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The stable structures of the fused cubic water cluster (H2O)12 are examined using graph theoretical techniques
and ab initio calculations. The calculations are obtained by scanning the symmetry of digraph structures of
hydrogen-bond network spanning 12 oxygen atom vertexes. Using the Po´lya theorem the cycle index
expressions for 12 vertexes and 20 edges of a cuboid in point-group symmetryD4h are developed. A total of
91 energy-allowed fused cubic structures are obtained, which are classified by 8 point-group symmetries: 1
D2h, 2 S4, 5 C4, 1 D2, 11 C2, 10 Ci, 1 Cs, and 60C1. An energy level diagram of the structures reveals 14
bands that correspond to 14 unique two-colored graphs derived from the distributions of four free hydrogens
of the cluster.

I. Introduction

Water clusters, especially small water clusters, are of great
interest due to their role in diverse molecular processes such as
the hydrogen motion in the complex environment of bulk water,1

the Serratia endonuclease dimerization in their cleavage of DNA
and RNA,2 the homogeneous nucleation of water into droplets
and ice in radical reactions,3 the coexistence of ordered surface
water and crystallite-like ice structure which are dominantly
cubic,4 and stabilization in supramolecular self-assembly.5

Moreover, small water clusters are simple examples of math-
ematical graphs from which information on oxygen and
hydrogen connectivities are drawn.6-8

There are several studies directed at understanding the
stability and geometry of the water octamer, (H2O)8, and its
other properties such as molecular potential energy models,9-15

symmetry and structure,16 dimerization,17 thermodynamic
properties,18-21 hydrogen bonding topology,8 and most recently,
the confinement of the hydrogen molecule H2.22 Experimental
studies have identified the two almost isoenergetic stable
structures by infrared spectroscopy.23 Some conformers have
been indirectly confirmed in the study of wet electron behavior.24

However, only a few studies have been performed on water
dodecamer, (H2O)12, concerning both energy and hydrogen bond
network.

The early and relatively systematic work of dodecameric
water clusters together with water octamer studied by Tsai and
Jordan16 applied the TIP4P model, and assigned symmetries to
fused cubic structures of (H2O)12 isomers in a combinatorial
symmetry of two octamers. Besides four tetrameric structures
(D2d)2, (D2dS4), (S4)2, and (C1c Cs), there are hexameric
structures, likeS6 andD3, and two cage-type structures. With
the TIP4P-type potential, Wales and Hodges25 searched for the
global minimum of water cluster (H2O)n (n ) 2-21), and they
indicated that forn ) 12 the global minimum is of the fused
cubic structure. For comparison with Niese and Mayne,26 Wales
and Hodges performed analogous runs using the TIP3P potential
and showed that forn ) 12 the global minimum is based upon
a hexagonal prism, which lies about 1.3 kJ/mol lower than the
fused cube structure.26

Farantos et al.27 studied water cluster (H2O)n overn ) 7-18
monomers using molecular dynamics methods and an empirical
potential function for many-body polarization interactions. For
(H2O)12, they provided two structures in the combinatorial
symmetry, one from twoD2d octamers and one fromS4 and
D2d octamers. The power spectra of all cubic conformations
showed the low-frequency band observed in the millimeter
region, indicating a possible association of stability of these
multicubic clusters with the peculiar properties of liquid water.

Day et al.28 searched the isomers of water clusters (H2O)n
over n ) 6, 8, 10, 12, 14, 16, 18, and 20 with simulated
annealing methods combined with the effective fragment
potential and Hartree-Fock ab initio methods. For (H2O)12,
besides those symmetries for the four tetrameric structures
mentioned above, they showed another two symmetries (D2dC2)
and (C1c)2. Maheshwary et al.29 considered more geometries
including cuboid, fused pentagons, and fused hexagons. They
found that a fusion of two cubes withD2dD2d symmetry (dipole
moment 0) to be the most stable. A fused hexameric structure
with S6 symmetry and the fused pentameric structure are less
stable than the cuboids. Lee et al.30 calculated the chemical
binding energy of water clusters (H2O)n (n ) 2-20) and its
relation with the cluster size. TheD2d structures are slightly
lower in binding energy thanS4 structures for water clusters
with 8, 12, 16, and 20 water molecules. They concluded that
small water clusters composed of mainly planar four membered
rings are more stable, implying the existence of magic numbers
for water clusters with sizes of 4, 8, and 12.

