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Abstract

Atomic Shannon information entropies are computed using Hyllerass-type basis functions for the helium isoelectronic series. As
one varies the nuclear charge Z for the two-electron atoms, finite size scaling analysis shows that the system exhibits a critical point
of the ground state energy at kc = 1/Zc = 1.0971 ± 0.0005 with a critical exponent a = 1, E(k) � (k � kc)

a. At the critical point, the
ground state energy becomes degenerate with the hydrogenic threshold. The Shannon information entropy develops a step-like dis-
continuity at kc. Further analysis indicates that the entropy as a function of k is proportional to the first derivative of the energy with
respect to k. The critical exponent for the entropy as = 0, SðkÞ � ðk� kcÞas .
� 2004 Elsevier B.V. All rights reserved.
1. Introduction

Shannon information entropy measures the extent,
spread, shape, uncertainty, and the information content
of the underlying distribution from which it was derived
[1]. Shannon proposed that the information entropy for
a system with a continuous probability distribution P(x)
in one dimension could be characterized as [1]

S ¼ �
Z

P ðxÞ ln PðxÞdx;
Z

P ðxÞdx ¼ 1: ð1Þ

For atomic systems one can define the Shannon entropy
in position space Sq, where the probability distribution
is the electronic charge density q(r). The momentum
space Shannon entropy Sp of the electronic momentum
density p(p) is defined in a fully analogous way. The
importance of the entropy sum St = Sq + Sp is firmly
established by noting that a stronger version of Heisen-
berg�s uncertainty principle may be formulated for any
quantum N-electron system [2,3],
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St P 3Nð1þ ln pÞ � 2N lnN : ð2Þ
Recently, numerical calculations demonstrate that the
total entropy is invariant to scaling and could be used
to measure basis set quality [3,4]. The total entropy also
measures correlations in many-electron systems [5] and
nuclei [6]. It has linear dependence on the logarithm of
the number of particles in atoms, nuclei, atomic clusters
[7,8] and even in correlated boson systems [6].

Shannon entropy in atomic calculations has further
been related to various properties such as atomic ioniza-
tion potential [9], molecular geometric parameters [10],
chemical similarity of functional groups [11], character-
istics of correlation methods for global delocalizations
[12], molecular reaction paths [13], orbital-based kinetic
theory [14], and highly excited states of single-particle
systems [15].

In previous studies [16,17], using finite size scaling, we
have shown that two-electron atoms exhibit a critical
point as one varies the nuclear charge Z. At the critical
point kc = 1/Zc = 1.0976 ± 0.0004 the ground state en-
ergy becomes degenerate with the hydrogenic threshold
with a critical exponent a = 1, E(k) � (k � kc)

a.
In the present work we calculate the atomic Shannon
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information entropies using Hyllerase-type basis func-
tions for the helium isoelectronic series. At the critical
point, the Shannon information entropy develops a
step-like discontinuity at kc with a critical exponent
as=0, SðkÞ � ðk� kcÞas .
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Fig. 1. The ground state scaled energy, E/Z2, as a function of k = 1/Z,
where Z is the nuclear charge, for different basis set orders
N = 5,6, . . . , 13. The dashed line corresponds to the threshold energy,
Eth = �0.5 a.u.
2. Finite size scaling for two-electron atoms

The Hamiltonian for two-electron atoms in the scaled
variable, r ! r/Z, is given by

H ¼ � 1

2
r2

1 �
1

2
r2

2 �
1

r1
� 1

r1
þ k
r12

; ð3Þ

where k = 1/Z is the inverse of the nuclear charge Z and
measures the strength of the interelectronic repulsion.
By varying the parameter k one can study the behavior
of the energy for the helium isoelectronic sequence [16]
starting from k = 1, which corresponds to the stable
H� anion [18]. For this Hamiltonian, a critical point
means the value of kc for which a bound state energy be-
comes degenerate with the hydrogenic threshold.

