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Using the Hubbard model, the entanglement scaling behavior in a two-dimensional itinerant system is
investigated. It has been found that, on the two sides of the critical point denoting an inherent quantum phase
transition(QPT), the entanglement follows different scalings with the size, just as an order parameter does.
This fact reveals the subtle role played by the entanglement in QPT as a fungible physical resource.
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The existence of entanglement between distinctive quan- Recently, it has been speculated that the most entangled
tum systems has marked a fundamental difference betweeystems could be found at the critical point when the system
quantum and classical physics. Recently, with the explosivéindergoes a quantum phase transitiQiT), i. e., a qualita-
development of research in quantum information theory andive change of some physical properties takes place as an
quantum Computatiotﬂ__z]], the Study of entang|eme[ﬁy6] order parameter in the Hamiltonian is tUﬂHB]. QPT re-
has come into the limelight again after more than 60 years ofults from quantum fluctuations at the absolute zero of tem-
controversies and strenuous progress. Experimentally, eferature and is a pure quantum effect featured by long-range
tanglements have already been produced between up to fogPrrelations. So far, there have already been some efforts in
photons[7,8] and even between two macroscopic states sucfXPl0ring the above speculations, such as the analysis of the
as two superconducting qubits, each of which contains a Y model about the single-spin entropies and two-spin quan-
many as 10 electrons[9]. But theoretically, because an en- UM correlationg 19,24, the entanglement between a block
semble’s Hilbert space grows exponentially with the numbe|pf L contiguous sites and the rest of the chii], and also

of its component particles, we are still far from fully under- the scaling of entanglement near Q1] But because

standing the contents of the entanglements. Only for the sin}there s still no analytical proof, the role played by the en-

. T . anglement in quantum critical phenomena remains elusive.
plest state with two distinguishable particles can we have ®enerally speaking, there exist at least two difficulties in

complete description of the entanglement measure. For statesso|ving this issue. First, only two-particle entanglement has
of more than two particles, especially for mixed states, thgyeen well explored. How to quantify the multiparticle en-
current knowledge about their entanglement is very limited¢anglement is not clear. Second, QPT closely relates to the
and all the related complexities have just begun to be exnotorious many-body problems, which is almost analytically
plored. For the spin-only entanglement of localized distin-intractable. The only effective and accurate way to deal with
guishable particles, the most popular measure of the erQPT in a critical region was the density-matrix renormaliza-
tanglement is the Wootters measuf#0]. Recently, the tion group method22]. Unfortunately, it is only efficient for
influence of quantum statistics on the definition of entangle-one-dimensional cases because of the much more compli-
ment has begun to be noticed and discussed by several atated boundary conditions for two-dimensional situation. It
thors[11-13. Although various entanglement measures haveshould be mentioned here that recently, \iaB] has put
been put forward, according to Gitting’s criteriofis], only forward another new efficient numerical method to study
Zanardi's measur¢l6] survives the test of all the require- one-dimensional many-body systems based upon the en-
ments upon entanglement definition. This measure is givetanglement contained in the system.

in Fock space as the von Neuman entropy, namely, In this paper, we will focus on investigating the entangle-
ment behavior in QPT for a two-dimensional array of quan-
E=-TrpInp, p =Ty, (1) tum dots, which provides a suitable arena for the implemen-

tation of quantum computatid24—26. For this purpose, the
real-space renormalization group technid@e] will be uti-
lized and developed for the finite-size analysis of entangle-
‘ment.

where Ty denotes the trace over all but tith site andy is
the antisymmetric wave function of the studied system
Hence E; actually describes the entanglement of jfesite 1o gl we use is the Hubbard model with the Hamil-
with the remaining sites. A generalization of this one-site; i~

entanglement is to define an entanglement between one '

L-site block with the rest of the systerfis7], + <1 )(1 )
H=- ioCiotH.CJ]+ ——-ni |l z—n
t<%g[cmcw cl Uzi >l 5 =
EL == Tr(p_logzpL), (2