The existence of the magic number 12 has been recently
reconfirmed in the experimental studies28 of dissociation
pathways and energetics of SO4

2-(H2O)n for n ) 3-17,
where blackbody infrared radiative dissociation, sustained off-
resonance irradiation collisional activated dissociation, infrared
multiphoton dissociation, and double resonance are examined.
The experiment showed that then ) 12 cluster is more stable
than eithern ) 11 or 13. This “magic” number hydrate is
consistent with filling of a shell structure atn ) 12. One such
structure in which all 12 water molecules are symmetrically
bonded to SO42- is identified as a low-energy structure at the
B3LYP/6-31++G** level,28 although this structure is entropi-
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cally disfavored compared to those where one or two water
molecules occupy a second solvation shell.

Studies related to the water dodecamer also include an ab
initio calculation by Lee et al.24 using Møller-Plesset second-
order perturbation theory with the TZ2P++ basis set. The most
stable dodecamer is a fused cubic or tetragonal prism skeletal
structure (Prism 444) with 20 hydrogen bonds (HBs). The lowest
energy structure among these skeletal conformers has HB
orientations with opposite helicities between adjacent tetragonal
rings. In the wet electron study,31 Kim et al. performed an ab
initio study on an excess electron bound to the water dodecamer
to determine whether the wet electron can be regarded as a
precursor of the fully solvated electron. Among a number of
possible geometries categorized as unbounded, surface, internal,
and partially internal excess-electron states, the lowest-energy
conformer is predicted to be a structure of a partially internal
state.

One can see the discrete (H2O)12 cluster even in the
stabilization and functioning of biomolecules and in designing
new materials. One example is as shown in the cavity of
polymeric interlinked metallocycles of Nd(III) or Gd(III) and a
podand ligand.32 Different than those structures observed before,
the overall structure of the water cluster can be described as an
“open-cube” octamer buttressed on two sides by two water
dimers. Another example is the structural variation from 1D
water chain to 2D layer by varying the crystallization condi-
tions.33 The unique 2D ice layer has great similarity to iceIh

and features a novel (H2O)12 ring. The 2D structure of the water
cluster is characterized through supramolecular self-assembly,34

and results from the hydrogen-bonding interactions between
water molecules.

Singer and co-workers35 have demonstrated that graph
theoretical techniques can be of considerable use in the search
for stable arrangements of water clusters. Inspired by the ice
rules they used graphical techniques to generate a multitude of
local minima for neutral and protonated water clusters using
oriented graph theory. The cubic (H2O)8 and dodecahedral
(H2O)20 clusters and their protonated analogues are treated as
examples. This idea of graph theoretical analysis of water
clusters has been previously pursued by Radhakrishnan and
Herndon.36

In this paper, we present a study of tetramer based (H2O)12

structures via optimization in a pool of all oriented graph
structures. The graph is a mathematical right square cuboid with
12 nodes, points abstracted from 12 oxygen atoms in water
molecules. Our studies are motivated by the recent work of the
catalytic reaction of the radical HO237 in the presence of water
cluster (H2O)20; and the storage of a hydrogen molecule confined
in the water octamer.38 In section II, the theoretical methods
emphasizing the enumeration of graphs in graph theory. Section
III describes the computational procedures which combine the
ideas from graph theory, ice rules, and ab initio quantum
chemistry methods. In section IV, the results are presented in
detail for the structures, geometric parameters, and point-group
symmetries of the fused cubic water dodecamer. Finally, the
discussion and conclusions are given in section V.

II. Graph Theory

Given 12 oxygen atoms, the right square cuboid we consider
in the present work is prepared with three parallel and equally
separated squares, top, middle, and bottom, as shown in Figure
1. The middle square may be considered a “fused” square of
two squares separately from the upper cube (the top and middle
squares) and the cube below (the middle and bottom squares).