To apply the finite size scaling one has to choose a
convenient basis set to obtain the lowest two eigen-
values, E0(k) and E1(k). Since our focus on the ground
state 1S0, we can choose the following Hylleraas-type
basis sets [19,20]:

W ¼
X
i;j;k

Ci;j;k
1ffiffiffi
2

p ðri1r
j
2e

�ar1�br2 þ rj1r
i
2e

�br1�ar2Þrk12; ð4Þ

in which i, j,k are indices defining the Pekeris shell [21]
with 0 6 i, j,k 6 N and i + j + k 6 N. N is the radius
of the shell which determines the expansion length
M(N) of Eq. (4). Our numerical results show that
M(N) � N2.27. Such a systematic expansion of the wave
function in the Hylleraas-type basis sets has been used
extensively in calculations of the ground and excited
states of the two-electron atoms [22–24,17].

In Eq. (4) a and b are the two hydrogenic exponents.
For the ground state of helium in Eq. (3) we choose
a = 2 and b � 2 and a = 1 and b � 1 for the H� anion
at k = 1. As we increase the parameter k to simulate
the electron ionization we have found that b = 0.21 is
the optimal choice for the wave function. Putting the
trial wave function into the Schrödinger equation and
diagonalizing the energy matrix, we obtain the eigen-
values and the eigenvectors C, the expansion coefficients
in Eq. (4). All the numerical calculations were per-
formed using 64-bit Fortran 95 codes.

Fig. 1 shows the behavior of the ground state energy
as a function of k for different values of
N = 5,6,7, . . . , 13. The results are in complete agreement
with our previous results [16,25]. In the present work,
a = 1 and b = 0.21 are fixed and the energy eigenvalues
are obtained by systematically increasing the order N for
the expansion in Eq. (4). In Fig. 1 the energy lines for
each order N gradually go up at k < 1.104 and bend over
sharply at k = 1.104. As N! 1 the true ground state
energy becomes degenerate with the lowest continuum
E0 = �1/2 at kc [25].

Now, the finite size scaling analysis can be used to ob-
tain the critical point. The phenomenological renormal-
ization equation for finite systems of sizes N and N + 1
is given by [16]

E1ðNÞ
E0ðNÞ

� �N

¼ E1ðN þ 1Þ
E0ðN þ 1Þ

� �Nþ1

ð5Þ

and has a fixed point at kðNÞ
c . It is expected that the suc-

cession of the crossing points kðNÞ
c in the limit of infinite

size to converge to the true kc. Fig. 2 shows the crossing
points, which are the fixed points of Eq. (5), for
N = 5,6,7, . . . , 13. The values of the fixed points as a
function of N can be extrapolated to the limit N ! 1
by using the Bulirsch and Stoer algorithm [17]. We ob-
tain kc = 1.0971 as shown in the window of Fig. 2.

Next, we examine the conditional probability in order
to visualize the attractive and repulsive forces which
influence the system close to the critical point. This func-
tion represents the probability distribution seen by one
electron given that the other electron is fixed at a certain
distance. We define the conditional probability to find
one electron at distance r1 when the other is fixed at
r2 = 1 by

P ðr1Þr2¼1 ¼
2p
r1

Z r1þ1

jr1�1j
jWj2 r12 dr12: ð6Þ

Fig. 3 shows the three conditional probability curves
corresponding to k < kc, k = kc, k > kc at k = 1.1050,
1.1055, 1.1060, respectively. In order to compare the
three curves, they were normalized such that the first
maximum is one. For k < kc the leading maximum is
at small distance, r1 � 2 a.u., for k ! kc the two maxima
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Fig. 2. The ratio between the ground state energy, E0, and the second
lowest eigenvalue, E1, raised to a power N as a function of k ¼ 1=Z for
N = 5,6, . . . , 13. The small window shows the pseudocritical points,
kðNÞ
c as a function of 1/N. The value of the extrapolated kc = 1.0971 is
also shown as a dot.
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reaches the same height and for k > kc, the second max-
ima is getting larger and the nuclear charge cannot bind
two electrons. Thus one electron move to infinity and
become a free electron for k > kc.
3. Criticality of Shannon information entropy

Information theory is the framework in which one at-
tempts to measure the amount of information inherent
in a system. Shannon information entropy for the two-
electron systems with electronic charge distribution
q(r) is given by

S ¼ �
Z 1

0

qðrÞ ln qðrÞ4pr2 dr; ð7Þ

where the electron density q(r1) can be obtained from
the wave function W(r1, r2, r12) by averaging over the
other coordinates,
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Fig. 3. Conditional probability distribution, Pðr1Þr2¼1, as a function of
r1 for k = 1.1050,1.1055,1.1060 with basis set order N = 12. The three
curves are scaled to 1 at r1 = 2.3.
qðr1Þ ¼
2p
r1

Z 1

0

Z r1þr2

jr1�r2j
jWj2r2 dr2 r12 dr12; ð8Þ

in which q(r) is normalized to 1,Z 1

0

qðrÞ4pr2 dr ¼ 1: ð9Þ

q(r) is continuous over 0 6 r 61, representing a radial
correlation of electron 1 with electron 2 bounded to the
nucleus.

