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Using the Hubbard model, the entanglement scaling behavior in a two-dimensional itinerant system is
investigated. It has been found that, on the two sides of the critical point denoting an inherent quantum phase
transition(QPT), the entanglement follows different scalings with the size, just as an order parameter does.
This fact reveals the subtle role played by the entanglement in QPT as a fungible physical resource.
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The existence of entanglement between distinctive quan-
tum systems has marked a fundamental difference between
quantum and classical physics. Recently, with the explosive
development of research in quantum information theory and
quantum computation[1–4], the study of entanglement[5,6]
has come into the limelight again after more than 60 years of
controversies and strenuous progress. Experimentally, en-
tanglements have already been produced between up to four
photons[7,8] and even between two macroscopic states such
as two superconducting qubits, each of which contains as
many as 109 electrons[9]. But theoretically, because an en-
semble’s Hilbert space grows exponentially with the number
of its component particles, we are still far from fully under-
standing the contents of the entanglements. Only for the sim-
plest state with two distinguishable particles can we have a
complete description of the entanglement measure. For states
of more than two particles, especially for mixed states, the
current knowledge about their entanglement is very limited,
and all the related complexities have just begun to be ex-
plored. For the spin-only entanglement of localized distin-
guishable particles, the most popular measure of the en-
tanglement is the Wootters measure[10]. Recently, the
influence of quantum statistics on the definition of entangle-
ment has begun to be noticed and discussed by several au-
thors[11–13]. Although various entanglement measures have
been put forward, according to Gitting’s criterions[15], only
Zanardi’s measure[16] survives the test of all the require-
ments upon entanglement definition. This measure is given
in Fock space as the von Neuman entropy, namely,

Ej = − Tr r j ln r j, r j = Trjuclkcu, s1d

where Trj denotes the trace over all but thej th site andc is
the antisymmetric wave function of the studied system.
Hence,Ej actually describes the entanglement of thej th site
with the remaining sites. A generalization of this one-site
entanglement is to define an entanglement between one
L-site block with the rest of the systems[17],

EL = − TrsrLlog2rLd, s2d

where all the sites are traced out except those belonging to
the selected block.

Recently, it has been speculated that the most entangled
systems could be found at the critical point when the system
undergoes a quantum phase transition(QPT), i. e., a qualita-
tive change of some physical properties takes place as an
order parameter in the Hamiltonian is tuned[18]. QPT re-
sults from quantum fluctuations at the absolute zero of tem-
perature and is a pure quantum effect featured by long-range
correlations. So far, there have already been some efforts in
exploring the above speculations, such as the analysis of the
XY model about the single-spin entropies and two-spin quan-
tum correlations[19,20], the entanglement between a block
of L contiguous sites and the rest of the chain[17], and also
the scaling of entanglement near QPT[21]. But because
there is still no analytical proof, the role played by the en-
tanglement in quantum critical phenomena remains elusive.
Generally speaking, there exist at least two difficulties in
resolving this issue. First, only two-particle entanglement has
been well explored. How to quantify the multiparticle en-
tanglement is not clear. Second, QPT closely relates to the
notorious many-body problems, which is almost analytically
intractable. The only effective and accurate way to deal with
QPT in a critical region was the density-matrix renormaliza-
tion group method[22]. Unfortunately, it is only efficient for
one-dimensional cases because of the much more compli-
cated boundary conditions for two-dimensional situation. It
should be mentioned here that recently, Vial[23] has put
forward another new efficient numerical method to study
one-dimensional many-body systems based upon the en-
tanglement contained in the system.

In this paper, we will focus on investigating the entangle-
ment behavior in QPT for a two-dimensional array of quan-
tum dots, which provides a suitable arena for the implemen-
tation of quantum computation[24–26]. For this purpose, the
real-space renormalization group technique[27] will be uti-
lized and developed for the finite-size analysis of entangle-
ment.

