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We have developed the finite size scaling method to treat the criticality of Shannon-information
entropy for any given quantum Hamiltonian. This approach gives very accurate results for the
critical parameters by using a systematic expansion in a finite basis set. To illustrate this approach
we present a study to estimate the critical exponents of the Shannon-information entropy S;(l
2lc)aS, the electronic energy E;(l2lc)aE, and the correlation length j;ul2lcu

2n for atoms
with the variable l5 1/Z , which is the inverse of the nuclear charge Z . This was realized by
approximating the multielectron atomic Hamiltonian with a one-electron model Hamiltonian. This
model is very accurate for describing the electronic structure of the atoms near their critical points.
For several atoms in their ground electronic states, we have found that the critical exponents
(aE ,n ,aS) for He (Z52), C (Z56), N (Z57), F (Z59), and Ne (Z510), respectively, are ~1,
0, 0!. At the critical points lc51/Zc , the bound state energies become absorbed or degenerate with
continuum states and the entropies reach their maximum values, indicating a maximal delocalization
of the electronic wave function. © 2004 American Institute of Physics. @DOI: 10.1063/1.1785773#

I. INTRODUCTION

In statistical physics, the finite size scaling method pro-
vides a systematical way to extrapolate information available
from a finite system to the thermodynamic limit.1,2 Finite
size scaling crossing points, the pseudocritical points, are the
information needed in order to extrapolate to the thermody-
namic limit, where singularities or phase transitions occur.
Recently we have developed the finite size scaling methods
to study phase transitions that are taking place at the absolute
zero of temperature in atoms and molecules.3 These transi-
tions are not driven by temperature as in classical phase tran-
sitions but rather by quantum fluctuations as a consequence
of the Heisenberg’s uncertainty principle.4,5 In this regard,
the finite size corresponds not to the spatial dimension, as in
statistical physics, but to the number of elements in a com-
plete basis set used to expand the wave functions of a given
Hamiltonian. Here the ‘‘thermodynamic limit’’ is achieved
by extrapolation to the infinite basis set limit. The phase
transitions occur by tuning parameters in the Hamiltonian.

Different finite size scaling methods were recently re-
viewed in quantum mechanics6 and were successfully ap-
plied to atoms,7 molecules,8 three-body systems,9 crossover
phenomena and resonances10 and critical conditions for
stable dipole and quadrupole bound anions.11,12 Critical phe-
nomena described by energy operators are examined through
varying the nuclear charges’ or molecular fragments’ separa-
tion distances. For atoms, the phase transitions at a critical
point exploit a fundamental process of an electron leaving
the atom, the ionization process.7,11 For molecules and clus-
ters the phase transitions are closely related to the symmetry
breaking in the geometrical configurations of the molecular
fragments.8,9,13

Shannon-information entropy14 measures the delocaliza-
tion or the lack of structure in the respective distribution.15

Thus the entropy S is maximal for uniform distribution, that

is, for an unbound system, and is minimal when the uncer-
tainty about the structure of the distribution is minimal.
Shannon proposed that the information entropy for a system
with a probability distribution P(x) in one dimension could
be characterized by

S52E P~x !ln P~x !dx; E P~x !dx51. ~1!

For atomic systems one may define the spatial Shannon en-
tropy Sr using the electronic density r and its momentum
space analog Sp . Such definitions result in that the sum S t

5Sr1Sp provides a stronger version of the Heisenberg’s
uncertainty principle for any N-electron system,16,17

S t>3N~11ln p !22N ln N . ~2!

The total entropy has been used in recent years to mea-
sure correlations in many-electron systems18 and nuclei.19

Also, it is invariant to scaling and has been used to measure
basis set quality.17,20 Furthermore, it has a linear dependence
on the logarithm of the number of particles in atoms, nuclei,
atomic clusters,21,22 and in correlated boson systems.19

Shannon entropy has further been related to various proper-
ties such as molecular geometric parameters,23 chemical
similarity of different functional groups,24 ionization
potential,25 global delocalizations,26 molecular reaction
paths,27 orbital-based kinetic theory,28 and highly excited
states of single-particle systems.29

Recently, we studied the criticality of energy operator for
a given quantum-mechanical system of either known atoms
and molecules or models.7–13 The theoretical calculations
provided energetic information and made it possible to ex-
tract the critical exponent using the scaling function of en-
ergy. Most recently we revisited the simplest two-electron
Helium atom in the Hylleraas coordinate.30 The Hylleraas
expansion approach to the wave function was even con-
firmed as the most accurate method in the Hilbert space
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spanned by a single-exponent Slater-type basis set. After cal-
culating both energy and electron density ~and therefore en-
tropy! and then fitting those accurate data we found an ap-
proximately linear relation between the entropy and the first
derivative of the energy. In particular, we noted that close to
the critical point such linear relation becomes true. These
results show that the exponent of the entropy for helium is
the exponent of the energy minus 1.