Each square corner is occupied by one oxygen atom. A
connection between any two nearest neighboring oxygen atoms
is from the hydrogen atom, which bridges one oxygen and
another by a strong oxygen-hydrogen (O-H) bond and a weak
interactive connection between the bonded hydrogen and
remaining oxygen (H‚‚‚O), i.e., forming an oxygen-hydrogen
‚‚‚oxygen connection (O-H‚‚‚O). This is the picture developed
in the previous study of smaller water clusters. In such a fully
hydrogen-bonded structures there are at most 20 hydrogen
bonds. The four remaining hydrogens are in free oxygen-
hydrogen bond or free hydrogen bond for convenience, and
hence these four hydrogens are called dangling hydrogens. Even
for such a simple cuboid with the fixed position of only 12
oxygen atoms, the number of energetically favorable structures
is not known. The remaining part of this paper addresses the
problem concerning hydrogen covalent bonds, free hydrogen
bond distributions, and their relationship with the symmetry
representation of the molecular point group. To elucidate this
problem, we start by examining the hydrogen bond distribution
and the number of variations using graph theory.

We define an oxygen atom as a vertex of a graph, and the
edge of the graph is simply a straight line which is the line
connecting the two nearest neighboring oxygen atom nodes. At
this time the hydrogen between the two oxygen atoms may be
bound to one oxygen or another, and there are only two opposite
bonding orientations for each such connections. Therefore, the
graph is exactly an oriented graph with an exception that all
two diagonal vertexes in any square and rectangular cycles are
disconnected. The 20 bond orientations determines the number
of graphs for the cuboid. The numbers of the graphs for such a
partially connected and disconnected graph is less than a limit
number of the general cubic, unlabeled, connected graphs39 with
2n ) 12 vertexes,

The cycle indexZv(Sn) enumerates the number ofn vertexes
for a symmetry groupSn by Pólya theorem40

wherep is for all partitions{j1, j2, ..., jn} of n, i.e.

Figure 1. Right square cuboid with labeled vertexes and directed edges.
The two orientations of each edge are binarily encoded either 1 for the
up, right, and into as shown by arrows or 0 for the down, left, and out.
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and i, ji, k, andn are integers and are larger than 0. The cycle
index formula for the symmetry group with 2n ) 12 is given
in Supplementary Table 1 and the graph numbers are 4379, in
agreement with results by Balaban et al..41 At this stage, the
graph for the right square cuboid does not include the dangling
hydrogens. It only shows the oxygen topology, e.g., the oxygen
framework and the existence of one connection between two
nearest neighboring oxygens,6 and the orientation of each
connection is undermined.

Next, we enumerate the number of graphs of the cuboid for
a given symmetry of crystallographic point groups. The differ-
ence between the right square cuboid and the cube is that the
former does not possesses theC3 rotation symmetry that the
later possesses. The highest rotation operation the cuboid has
is C4. The cuboid, in a crystallographic sense, is a member of
the family of tetrahedral three-dimensional objects. In this family
the orders of symmetries are different, from the lowest order 4
of symmetryC4 through the highest order 16 of symmetryD4h.
Another rotation operation isC2, which is in the monoclinic

and orthorhombic families with the lowest order 2 of symmetry
C2 to the highest order 8 of symmetryD2h.

Consider symmetryD4h with the highest symmetry order, its
cycle index for edges (e) is as follows,

whereei are cycle variables. Replacingei by 1 + 2xi, one may
have the number of graphs accounted for by the edges. From
eq 4 there are 67848 graphs, which show the distribution of
edges or covalent hydrogen bond topology for symmetryD4h.
From eq 4 one can see that the number of graphs for edges
decreases with the order, but increases with the number of the
vertexes.