The model we use is the Hubbard model with the Hamil-
tonian,

H = − t o
ki,jl,s

fcis
† cjs + H . c.g + Uo

i
S1

2
− ni↑DS1

2
− ni↓D

+ Ko
i

I i , s3d

wheret is the nearest-neighbor hopping term,U is the local
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repulsive interaction,K=−U /4, and I i is the unit operator.
cis

† scisd creates(annihilates) an electron with spins in a
Wannier orbital located at sitei; the corresponding number
operator isnis=cis

† cis and kl denotes the nearest-neighbor
pairs. H.c. denotes the Hermitian conjugate.

For a half-filled triangular quantum lattice, there exists a
metal-insulator phase transition with the tuning parameter
U / t at the critical point 12.5[28–30]. The corresponding
order parameter for metal-insulator transition is the charge
gap defined by Dg=EsNe−1d+EsNe+1d−2EsNed, where
EsNed denotes the lowest energy for aNe electron system. In
our case,Ne is equal to the site numberNs of the lattice.
Unlike the charge gap calculated from the energy levels, the
Zanardi’s measure of the entanglement is defined upon the
wave function corresponding toEsNed instead. Using the
conventional renormalization group method for the finite-
size scaling analysis[28–30], we can discuss three schemes
of entanglement scaling:(1) Single-site entanglement scaling
with the total system size,Esingle, (2) block-block entangle-
ment scaling with the block size,Eblock, and(3) single-block
entanglement scaling with the block size,Eblock−block.

Figure 1 presents the single-site entanglement scaling. It
is obvious thatEsingle is not a universal quantity. This con-
clusion is consistent with the argument given by Osborne
[19], who claims that the single-site entanglement is not scal-
able because it does not own the proper extensivity and does
not distinguish the local and distributed entanglement. One
more interesting feature in Fig. 1 is that when the system size
is increased beyond 72, Esingle makes almost no change any
more. This implies that only a limited region of sites around
the central site contributed significantly to the single-site en-
tanglement.

Using the one-parameter scaling theory, near the phase-
transition point, we assume the existence of scaling function
f for Eblock−block such that

Eblock−block= qyEfSL

j
D, s4d

whereq=U / t−sU / tdc measures the deviation distance of the
system away from the critical state withsU / tdc=12.5, which
is exactly equal to the critical value for metal-insulator tran-
sition when the same order parameterU / t is used[28–30].
j=q−n is the correlation length of the system with the critical
exponentn.

Hence,

Eblock−block= qyEfsN1/2vqd, s5d

where we usedN=L2 for the two-dimensional systems.
In Fig. 2, we show the results ofEblock−block as a function

of sU / td for different system sizes. With proper scaling, all
the curves collapse onto one curve, which can be expressed
as

FIG. 1. (a) A schematic diagram showing the central site and the
surrounding ones in the triangular quantum dot lattice. The dotted
lines represent the site-site interactions.(b) Scaling of the single-
site entanglement for various system sizes. The sizes are denoted by
different symbols.

FIG. 2. (a) The schematic diagram displays the lattice configu-
ration with a central block and the surrounding ones.(b) Scaling of
block-block for various system sizes and(c) scaling of block en-
tanglements with the block size.
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Eblock−block= fsqN1/2d. s6d

Thus, the critical exponents in Eq.(5) are yE=0,n=1. It is
interesting to note that we obtained the samen as in the
study of metal-insulator transition. This shows the consis-
tency of the results, since the critical exponentn is only
dependent on the inherent symmetry and dimension of the
investigated system.