In this paper, we develop the finite size scaling method
to obtain the critical parameters related to the atomic
Shannon entropies. In Sec. II we review the scaling functions
and establish relations among the critical exponents for the
atomic Shannon entropy, the correlation length, and the elec-
tronic energy. In Sec. III we describe a one-electron model
Hamiltonian used to approximate the multielectron Hamil-
tonian. In Sec. IV we present results and also the integrals
needed for calculating the different energy matrix elements.
Discussion and conclusions follow in Sec. V. Atomic units
are used throughout the paper unless otherwise specified.

II. FINITE SIZE SCALING FOR THE CRITICALITY
OF SHANNON-INFORMATION ENTROPY

The Hamiltonian for many interesting problems in quan-
tum mechanics, in particular for atomic and molecular
systems,8 can be transformed to the following general form:

H5H01Vl , ~3!

where H0 is l independent while Vl is a l dependent term
and l represents a free parameter. For electronic structure of
atoms, l is the inverse of the nuclear charge Z . At the critical
point lc , a bound state described by the Schrödinger equa-
tion HC5EC becomes absorbed or degenerate with a con-
tinuum.

For a l-independent complete and orthonormal basis set
$Fn%, spanning an infinite-dimensional Hilbert space L2, the
bound state can be expanded as

Cl5(
n

`

Cn~l !Fn , ~4!

where n is an adequate set of quantum indices and $Cn(l)%
the expansion coefficients which are generally l dependent.
In calculating the energy matrix, the expansion has to be
truncated at order N , i.e., expanding up to a finite length,
M (N) which equals a finite dimension in the Hilbert space.
For a finite basis set, the expectation value of any quantum
operator O is given by

^O&~N !~l !5 (
i , j

M (N)

C i
(N)~l !C j

(N)~l !Oi , j , ~5!

where Oi , j are the matrix elements of O in the basis set
$Fn%. In general, the mean value of the operator O is not
analytical at l5lc , and has the form

^O& ;
l→lc

1
~l2lc!mO, ~6!

where mO is the critical exponent.
The finite size scaling hypothesis31 assumes the exis-

tence of a scaling function for the truncated expansion such
that

^O& (N)~l !;^O&FO~N/j (`)~l !!, j (`)~l !5ul2lcu
2n, ~7!

with a different scaling function FO for each different opera-
tor but with a unique scaling exponent n. j (`)(l) is the cor-
relation length at N→` .

Since ^O& (N)(l) is analytical in l, the scaling function at
l→lc must behave like

FO~x !;x2 mO /n, ~8!

where x5N(l2lc)n
→0. It follows that ^O& (N)(l) at lc

depends on N as a power law

^O& (N)~lc!;N2 mO /n; N→` . ~9!

Using Eq. ~9! one may extrapolate the exponent mO and
n ~Ref. 31! from the crossings of the pseudocritical expo-

nents mO

(N ,N8) and n (N ,N8) for two consecutive expansions N ,
N85N11 ~or N12 if parity effects involve32!,

mO

(N ,N8)

n (N ,N8)
5

ln~^O&lc

(N)/^O&lc

(N8)!

ln~N8/N !
. ~10!

At this point we may define the energy E exponent aE as

El ;
l→lc

1;
~l2lc!aE ~11!

and obtained from Eq. ~10! by replacing O[H

aE
(N ,N8)

n (N ,N8)
5DH~lc ;N ,N8!, ~12!

where the notation DH is used for the right side of Eq. ~10!.
For unique exponents we start from Eq. ~11! and take the

derivative32

]El

]l
;

l→lc
1
~l2lc!aE21. ~13!

Using Hellmann-Feynman theorem

]El

]l
5 K ]H

]l L
l

5 K ]Vl

]l L
l

~14!

and taking O5 ]Vl /]l [Vl8 in Eq. ~10! we have

aE
(N ,N8)

21

n (N ,N8)
5DV

l8
~lc ;N ,N8!. ~15!