Is there a way to classify the huge number of graphs? For a
water molecule in the fused cubic cluster, the oxygen atom is

TABLE 1: Symmetry Groups, Ordered Energies, and Combinatorial Expressions

no. symmetry order Ea (au) Erel
a (au) COSb STEc,d no. symmetry order Ea (au) Erel

a (au) COSb STEc,d

1 C2 2 -915.0148 0.0000 (S4)(D2d) (IrII) 47 C1 1 -915.0007 0.0141
2 S4 4 -915.0143 0.0004 (S4)2 (III) 48 C1 1 -915.0002 0.0141
3 C2 2 -915.0128 0.0020 (S4)2 (III) 49 C1 1 -915.0002 0.0141
4 C1 1 -915.0114 0.0033 (C1c)r(Cs) (EJE) 50 C1 1 -915.0002 0.0141
5 C1 1 -915.0114 0.0033 (C1c)(Cs) (BJB) 51 C1 1 -915.0002 0.0141
6 C1 1 -915.0109 0.0039 (C1c)(S4) (IEE) 52 C1 1 -915.0001 0.0142
7 Ci 2 -915.0107 0.0041 (C1c)r(C1c) (EJB) 53 C1 1 -914.9999 0.0145
8 C2 2 -915.0105 0.0042 (S4)(C2) (IIA) 54 C1 1 -914.9997 0.0146
9 Ci 2 -915.0103 0.0044 (Cs)r(Cs) (BJE) 55 C1 1 -914.9996 0.0148

10 Ci 2 -915.0103 0.0044 (Cs)(Cs)r (EJB) 56 C1 1 -914.9993 0.0150
11 C1 1 -915.0090 0.0058 57 C2(o) 2 -914.9992 0.0152 (C1b)r(C1b)r (EAE)
12 C1 1 -915.0088 0.0059 58 C1 1 -914.9987 0.0157
13 C1 1 -915.0085 0.0062 59 C2(o) 2 -914.9986 0.0157 (C1b)2 (BAB)
14 S4 4 -915.0085 0.0063 (C2)2 (AIA) 60 C1 1 -914.9983 0.0161
15 C1 1 -915.0083 0.0064 61 C1 1 -914.9983 0.0161
16 C2(o) 2 -915.0081 0.0067 (C1a)2 (EFE) 62 C1 1 -914.9983 0.0161
17 Ci 2 -915.0074 0.0074 (Ci)r

2 (JJJ) 63 C2(o) 2 -914.9980 0.0164 (C4b)r
2 (FF′F′′)

18 C2 2 -915.0070 0.0078 (C2)(D2d) (IAA) 64 C1 1 -914.9980 0.0164
19 Ci 2 -915.0070 0.0077 (C2)2 (IAI) 65 C1 1 -914.9978 0.0165
20 D2 4 -915.0070 0.0078 (C2

r)2 (IAI) 66 C1 1 -914.9975 0.0168
21 C1 1 -915.0068 0.0079 67 C1 1 -914.9974 0.0169
22 C1 1 -915.0067 0.0081 68 C1 1 -914.9972 0.0172
23 C1 1 -915.0063 0.0085 69 C1 1 -914.9970 0.0174
24 C1 1 -915.0056 0.0092 70 C1 1 -914.9966 0.0177
25 C1 1 -915.0053 0.0095 71 Cs 2 -914.9966 0.0177 (C1b)r(C1b) (EAB)
26 C1 1 -915.0052 0.0096 72 C1 1 -914.9965 0.0178
27 Ci 2 -915.0043 0.0105 (C1d)(C1d)r (FJF) 73 C1 1 -914.9965 0.0179
28 C1 1 -915.0042 0.0106 74 C1 1 -914.9958 0.0185
29 Ci 2 -915.0041 0.0106 (C1e)(C1e)r (FJG) 75 C1 1 -914.9958 0.0185
30 C1 1 -915.0039 0.0109 76 C1 1 -914.9954 0.0189
31 C2(o) 2 -915.0037 0.0111 (C1d)r(C1d)r (JGJ) 77 C1 1 -914.9950 0.0194
32 D2h 8 -915.0036 0.0107 (D2d)2 (AA ′A) 78 Ci 2 -914.9930 0.0214 (JMM)
33 C1 1 -915.0029 0.0114 79 C1 1 -914.9929 0.0214
34 C1 1 -915.0029 0.0114 80 C1 1 -914.9927 0.0216
35 C1 1 -915.0023 0.0120 81 Ci 2 -914.9925 0.0218 (JLM)
36 C1 1 -915.0022 0.0121 82 C1 1 -914.9921 0.0222
37 C1 1 -915.0018 0.0126 83 C1 1 -914.9911 0.0232
38 C2(o) 2 -915.0015 0.0129 (Ci)2 (GFG) 84 C1 1 -914.9905 0.0238
39 C1 1 -915.0013 0.0130 85 C2 2 -914.9897 0.0246 (C4a)r(D2d)r II rNr)
40 Ci 2 -915.0013 0.0131 (C1b)r(C1b) (EAB) 86 C1 1 -914.9896 0.0247
41 C1 1 -915.0012 0.0132 87 C4 4 -914.9875 0.0269 (C4b)r