Another significant result lies in the finding that the metal
state is highly entangled, while the insulating state, is only
partly entangled. For a four-dimensional density matrix, the
maximally entangled state can be written as a diagonal ma-
trix with equal components14. The related entanglement is
−Si=1

4 1
4log2

1
4 =2, which is exactly the value obtained from

Fig. 2(b). However, unlike the metal state, the insulating
states should be expected to have electrons showing less mo-
bility. If we assume the highly probable situation, i.e., that
the central site has equal probability to be inu↑ l, u↓ l and no
occupation inu0l, u↑↓l, the corresponding entanglement is
thenEblock−block=−Si=2

3 1
2
log2

1
2 =1, also consistent with the re-

sults from Fig. 2(b).
All the above discussions are confined to the entangle-

ment between the central block and its surrounding blocks.
Because the central block is a very special one showing the
highest symmetry, one may wonder what can happen to the
neighboring blocks, for example, the entanglement between
block 7 and the rest of the six blocks. To answer this ques-
tion, the same calculations are conducted and the results are
the same except that in the metal state, the maximal en-
tanglement is a little less than 2 and the minimal one is a
little less than 1. This can be explained by the asymmetric
position of site 1 in the block.

It should be mentioned that the calculated entanglement
here has a corresponding critical exponentyE=0. This means
that the entanglement is constant at the critical point over all
sizes of the system. But it is not a constant over all values of
U / t. There is an abrupt jump across the critical point asL
→`.

If we divide the regime of the order parameter into the
noncritical regime and the critical regime, the results can be
summarized as follows: In the noncritical regime, i.e.,U / t is
away fromsU / tdc, asL increases, the entanglement will satu-
rate onto two different values depending on the sign ofU / t
−sU / tdc. At the critical point, the entanglement is actually a
constant independent of sizeL.

These properties are qualitatively different from the
single-site entanglement discussed by Osborne[19], where
the entanglement with Zanardi’s measure increases from zero
to the maximum at the critical point and then decreases again
to zero as the order parameterg for the XY mode is tuned.

These peculiar properties of the entanglement we have
found here can be of potential interest to make an effective

ideal “entanglement switch.” For example, with seven blocks
of quantum dots on a triangular lattice, the entanglement
among the blocks can be regulated as “0” or “1” almost
immediately once the tuning parameterU / t crosses the criti-
cal point. The switch errors will depend on the size of the
blocks. Since it has already been a well-developed technique
to changeU / t for the quantum dot lattice[26,31], the above
scheme should be workable. To remove the special confine-
ment we have made upon the calculated entanglement,
namely only the entanglement of block 1 and block 7 with
the rest of the blocks are considered. In the following, we
will prove that the average pairwise entanglement also has
the properties shown in Fig. 2(b).

Let Eblock−block,7 denote the entanglement between the 7th
and all the remaining blocks in a hexagonal system. From the
symmetry of the system we can show that the total pairwise
entanglementEtot=6Eblock−block+3Eblock−block,7. The average
two-site entanglement isEaverage=Etot/21=s2Eblock−block

+Eblock−block,7d /7. Because

Eblock,7 = g1sqN1/2d, Eblock,1 = g2sqN1/2d, s7d

then we should haveEaverage=gsqN1/2d, whereg1,g2, andg
are scaling functions.

For obtaining the single-block entanglement, the first step
is to make a cutoff over the system size. In our work, we let
it be 79. The results are presented in Fig. 2(c). It is magnifi-
cent that as we change the size of the central block, its en-
tanglement with all the rest of the sites follows the same
scaling properties asEblock−block. It is understandable if we
consider the fact that only a limited region around the block
contributes mostly toEblock. This result greatly facilitates the
fabrication of realistic entanglement control devices, such as
quantum gates for a quantum computer, since we don’t need
to delicately care about the number of component blocks in
fear that the next neighboring or the next-next neighboring
quantum dots should influence the switching effect.

In summary, in this paper, various schemes of the finite-
size scaling properties with Zanardi’s measure of entangle-
ment, the von Neuman entropy Eq.(1), has been investigated
for the Hubbard model on a triangular quantum lattice. The
critical exponentn=1 has been found, which coincides well
with our previous work in studying a quite different physical
property, the charge gap. When the block sizeL→`, the
entanglement shows an abrupt change when the tuning pa-
rameter crosses the phase-transition point. This property
might be applied to make an “entanglement switch,” and
shows the promising prospect of regarding entanglement as a
physical resource.
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