Given the electron probability r, atomic Shannon-
information entropy S may be defined as the expectation
value of the operator Ir in

Sl5^2ln r~r!&l[^Ir&l . ~16!

Its exponent aS is then defined by

Sl ;
l→lc

1
~l2lc!aS. ~17!

By replacing O5Ir in Eq. ~10!, one obtains

aS
(N ,N8)

n (N ,N8)
5DIr

~lc ;N ,N8!. ~18!

From Eqs. ~12!, ~15!, and ~18! we can obtain the pseud-

ocritical exponents aE
(N ,N8) , n (N ,N8), and aS

(N ,N8) by defining
the following functions:
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GaE
~l ,N ,N8!5

DH

DH2DV
l8

,

Gn~l ,N ,N8!5

1

DH2DV
l8

, ~19!

GaS
~l ,N ,N8!5

DIr

DH2DV
l8

.

These functions are independent of the values of N and
N8 at the critical point l5lc and give the critical exponents

aE5GaE
~lc ,N ,N8!; n5Gn~lc ,N ,N8!;

~20!
aS5GaS

~lc ,N ,N8!.

The finite size scaling equations are valid as an asymptotic
expression, N→` . However, with a finite basis set, pseud-

ocritical exponents aE
(N ,N8) , n (N ,N8), and aS

(N ,N8) can be ob-
tained as a succession of values as a function of (N ,N8). In
order to obtain the extrapolated values aE , n, and aS at N
→` we used the algorithm of Bulirsch and Stoer.33

III. ONE-ELECTRON APPROXIMATION
FOR ATOMIC HAMILTONIAN

A direct way to treat multielectron systems is to use ab
initio electronic structure methods with Gaussian basis-set
functions. This approach is widely applied in modern quan-
tum chemistry computations. We have recently examined
such Gaussian basis functions using finite size scaling
method for simple molecular systems.8 The problem of using
Gaussian functions in finite size scaling analysis is that they
do not form a complete basis set and are more localized than
the Slater functions.

In the present work, we apply the one-electron approxi-
mation to the Hamiltonian @Eq. ~3!# to avoid the complexity
of the multielectron problem while producing the relevant
main physics near the critical points. Let us start by consid-
ering an N-electron Hamiltonian for neutral atoms with infi-
nite nuclear mass,8

H5(
i51

N pi
2

2m i
2(

i51

N
1

r0i
1l (

i51

N21

(
j52,i, j

N
1

r i j
, ~21!

where p i is the momentum of electron i with mass m i , r0i is
the distance between electron i and the nucleus ~index 0!,
and r i j are the interelectron distances.

We decompose the Hamiltonian H into two parts: one
represents the highest occupied orbital for electron N and the
other for the atomic core with the remaining N21 electrons,

H5Hcore1h . ~22!

If we assume that the the core is frozen, C5Fcorec , and is
in its ground state, HcoreFcore5EcoreFcore , with

Hcore5 (
i51

N21 pi
2

2m i
2 (

i51

N21
1

r0i
1

1

Z (
i51

N22

(
j52,i, j

N21
1

r i j
, ~23!

then h must satisfy hc5(E2Ecore)c in which

h5

pN
2

2mN
1V~r0N ,r01 ,r02 , . . . ,r0(N21)!, ~24!

and

V~r0N ,r01 ,r02 , . . . ,r0(N21)!

52

1

r0N
1l (

i51

N21
1

r iN

52

1

r0N
1

l

r0N
(
i51

N21
1

u r̂0N2ur0iu/r0Nu
, ~25!

where r̂0N stands for the unit vector of r0N .
V(r0N ,r01 ,r02 , . . . ,r0(N21)) is not a central potential and fur-
ther approximation is needed. If we examine the limit r0N

!r0i , as the electron N moves closer to the nucleus,

V~r0N ,r01 ,r02 , . . . ,r0(N21)!→2

1

r0N
. ~26!

However, in the limit r0i!r0N , the electron N is closer to
the ionization region,

V~r0N ,r01 ,r02 , . . . ,r0(N21)!→2

1

r0N
1

g

r0N
,

g5~N21 !l . ~27!

Generally, r0i<r0N for all i electrons and the potentials
should include a Coulomb repulsive term less than g/r0N .
This may be approximated by a short-range interaction of the
Yukawa type potential

V~r0N ,r01 ,r02 , . . . ,r0(N21)!