K2, 3
where all the sites are traced out except those belonging to '
the selected block. wheret is the nearest-neighbor hopping terh,s the local
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FIG. 1. (a) A schematic diagram showing the central site and the 201
surrounding ones in the triangular quantum dot lattice. The dotted : Y
lines represent the site-site interactio(®. Scaling of the single- 7:7;
site entanglement for various system sizes. The sizes are denoted by e
different symbols. 215 o7t
IT] R
7A775
repulsive interactionK=-U/4, andl; is the unit operator.
ciTg(Cig) creates(annihilate$ an electron with spino in a 1.0 vy
Wannier orbital located at site the corresponding number -8000 0 8000
operator isn;,=c! ¢, and () denotes the nearest-neighbor [U/-(U/) ]*N™?
c

pairs. H.c. denotes the Hermitian conjugate.

For a half-filled triangular quantum lattice, there exists a FIG. 2. (a) The schematic diagram displays the lattice configu-
metal-insulator phase transition with the tuning parameteration with a central block and the surrounding on@®@3.Scaling of
U/t at the critical point 12.928-3(0. The corresponding block-block for various system sizes ate) scaling of block en-
order parameter for metal-insulator transition is the chargéanglements with the block size.
gap defined byAy=E(Ne—1)+E(Ne+1)-2E(Ne), where
E(Ne) denotes the lowest energy fol\ electron system. In Using the one-parameter scaling theory, near the phase-
our caseN, is equal to the site numbeN of the lattice.  transition point, we assume the existence of scaling function
Unlike the charge gap calculated from the energy levels, the for Eyqccpiock SUCh that
Zanardi’'s measure of the entanglement is defined upon the
wave function corresponding t&(N.) instead. Using the _ oy
conventional renormalization group method for the finite- Eblock-block= o'f E ' )
size scaling analysi®28-3(, we can discuss three schemes
of entanglement scalingl) Single-site entanglement scaling whereq=U/t-(U/t). measures the deviation distance of the
with the total system sizekgjnge (2) block-block entangle- system away from the critical state withl/t).=12.5, which
ment scaling with the block siz& o, and(3) single-block is exactly equal to the critical value for metal-insulator tran-
entanglement scaling with the block siZ&yoci-piock sition when the same order parametéft is used[28-30.

Figure 1 presents the single-site entanglement scaling. k=g is the correlation length of the system with the critical
is obvious thatEgj,qe is Not a universal quantity. This con- exponenty.

clusion is consistent with the argument given by Osborne Hence,

[19], who claims that the single-site entanglement is not scal-

able because it does not own the proper extensivity and does Eplock-block= AEF(NY2q), (5

not distinguish the local and distributed entanglement. One

more interesting feature in Fig. 1 is that when the system sizehere we usedN=L? for the two-dimensional systems.

is increased beyond?7Eg;,qe Makes almost no change any  In Fig. 2, we show the results &yoci-biock @S @ function
more. This implies that only a limited region of sites aroundof (U/t) for different system sizes. With proper scaling, all
the central site contributed significantly to the single-site enthe curves collapse onto one curve, which can be expressed
tanglement. as
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Epiocieblock= F(ANY2). (6) ideal “entanglement switch.” For example, with seven blocks
- _ _ of quantum dots on a triangular lattice, the entanglement
Thus, the critical exponents in E(5) areyg=0,v=1. It is among the blocks can be regulated as “0” or “1” almost
interesting to note that we obtained the samas in the  j;mediately once the tuning parametétt crosses the criti-
study of metal-insulator transition. This shows the consis¢g, point. The switch errors will depend on the size of the
tency of the results, since the critical exponents only  pocks. Since it has already been a well-developed technique
_depen_dent on the inherent symmetry and dimension of thg, changeU/t for the quantum dot latticg26,31, the above
investigated system. o o scheme should be workable. To remove the special confine-

Another significant result lies in the finding that the metal ant we have made upon the calculated entanglement,
state is highly entangled, while the insulating state, is Onlynamely only the entanglement of block 1 and block 7 with
partly entangled. For a four-dimensional density matrix, thepe rest of the blocks are considered. In the following, we
maximally entangled state can be written as a diagonal mag;j| prove that the average pairwise entanglement also has
trix with equal componentg. The related entanglement is the properties shown in Fig(t®).