2 (NrNrNr)
42 C1 1 -915.0006 0.0137 88 C4 4 -914.9874 0.0270 (C4b)(C4a)r (NNNr)
43 C1 1 -915.0004 0.0140 89 C4 4 -914.9873 0.0270 (C4a)r(C4b)r (NNrNr)
44 C1 1 -915.0003 0.0140 90 C4 4 -914.9872 0.0271 (C4a)(C4a)r (NrNNr)
45 C1 1 -915.0003 0.0140 91 C4 4 -914.9590 0.0553 (C4b)r(C4a)r (NrNoNr)
46 C1 1 -915.0003 0.0140

a Energies are ordered in the values and increase down to the bottom,Erel ) E + 915.0148 au.b COS: Combinatorial octamer symmetry.c STE:
Stacked tetramer expression.d Key: (r) reflection in a plane crossing oxygen atoms of two water molecules and space the two covalent bond pairs
either in or vertical to the plane; (′) rotation of 90° about a principal axis; (′′) rotation of 180° about a principal axis; (o) optimized structures.

Z12, D4h

e ({ei}) )

1
16

(e1
20 + 2 e1

2 e2
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a donor of two hydrogens or an acceptor of at most two
hydrogens. In the graph, these two bonds are either two edges
or one is an edge and one a branch. All vertexes in the graph
are therefore divided into two types, vertexes with a branch
and vertexes without a branch. Thus, our enumerating problem
of considering the dangling hydrogen distributions in the fused
cubic water clusters is just the same two-color concept in graph
theory. A cycle index of the vertexes has to be developed for
such a graph for the two coloring problem. For a given point-
group symmetryD4h the cycle index of vertexes (V) is

Let Vi ) (f + b)i, wheref andb are the two colors for vertexes
with and without a branch, corresponding to the oxygen atoms
with and without a free hydrogen connection. The cycle index
expression is

There are only four vertexes (oxygens), which have a branch
(connect dangling hydrogens),f4, and the remaining eight
vertexes (oxygens) do not have a branch (do not connect
dangling hydrogens),b8. The combination of them for the cuboid
produces the termb8 f4. From eq 6, we obtain a total of 495
unique classes of such hydrogen networks for those graphs. Here
the hydrogen network is an overview of the whole cluster with
all hydrogens bounded, although the orientation of hydrogens
in the hydrogen bonds is not known. From the analysis above,
we have a new method, using the free hydrogen bond distribu-
tions, to categorize the structure of fused cubic water clusters.
We will revisit the distribution of free hydrogens in calculations
in section V.

It should be emphasized that those cycle indices calculated
above are based on the Po´lya theorem.40 It provides an upper
limit to the numbers of both the oxygen topology and the
hydrogen network on mathematical grounds, but it does not
involve the ice rules and the way graphs are constructed.

III. Numerical Methods

Let us start by defining the degree of a vertex. It is defined
as the number of connections to all neighboring vertexes. For
an oriented graph, in-degree is the number of the connections
pointed to the vertex, and out-degree is the number of the
remaining opposite connections. The ice rule claims that the
difference between in-degree and out-degree is not larger than
1 in three-coordinate connections and is 0 in four-coordinate
connections.