'V~r0N!52

1

r0N
1

g

r0N
~12e2dr0N!, ~28!

where d expresses the interaction range and may be extrapo-
lated using data available either from experiments or other
theories according to the following equation:34

d5

d0~g2g1!2d1~g2g0!

~g02g1!
. ~29!

Here (d0 ,g0) and (d1 ,g1) are parameters corresponding to
the neutral atom and its isoelectronic negative ion ~if the
negative ion does not exist, the parameters corresponding to
the positive ion are used!, respectively.

Solving the one-electron model in HC5EC and utiliz-
ing the solution C we may construct the electron spatial
density r(rN)5uC(rN)u2. Under spherically averaging ap-
proximation with electron radial density r(rN), the atomic
Shannon entropy takes30 the following form:

S52E
0

`

r~r !ln r~r !4pr2dr ~30!

with normalization

E
0

`

r~r !4pr2dr51, ~31!

where r[rN and r(r) is continuous over 0<r<` .
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IV. RESULTS

For the one-electron problem, we expand the wave func-
tion in HC5EC ,

C~r!5 (
n ,l ,m

Rn ,l~r !Y l ,m~V ! ~32!

with

Rn ,l~r !5

1

@~n11 !~n12 !#1/2 e2r/2Ln2l
(2) ~r !, ~33!

where n is the principal quantum number, l is the angular
quantum number, and m52l ,2l11,.. . ,l21,l . Ln2l

(2) (r) is
the generalized Laguerre polynomial of order 2 and degree
(n2l). Here the order 2 is chosen only for convenience in
the calculations. $Rn ,l(r)Y l ,m(V)% constitutes a complete
and orthogonal basis set for l<n21. In the spherical aver-
age, Eqs. ~30! and ~31!, the spherical harmonic functions
Y l ,m(V) are normalized to 4p.

A. Yukawa potential

Let us consider a system involving one electron moving
in the Yukawa potential V(r)52e2dr/r , which is obtained
from Eq. ~27! by setting g51. The corresponding Hamil-
tonian is H52

1
2¹

2
2e2dr/r . By scaling dr→r and H/s2

→H , the scaled Hamiltonian becomes

H52

1

2
¹2

2le2r/r; l5

1

d
. ~34!

Next, we calculate the pseudocrossing points aE
(N ,N8) ,

n (N ,N8), and aS
(N ,N8) using Eq. ~19! between two consecutive

sizes N and N85N12, with basis-set expansion N52,4,...,
58. By extrapolating N to infinity,33 we obtain the critical
exponents for the Shannon entropy aS , the energy aE , and
the correlation length n.

Figure 1 presents the pseudocritical exponent crossings
for an s-state electron l50 in the Yukawa potential as a
function of l51/d . The extrapolated values of the three
critical exponents (aE ,n ,aS) are (2,1,20.23), respectively.
The energy and correlation length exponents are in full
agreement with previous results.32 The system exhibits a
‘‘continuous phase transition’’ as the s-state electron moves
to the continuum at a threshold E50. The entropy is singular
at lc50.84 with an exponent 20.23.

Figure 2 displays the pseudocritical exponent crossings
for a p-state electron l51 with N526– 68. The three expo-
nents are (aE51,n5

1
2,aS50). The energy phase transition

is of ‘‘first order’’ with lc54.54. All the exponent values are
listed in Table I.

B. One-electron atoms

For one-electron atoms we expand the wave functions
using Eqs. ~32! and ~33!. First, we describe the calculations
for the heliumlike atoms and show how the one-electron
model approximates the two-electron systems. According to
Eqs. ~24! and ~28! the approximate Hamiltonian includes an
ionic core He1 and a 1s electron,

h52

1

2
¹2

2

1

r
1

l

r
~12e2dr!, ~35!

where d50.22 is calculated from Eq. ~29! with d051.066
and d150.881.34 h may approximate the full Hamiltonian

H52

1

2
¹1

2
1F2

1

2
¹2

2
2

1

r2
G2

1

r1
1

l

r12
, ~36!

if Hcore , the bracketed term in Eq. ~36!, is simply replaced
by 20.5 a.u, the hydrogen ground-state energy, and r1 by r .