-3, 310g,3=2, which is exactly the value obtained from [ et Ebiock-block7 d€NOte the entanglement between the 7th
Fig. 2b). However, unlike the metal state, the insulating and all the remaining blocks in a hexagonal system. From the
states should be expected to have electrons showing less M&mmetry of the system we can show that the total pairwise
bility. If we assume the highly probable situation, i.e., thatentang|emenEtot=6Eb|ock—b|ock+ 3Epiockeblock7- The average
the central site has equal probability to bg fn, || ) and no  two-site entanglement  iSE,,erage™ Etot! 21=(2Epjock-block
occupation in|0), |T]), the corresponding entanglement is +Eplock-plock?)/ 7. Because

thenEpockplock= —2?22%I092%= 1, also consistent with the re-

sults from Fig. 2b).

All the above discussions are confined to the entangle- Ebiock7 = 91(AN"?),  Epiocka = G2(AN"?), (7)
ment between the central block and its surrounding blocks.

Because the central block is a very special one showing thithen we should haanverage:g(qu’z), whereg;,0d,, andg
highest symmetry, one may wonder what can happen to thare scaling functions.

neighboring blocks, for example, the entanglement between For obtaining the single-block entanglement, the first step
block 7 and the rest of the six blocks. To answer this quesis to make a cutoff over the system size. In our work, we let
tion, the same calculations are conducted and the results atebe 7°. The results are presented in Figcp It is magnifi-

the same except that in the metal state, the maximal ereent that as we change the size of the central block, its en-
tanglement is a little less than 2 and the minimal one is aanglement with all the rest of the sites follows the same
little less than 1. This can be explained by the asymmetrigcaling properties aByock-piock It IS Understandable if we
position of site 1 in the block. consider the fact that only a limited region around the block

It should be mentioned that the calculated entanglemengontributes mostly tdc,,,.. This result greatly facilitates the
here has a corresponding critical expongrnt 0. This means  fabrication of realistic entanglement control devices, such as
that the entanglement is constant at the critical point over aljuantum gates for a quantum computer, since we don’t need
sizes of the system. But it is not a constant over all values ofo delicately care about the number of component blocks in
U/t. There is an abrupt jump across the critical pointLas fear that the next neighboring or the next-next neighboring
— 00, guantum dots should influence the switching effect.

If we divide the regime of the order parameter into the In summary, in this paper, various schemes of the finite-
noncritical regime and the critical regime, the results can b&ize scaling properties with Zanardi’'s measure of entangle-
summarized as follows: In the noncritical regime, ilé/t is  ment, the von Neuman entropy Ed), has been investigated
away from(U/t),, asL increases, the entanglement will satu- for the Hubbard model on a triangular quantum lattice. The
rate onto two different values depending on the sigiJof critical exponentv=1 has been found, which coincides well
- (U/t).. At the critical point, the entanglement is actually a with our previous work in studying a quite different physical
constant independent of site property, the charge gap. When the block size:», the

These properties are qualitatively different from theentanglement shows an abrupt change when the tuning pa-
single-site entanglement discussed by Osbddr®, where rameter crosses the phase-transition point. This property
the entanglement with Zanardi's measure increases from zermight be applied to make an “entanglement switch,” and
to the maximum at the critical point and then decreases agaishows the promising prospect of regarding entanglement as a
to zero as the order parametgifor the XY mode is tuned.  physical resource.

These peculiar properties of the entanglement we have We would like to acknowledge the financial support of the
found here can be of potential interest to make an effectivéNational Science Foundation
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