To construct the distinct graphs, each edge in a cuboid graph
is binary encoded, ei ) 1 are for up, right, and into directions
and ei ) 0 for down, left, and out direction as shown in Figure
1. Herei ) 1, 2, ..., 20. This binary encoding provides another
upper limit of the number of all graphs for the edges of the
cuboid inC1 symmetry, 220 ) 1048576, no matter what vertex
is the starting onei ) 1. Figure 1 is the graph for all{ei} ) 1.
For eachei which is 1 or 0, its degree may bedei ) + 1 for
into a vertex or-1 for out of the vertex. Hence, for the three-
coordinated vertexes in the top and bottom planes of the figure,
the ice rule may be expressed in

and for the four-coordinated vertexes in the middle plane it is

Here i, j, k, l are integer indices. This rule reduces the number
of graphs down to 89367 (comparable to 67848 graphs ofD4h).

These 89367 graphs are categorized according to the distribu-
tive property of the net degree of 12 vertexes,{On}, n ) 1, 2,
‚‚‚, 12 as labeled in Figure 1.On equals the sum of in-degree
and out-degree for vertexn. For example,O1 ) de1 + de2 + de6

and O5 ) de9 + de10 + de6 + de14. The number of{On}
distributions,N{On}, found using the ice rules is 495, which is
the same as 495 by eq 6 from the Po´lya theorem. The number
of unique structures will be discussed in section V.

To reconstruct a graphic structure based on graph theory
analysis, more information based on physical properties needs
to be considered. To scan all the point-group symmetries of
the dodecamer that satisfy the ice rules, the graph structures
above are used as the starting point to obtain a best guess
geometry. This is done by assigning specific geometrical
parameters to theD4h graphs, which are of the highest order in
the tetrahedral family. For example, suppose the oxygen-
hydrogen bond length is 0.85 Å with the hydrogen linearly
targeting at a neighboring oxygen. The two neighboring
oxygen-oxygen separation is 2.8 Å. The dihedral angle to fix
a dangling hydrogen connecting to one of the oxygen atoms in
the top and bottom planes is 33°. For the middle plane, it is
180°. The reason for starting with theD4h symmetry is to
construct a perfect geometry to ensure a maximal searching of
the highest symmetrical structures of the cluster.

The guess geometry is used as input into the quantum
chemistry optimization.42 To optimize all graph structures, the
semiempirical PM3 method is used initially. This is a re-
parametrization method of the modified neglect of diatomic
overlap, MNDO, in which the AM1 (Austin model 1) form43

of the core-core interaction is used. For water molecule H2O,
the PM3 gives bond length and angle 0.95 Å and 107.7°
respectively, and the corresponding Hartree-Fock results (using
6-31+G(d,p) basis set throughout this paper) are 0.94 Å and
106.0°. Any of the 89367 graphs that cannot be optimized by
the PM3 method are discarded. After this step, 885 graph
structures are obtained. The Hartree-Fock single-point calcula-
tion is used to scan and extract all energetically unique
structures, e.g., only keeping one representative for those
isoenergetic structures at the Hartree-Fock level (energy
numerical accuracy 10-8 atomic units or au throughout this
paper). This method resulted in 146 graphs. Next both Hartree-
Fock and density functional theory methods are used to optimize
the remaining structures. Frequency calculations are then
performed. In the post HF calculations, the Møller-Plesset
second-order (MP2) method is used to account for the electron
correlation effect. At the MP2 level, 91 energetically unique
structures are found.

IV. Structures and Symmetries

A. Overview of Geometric Structures.In Figure 2, we show
three-dimensional structures in the ball-stick representation for
selected structures of fused cubic (H2O)12 (all 91 unique
structures can be found in the Supporting Information, Figures
1-6). The large black balls represent oxygen atoms, the small
gray balls are hydrogen atoms, and the gray sticks refer to
covalent hydrogen bonds. The figure inserts are arranged from

Z12, D4h

V ({Vi}) ) 1
16

(V1
12 + 2 V1

6 V2
3 + V1

4 V2
4 + 2V1

2 V2
5 +

4 V2
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3) (5)
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-1 < dei
+ dej

+ dek
e 1 (7)

-2 < dei
+ dej

+ dek
+ del

e 1 (8)

Fused Cubic Clusters of Water Dodecamer J. Phys. Chem. A, Vol. 109, No. 51, 200512039



left to right, row by row down to the bottom of a figure and
grouped in terms of symmetries. In the molecular point-group
representation the symmetries areD2h, S4, C4, D2, C2, Ci, Cs,
andC1, and their symmetry orders44 are 8, 4, 4, 4, 2, 2, 2, and
1, respectively.D4h is removed by the ice rules.