Figure 3 shows the pseudocritical exponent curves for
N58 – 58. From the figures we obtained the critical point

FIG. 1. The crossing points defining the pseudocritical exponents aE
(N ,N8) ,

n (N ,N8), and aS
(N ,N8) for the Yukawa potential (s ,l50) as a function of

parameter l51/d for (N ,N8)5(8,10),(12,14),.. . ,(56,58).

FIG. 2. The crossing points defining the pseudocritical exponents aE
(N ,N8) ,

n (N ,N8), and aS
(N ,N8) for the Yukawa potential (p ,l51) as a function of

parameter l51/d for (N ,N8)5(26,28),(28,30),.. . ,(58,60).
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lc51.096. This value is in agreement with an exact calcu-
lation lc51.097 using the full Hamiltonian and Hylleraas-
type functions as basis sets.30 The corresponding critical
charge Zc51/lc is 0.911. With this critical charge in mind
we may draw a picture for the two-electron systems: at the
critical point one of the 1s electrons is bounded by the
nucleus while the other 1s electron moves away to infinity.
For Z.Zc , the system is stable and the two electrons are
bounded. However, for Z,Zc , the system is unstable. This
analysis is useful to describe stability for a given isoelec-
tronic atomic series.34

At the critical point lc51.096, the extrapolated values
of the three critical exponents are aE51, n50, aS50 as
shown in Fig. 3. The entropy exponent aS50 confirms our
previous analysis.30 This physical picture is consistent with
the definition of Shannon-information entropy which mea-
sures the delocalization or the lack of structure in the respec-
tive distribution. Thus S is maximal for uniform distribution,
that is, for an unbound system, and is minimal when the
uncertainty about the structure of the distribution is minimal.

For two-electron atoms the entropy S is minimal when the
two electrons are bound in the ground state l,lc , and then
develops a steplike discontinuity at lc and jumps to maximal
value S'10.7 for l.lc .

Next we calculate the critical parameters for C ~carbon!,
N ~nitrogen!, F ~fluorine!, and Ne ~neon!. C, N, and F have
an open 2p orbital while Ne has a closed 2p orbital. Our
calculations show that all these systems at their ground states
undergo a first-order phase transitions. The critical points lc

are 0.2013, 0.1704, 0.1270, and 0.1145, with the correspond-
ing critical charges 4.97, 5.87, 7.87, and 8.73 for C, N, F, and
Ne respectively. The excess charges DZ5Z21/lc are 1.03,
1.13, 1.13, and 1.27 for 6-, 7-, 9-, and 10-electron atoms,
respectively. This confirms the existence of stable anionic
species B21, C21, O21, and F21.32 However, there are no
stable dianions because it requires an excess charge of 2.32

For atoms with filled 2p orbitals, the three critical exponents
are aE51, n50, aS50 as shown in Fig. 4 with N58 – 58.
All the critical parameters are summarized in Table I.

V. DISCUSSION AND CONCLUSIONS

We presented a complete set of critical exponents aE , n,
and aS using finite size scaling analysis for the electronic
energy, correlation length, and Shannon entropy,

E ;

l→lc
1

~l2lc!aE, ~37!

j ;

l→lc
1

ul2lcu
2n, ~38!

S ;

l→lc
1

~l2lc!aS. ~39!

These exponents describe the singularity of the different
quantities at the phase transition of the electron from a bound
to a continuum state. These results were obtained by reduc-

TABLE I. Critical charges Zc and the extrapolated critical exponents aE , n,
aS for atomic systems with nuclear charges Z52,6,7,9,10, and s state and p
state for Yukawa potential.

Yukawa potential

N nl lc aE n aS

1 1s 0.84 2 1 20.23
1 2p 4.54 1 0.5 0

Atoms

N(5Z) nl Zc (Z21)21 aE n aS

2~He! 1s 0.91 H21 1 0 0
6~C! 2p 4.97 B21 1 0 0
7~N! 2p 5.87 C21 1 0 0
9~F! 2p 7.87 O21 1 0 0

10~Ne! 2p 8.74 F21 1 0 0

FIG. 3. The crossing points defining the pseudocritical exponents aE
(N ,N8) ,

n (N ,N8), and aS
(N ,N8) for heliumlike atoms as a function of parameter l

51/Z for (N ,N8)5(8,10),(10,12),.. . ,(58,60).

