generality, we
will assume that the Hamiltonian, Eq. (6.1), has a bound state Eλ for λ > λc which
becomes equal to zero at λ = λc. As in statistical mechanics, we can define some
critical exponents related to the asymptotic behavior of different quantities near the
critical point. In particular, for the energy we can define the critical exponent α as

Eλ ∼
λ → λ+

c

(λ− λc)α (6.2)

For general potentials of the form Vλ = λ V , Simon[17] showed that the critical
exponent α is equal to one if and only if H(λc) has a normalizable eigenfunction
with eigenvalue equal to zero. The existence or absence of a bound state at the
critical point is related to the type of the singularity in the energy. Using statistical
mechanics terminology, we can associate “first order phase transitions” with the
existence of a normalizable eigenfunction at the critical point. The absence of such
a function could be related to “continuous phase transitions”[9, 10].

In order to obtain the value of λc from studying the eigenvalues of a finite-size
Hamiltonian matrix one has to define a sequence of pseudo-critical parameters, λ(N).
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Although there is no unique recipe to define such a sequence, one can use the first
order method which can be applied if the the threshold energy is known [11, 18],
or the phenomenological renormalization [19, 5] method, where the sequence of the
pseudo-critical values of λ can be calculated by knowing the first and the second
lowest eigenvalues of the H-matrix for two different orders, N and N ′[11, 12, 13].
In this chapter we will introduce a direct approach which is closely related to the
variational method in quantum calculations.

In quantum calculations, the variation method is widely used to approximate the
solution of the Schrödinger equation. To obtain exact results one should expand the
exact wave function in a complete basis set and take the number of basis functions
to infinity. In practice, one truncates this expansion at some order N . In the
present approach, the finite size corresponds not to the spatial dimension, as in
statistical mechanics, but to the number of elements in a complete basis set used
to expand the exact eigenfunction of a given Hamiltonian. For a given complete
orthonormal λ-independent basis set {Φn}, the ground state eigenfunction has the
following expansion

Ψλ =
∑

n

an(λ)Φn (6.3)

where n represents the set of quantum numbers. In order to approximate the dif-
ferent quantities, we have to truncate the series, Eq. (6.3) at order N . Then the
Hamiltonian is replaced by M(N)×M(N) matrix H(N), with M(N) being the num-
ber of elements in the truncated basis set at order N . Using the standard linear
variation method, the Nth-order approximation for the energies are given by the
eigenvalues {Λ(N)

i } of the matrix H(N). The corresponding eigenfunctions are given
by

Ψ(N)
λ =

M(N)∑

n

a(N)
n (λ)Φn (6.4)

where the coefficients a
(N)
n are the components of the ground-state eigenvector. In

this representation, the expectation value of any operator O at order N is given by

〈O〉(N)
λ =

N∑

n,m

a(N)
n (λ)∗ a(N)

m (λ)On,m (6.5)

where On,m are the matrix elements of O in the basis set {Φn}. In general, the
mean value 〈O〉 is not analytical at λ = λc, and we can define a critical exponent,
µO, by the relation

〈O〉λ ∼
λ → λ+

c

(λ− λc)µO . (6.6)
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In statistical mechanics, the singularities in thermodynamic functions associated
with a critical point occur only in the thermodynamic limit. In the variation ap-
proach singularities in the different mean values will occur only in the limit of infinite
basis functions[16].

As in the finite size scaling ansatz in statistical mechanics [5, 20], we will assume
that there exists a scaling function for the truncated magnitudes such that

〈O〉(N)
λ ∼ 〈O〉λ FO(N |λ− λc|ν) (6.7)

with a different scaling function FO for each different operator but with a unique
scaling exponent ν.

Now we are in a position to obtain the critical parameters by defining the fol-
lowing function[16]

∆O(λ; N, N ′) =
ln
(
〈O〉(N)

λ / 〈O〉(N
′)

λ

)

ln (N ′ / N)
. (6.8)

At the critical point, the mean value depends on N as a power law, 〈O〉 ∼ N−µO/ν ,
thus one obtains an equation for the ratio of the critical exponents

∆O(λc; N, N ′) =
µO
ν

, (6.9)

which is independent of the values of N and N ′. Thus, for three different values
N, N ′ and N ′′ the curves defined by Eq. (6.8) intersect at the critical point

∆O(λc; N, N ′) = ∆O(λc; N ′′, N) (6.10)

In order to obtain the critical exponent α, which is associated with the energy,
we can take O = H in Eq. (6.9) with µO = α,

α

ν
= ∆H(λc; N, N ′) . (6.11)

and by using the Hellmann-Feynman theorem[21] we obtain,

∂Eλ

∂λ
=
〈

∂H
∂λ

〉

λ

=
〈

∂Vλ

∂λ

〉

λ

. (6.12)

Taking O = ∂Vλ/∂λ in Eq. (6.9) gives an equation for (α − 1)/ν, that together
with Eq. (6.11) give the exponents α and ν. Now, we can define the following
function

Γα(λ; N, N ′) =
∆H(λ; N, N ′)

∆H(λ; N, N ′) − ∆∂Vλ/∂λ(λ; N, N ′)
(6.13)

which is also independent of the values of N and N ′ at the critical point λ = λc and
gives the critical exponent α,
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α = Γα(λc; N, N ′) (6.14)

From Eq. (6.11) the critical exponent ν is readily given by

ν =
α

∆H(λc; N, N ′)
. (6.15)

The finite size scaling equations are valid only as an asymptotic expressions,
N → ∞, but with finite basis set unique values of λc, α and ν can be obtained as a
succession of values as a function of N, N ′ and N ′′. The relation between N, N ′ and
N ′′ was extensively studied in finite size scaling in statistical mechanics[5], and it is
known that the fastest convergence is obtained when the difference between these
numbers is as small as possible. In previous work[9, 10], we took ∆N = 1, and when
there are parity effects we used ∆N = 2. In order to obtain the extrapolated values
for λ(N), α(N) and ν(N) at N → ∞ we used the algorithm of Bulirsch and Stoer[22]
with N ′ = N + ∆N and N ′′ = N − ∆N .