Similarly, in Table 1, we list symmetries in columns 2 and
9, symmetry orders in columns 3 and 10, and the absolute energy
values in columns 4 and 11. In columns 5 and 12, the energies
for all structures are ordered starting with the lowest one.
Following previous work,16,27,28 a combinatorial symmetry
expression is applied based on information from the water
octamer case. In columns 6 and 13, we use a simpler expression
in terms of stacking arrangement of the top, middle, and bottom
tetramers that have several fundamental configurations shown
in Figures 3 and 4. All of the energy and symmetry information
are listed separately in the Supporting Information.

The electronic energy optimization compresses the graphic
structures considerably by turning straight line O-H‚‚‚O
connection to form an obtuse angle,∠OHO. In the O-H‚‚‚O
connection, O-H is the covalent bond and has an average length
of 1.0 Å, 0.035 Å longer than the length of the free hydrogen
bonds, 0.964 Å. The weak interactive connection, H‚‚‚O, i.e.,
one of the hydrogens from one water molecule and the oxygen
from the neighboring water molecule, has an average length of
1.896 Å, nearly two times the O-H bond length. The obtuse
angle∠OHO is approximately 161( 2° for all structures except

the one in symmetryD2h where the smallest angle is 136°. The
optimized oxygen-oxygen separations range between 2.820 and
2.850 Å is about 0.070 Å shorter than the oxygen-oxygen
separation in the water dimer.

In contrast to the large variations of O-H‚‚‚O connections,
which may show water molecule and molecule interactions,
there are minor changes in the stretching angle,∠HOH, of a
water molecule. Its average value is 105.7°, only 1.4° smaller
than the gas-phase value. We also checked the angle for the
three neighboring oxygens,∠OOO. It ranges about(3° about
90° for all symmetries with an exception ofD2 symmetry where
the range is(7°. Table 2 includes all the average data within
each point group symmetry.

Now, let us examine the overall characteristic of the 91
structures (See the Supporting Information). InC1 symmetry,
8 isomers labeled byC1(N) with N ) 22, 25, 26, 44, 46, 51,
53, and 58, are composed of two loosely interacting water
dimers and a disturbed cubic water octamer. The remaining 83
isomers are of cuboidal structures. For some of them, particularly
those withCs, Ci, andC1 symmetry, one can see turns at the
fusing plane, translations between top and bottom tetramers,
and obvious changes in shape comparing them with water
octamers.38 As a contrast, each of the top, middle, and bottom
tetramers in all 83 isomers almost maintains a planar shape.
These distinctions emphasize both the fusing connection between
two shaped octamers and the stacking arrangement among three
tetramers.

In Figures 3 and 4, we show the tetramers structures which
can be classified into three types according to the connectivity
of oxygen sites and dangling hydrogens, i.e., the four hydrogen
atoms are equivalently shared by two diagonal oxygen atoms,
given in part A in Figure 3; shared by three oxygen atoms in

Figure 2. Selected fused cubic water dodecamer structures in the ball-
stick representation. The large black balls represent oxygen atoms, the
small gray balls are for hydrogen atoms, and the gray sticks refer to
the covalent hydrogen bonds. Symmetries areD2h, S4, C4, D2, C2(o).
Here the principal axis ofC2 is the diagonal line crossing two oxygen
(o) atoms of the middle tetramer (see Figure 1).

Figure 3. Left column: tetrameric structures which are withdraw from
optimized dodecameric structures. Right column: optimized tetrameric
structures starting from the corresponding structures listed in the left
column. Note that each tetramer provides at most two planes for
tetramer-tetramer arrangements in dodecamers.
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two neighboring lateral sides, parts B-H; and one-to-one shared
by the four oxygens atoms, parts I-N. These unoptimized
tetramers are listed in the left-hand column of Figures 3 and 4.