FIG. 4. The crossing points defining the pseudocritical exponents aE
(N ,N8) ,

n (N ,N8), and aS
(N ,N8) for neonlike atoms as a function of parameter l51/Z

for (N ,N8)5(8,10),(10,12),.. . ,(58,60).
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ing a multiparticle Coulomb potential to a one-electron one-
center atomic potential.8 We examined the phase transition
near the threshold for s-state (l50) and p-state (l51)
Yukawa atoms, and atoms He (Z52), C ~6!, N ~7!, F ~9!,
and Ne ~10!. The method is general and can be used to treat
the rest of the elements in the periodic table provided a good
basis set and electron density.

Our data in Table I and Figs. 1–4 indicate the correspon-
dence between the critical exponents and the interaction
type. For all atoms with nuclear charge Z52,6,7,9,10 their
correlation length exponents are all 0, corresponding to a
long-range Coulomb interaction as a dominant force. In con-
trast, the atoms with an electron in the Yukawa potential have
positive exponents, corresponding to a short-range force
which is more localized in the atomic scale than the Cou-
lomb forces.

The atomic Shannon entropy exponents follow the trend
for the correlation length exponents. For Coulomb atoms
they have a common characteristic: at the critical point lc

the entropy exponent is 0; as l deviates from lc the entropy
exponent varies dramatically. This shows a steplike, or dis-
continuous, change in the Shannon entropy of the atoms.
Therefore, we conclude that the critical point is a point
where atomic Shannon entropy reaches a maximum. At this
point we have a delocalization of the electronic wave func-
tion. Such a property of the atomic Shannon entropy was
recently described for the two-electron heliumlike atoms.30

Examining the critical exponents for the energy indicates
that for the Yukawa atoms with an s-state electron it is of a
continuous type while for p-state Yukawa atoms and atomic
elements with nuclear charge Z52, 6, 7, 9 and 10 it is of a
first-order type. Combining the data of the ground state en-
ergy and Shannon entropy for atomic systems we can sys-
tematically map the quantum-mechanical quantities to their
analogous classical quantities,

nuclear charge Z51/l↔temperature T

electronic energy E↔free energy G

number of basis functions↔thermodynamic limit

atomic Shannon entropy S↔thermodynamical entropy S .
~40!

Figure 5 presents an analogy between the behavior of the
different thermodynamic quantities typical of liquid-gas first-
order phase transition35 and the critical behavior of the cor-
responding quantities for two-electron atoms. At first-order
phase transition, the free energy G bends sharply as a func-
tion of the temperature T at the transition temperature Td

which leads to a discontinuity of the entropy S and infinite
heat capacity Cp at constant pressure P . In analogy, the
ground state energy for two-electron atoms E bends sharply
at the transition point ld*5lc51/Zc ; this leads to disconti-
nuity of the Shannon information entropy and infinite ‘‘heat
capacity,’’ Ce5l (]S/]l) with a zero external field. This
analogy is very exciting and might give us a tool of classi-
fying the electronic structure of atoms. Research is underway
to classify all elements according to their types of ‘‘phase
transition’’ and their consequences in chemical reactions.
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APPENDIX: ENERGY MATRIX ELEMENTS

In order to calculate the energy matrix elements one
needs to evaluate an integral as a product of four functions:
two generalized Laguerre polynomials Ln

(a)(x) and Ln8

(a)(x),
one exponential function e2x, and one power law function
xa. The integrals with four power indices (a ,a11,a21,a
22) were presented in Atomic, Molecular and Optical
Handbook.36 For convenience we list them with our correc-
tions to the case (a22). All were evaluated with numerical
methods.

E
0

`

xae2xLn
(a)~x !Ln8

(a)
~x !dx5

G~n1a11 !

n!
dn ,n8

,

E
0

`

xa11e2xLn
(a)~x !Ln8

(a)
~x !dx

5

G~n1a11 !

n!
@2ndn ,n8111~2n1a11 !

3dn ,n8
2~n1a11 !dn ,n821# ,

E
0

`

xa21e2xLn
(a)~x !Ln8

(a)
~x !dx

5

G~n,1a11 !

n,!a
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FIG. 5. Upper panel: Free energy G , entropy S , and specific heat Cp as a
function of temperature for a typical first-order liquid-gas phase transition
~Ref. 35!. Lower panel: Ground state energy E , Shannon entropy S , and
‘‘electronic specific heat’’ Ce as a function of the inverse of the nuclear
charge Z , l5 1/Z , for two-electron atoms in zero external field e.
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where n,5min(n,n8), a, n , and n8 are integers, and
G(n11)513233...n .
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