Fig. 4 shows the calculated entropy S from Eq. (7) as
a function of k for different values of N. For k < kc, the
entropy is about S � 6.5 and slowly increased for larger
values of k up to the critical point. At the critical point,
the entropy develops a step-like discontinuity and the
entropy jumps to higher value, S � 10.7. This behavior
resemble the behavior of the first derivative of the en-
ergy with respect to k, which develops a step-like discon-
tinuity at kc. Fig. 5 shows the ratio of the two
consecutive entropies raised to power N, (SN + 1/SN)

N,
as a function of k. Each of the corresponding curves
exhibits a sharp peak. The height of the peak is propor-
tional to the entropy gradient. The peak increases rap-
idly as N becomes large while the position of the peak
approaches kc = 1.09 which compares well with the most
accurate estimate of kc = 1.097.

Now, let us determine the critical exponent as for the
entropy

SðkÞ � ðk� kcÞas : ð10Þ
In our previous studies we have shown that the critical
exponent for the energy is 1,

EðkÞ ¼ EðkcÞ þ 0:235ðk� kcÞ1; ð11Þ
where E(kc) = �1/2.

Our numerical results indicate that the entropy is pro-
portional to the first derivative of the ground state en-
ergy with respect to k. Fig. 6 show the first derivative
of energy with respect to k (solid lines) and the fitted en-
tropy (dots) assuming the form
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Fig. 4. Shannon information entropy S(N) as a function of k for
N = 5,6, . . . , 12.
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Fig. 5. The ratio between two consecutive entropies raised to power N,
ðfSðN þ 1Þg=SðNÞÞN as a function of k for N = 5,6, . . . , 13.
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Fig. 6. The first derivative of energy, dE0(N)/dk (solid lines) and the
fitted derivative from the entropy S(N) = 10.93 � 17.69dE0(N)/dk
(dots) as a function of k for N = 5,6, . . . ,13. Note that the entropy,
S(k), is proportional to the first derivative of the energy with respect to
k.
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SðkÞ ¼ a� b
dE
dk

ð12Þ

with a = 10.93 and b = 17.69. For large values of N, the
fitted results are good agreement with calculated first
derivative of the ground state energy. From this numer-
ical fit, the critical exponent for the entropy as = 0 as
k ! kc.
4. Conclusions

The Shannon information entropies for the two elec-
tron atoms were calculated using a highly accurate wave
function based on expansion in Hyllerase-type basis set.
At the critical point kc = 1/Zc = 1.0976, the entropy
develops a step-like discontinuity which resemble the
behavior of the first derivative of the energy with respect
to k. Numerical analysis shows that the entropy is in-
deed proportional to the first derivative of the ground
state energy with respect to k and thus its critical expo-
nent as = 0. This physical picture is consistent with the
definition of Shannon information entropy which meas-
ures the delocalization or the lack of structure in the
respective distribution. Thus S is maximal for uniform
distribution that for an unbound system and is minimal
when the uncertainty about the structure of the distribu-
tion is minimal. For two electron atoms the entropy S is
minimal when the two electrons are bound in the ground
state k < kc then develops a step-like discontinuity at kc
and jumps to maximal value S � 10.7 for k > kc.

Recently, we have established the analogy between
symmetry breaking of electronic structure configura-
tions and quantum phase transitions [26]. In particular
for two electron atoms, the mapping between symmetry
breaking and mean-field theory of phase transitions was
shown by allowing the nuclear charge Z, the parameter
which tunes the phase transition, to play a role analo-
gous to temperature in classical statistical mechanics.
In this study we have shown that one can add the entro-
py to this mapping. Here the Shannon information en-
tropy develops a step-like discontinuity as a function
of k which ‘‘resemble’’ the step-like discontinuity of
the thermodynamic entropy as a function of the temper-
ature in a first order phase transition.
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