6.3 Applications

Finite size scaling method have been used to calculate critical parameters for atomic
and molecular systems[9]. Here as an example we will apply this approach to obtain
the critical conditions for stable dipole-bound anions[25]. Dipole-bound anions are
unstable relative to autodetachemnet unless the dipole moment strength exceeds a
certain critical value. This interesting problem has a long history with a number
of methods having been used to obtain the critical value of the dipole moment
[26, 27, 28, 29, 30, 31, 32].

The Hamiltonian, in atomic units, for an electron in a two-center Coulomb po-
tential with a charge +Z at ~r = 0 and a charge −Z localized along the z−axis is
given by

H(Z; R; ~x) = −1
2
∇2 − Z

(
1
r
− 1

|~r − R k̂|

)
, (6.16)

where R is the distance between the fixed charges and k̂ is a unitary vector in the
z−direction.

After scaling the Hamiltonian has only one free parameter, the electric dipole
moment µ = ZR,

H(Z; R; ~x) = Z2 H(1; µ; Z~x) =
1
R2

H(µ; 1; ~x/R) . (6.17)

In order to apply the finite size scaling method one has to introduce an appro-
priate basis set. Since the potential has a cylindrical symmetry, the ground state
wave function in spherical coordinates can be written as
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Figure 6.1: Γ(β = 0.01; µ) as a function of µ for the ground state energy of the
electric dipole potential for even values of N = 4, . . . , 56 and for odd values of
N = 5, . . . , 55.

Ψ0(~r) = Ψ0(r, θ) . (6.18)

This ground-state wave function could be expanded in a complete spherical basis-set
using spherical harmonics with m = 0. We use a (non-orthogonal) Slater basis-set
of the form[25]

Φn,l(~r) =
[

β2n+3

(2n + 2)!

]1/2

e−βr/2 rn Y 0
l (θ, φ) ; n = 0, 1, . . . ; l = 0, . . . , n ,

(6.19)
where β is a variational parameter used to optimize the numerical results.

The ground state energy was calculated using the Ritz-variational method for
non-orthogonal basis-set[21]. The Slater basis-set is truncated allowing a maximum
value of n in Eq.(6.19) n = 0, . . . , N , with the restriction over l = 0, . . . , n, we obtain
the size of the truncated Hamiltonian matrix to be M(N) = (N + 1)(N + 2)/2.

In order to calculate the Hamiltonian matrix, its eigenvalues and eigenvectors,
we have to discuss two technical problem. First of all, the matrix elements are
in general a summation of large numbers of alternate signs given a small number.
Secondly, the basis-set is non-orthogonal. It is known that the standard Gram-
Schmidt orthogonalization process is not good numerically[23] therefore we used
a Cholesky decomposition to the overlap matrix in order to solve the eigenvalue
problem. But the determinant of the overlap matrix goes dramatically to zero,
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Figure 6.2: Γ(β = 0.01; µ) as a function of µ for the ground state energy of the
electric dipole potential for even and odd values of N = 7, . . . , 56. The extrapolated
value µc ' 0.648a.u. is shown by a square.

and working with standard real(8) (16 digits) Fortran compilers the decomposition
becomes numerically unstable for small values of N ' 10. In reference [25] we used
quadruple precision (32 digits) to get the data for N ≤ 28. In the present work
we have used a multiprecision Fortran 90 code [24] with 150 digits to calculate the
Hamiltonian matrix and the eigenvalues are calculated with standard real(8) codes.
With this high precision we were able to calculate eigenvalues and eigenvectors up
to N = 58, which means a Hamiltonian matrix of 1770× 1770.

Finite size scaling calculations for spherically symmetric potentials show strong
parity effects. We also find parity effects for the dipole potential, so Eq. (14) was
used with N ′ = N + 2. In Fig. (6.1) we show the results of the finite size scaling
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Figure 6.3: α(N)(β = 0.01) as a function of 1/N for the ground state energy of the
electric dipole potential for even and odd values of N = 5, . . . , 56.

calculations for even values of N = 4, . . . , 56 and for odd values of N = 5, . . . , 55.
Plotting ΓN as a function of µ for different values of N gives a family of curves with
an intersection at µc. Since the intersection between two consecutive curves depends
on the size of the basis set N , in Fig. (6.2) we show the extrapolation curves for
the pseudo critical dipole moment µ

(N)
c (β = 0.01) as a function of 1/N for even and

odd values of N . The scaling was done with E(µ; 1) and the extrapolated value
is µ

(ext)
c ' 0.648a.u.. This value of the critical dipole is in a good agreement with

results obtained using other methods[26, 27, 28].

An exact asymptotic analysis shows that the energy tends to zero exponentially
as the dipole moment reaches the critical value [32]. That means it goes to zero
faster than any power of (µ− µc) and a value α = ∞ is associated with the critical
exponent [9]. In Fig. (6.3) we show the values of α(N) obtained from Eq. (6.14).
These data are compatible with value α = ∞.
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In summary, the finite size scaling method in quantum mechanics is simple accu-
rate and can be used in a systematic way to estimate directly the critical parameters
for any given quantum system.
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