In Figures 3 and 4, we also list the optimized tetramers in
the right column. One will see that only the tetrameric structures
A, I, J, K, and N energetically maintain the unoptimized spatial
configurations of the atoms. Tetramers B, C, D, E, F, G, L,
and M are not stable and transfer to stable configurations that
are the optimized results of tetramers I, J, and K. The exception
is tetramer H, which changes to a nontetrameric structure. For
tetramer A, each oxygen shares two dangling hydrogens while

in other tetramers, I, J, K, and N, one oxygen holds one dangling
hydrogen. Tetramers K and N are different in the chirality of
hydrogen bonds of their tetrameric rings. In tetramer I, two
equally oriented dangling hydrogens are diagonal, but in tetramer
J they are lateral.

B. Symmetry for the First 10 Ground-State Structures.
In the 91 unique structures, there are 31 symmetrical structures
and 60 nonsymmetrical structures (see Figures 1-6 in the
Supporting Information). For example,C4(2) is assigned to a
structure that possessesC4 symmetry with the second low energy
level in the symmetry. Table 1 shows the ground-state energy
for all isomers with symmetry information. In the following, a
detailed description is given of the symmetries for the first 10
structures, which are of the lowest energies. Their point group
symmetries areC2, S4, Ci, andC1. We then complete this section
with details of the structures for the remaining symmetriesD2h,
C4, D2, andCs.

Before the structures and symmetries are described, it is
important to mention that using a set of the tetramer-based labels
do not produce symmetry information but supplement more
fundamental information on stacking arrangements. The stacking
arrangement information is important in constructing larger
fused cubic clusters. As indicated before, the turns and relative
translation between two tetrameric planes are observed in
dodecameric (see Supporting Information) and even octameric
structures (Figure 5). Table 1 provides the combinatorial
symmetry expressions and three tetrameric arrangements in
columns 6 and 7 (and columns 13 and 14) for all structures
with symmetry orders larger than 1. The structures and the
corresponding symmetries for the first 10 lowest energies are
analyzed. Moreover, within each mentioned symmetry the
remaining structures are introduced.

C2 symmetryhas an order of 2 and can be divided into two
types according to the principal axis direction, one with its axis
across the centers of three tetramer planes, and another with
the axis across two diagonal oxygen (o) atoms of the middle

Figure 4. Continuation of Figure 3.

TABLE 2: Average Values of Geometric Parameters in
Each Point-Group Symmetry

symmetry LOH
a L OH

f b DOO
c ∠HOH ∠OHO ∠OOO

D2h 0.964 0.984 2.834 106.531 155.125 88.742
S4 0.991 0.964 2.823 105.444 159.180 92.759
C4 0.983 0.965 2.896 104.912 163.931 90.066
D2 0.992 0.965 2.820 105.898 162.812 97.335
C2(o)e 0.991 0.964 2.837 105.760 160.975 93.648
C2

d 0.991 0.964 2.835 105.719 160.192 90.001
Ci 0.999 0.964 2.840 105.296 161.934 93.216
Cs 0.994 0.965 2.851 106.123 162.011 89.814
C1 1.017 0.963 2.847 105.374 162.321 93.114

a LOH: Length of the covalent hydrogen bond in an oxygen-
hydrogen ‚‚‚oxygen connection.b LOH

f : Covalent bond length be-
tween a dangling hydrogen and an oxygen atom.c DOO: Distance
between two oxygen atoms in an oxygen-hydrogen‚‚‚oxygen con-
nection.d C2: A 2-fold rotation group with its principal axis across
the center of three tetramer planese C2(o): A 2-fold rotation group
with the principal operation axis across two diagonal oxygen atoms of
the middle tetramer (Figure 1).

Figure 5. The 14 structures of the cubic water octamers. Note that
each cube provides three orientations and at most six tetrameric planes
for fusing two octamers.
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tetramer. We keepC2(N) for the first and applyC2(No) for the
second, whereN is the index. There are five structures inC2(N)
and six structures inC2(No).

In the C2 symmetry the five structures areC2(1), C2(2), ...,
C2(5). TheC2(1) structure has the lowest energy-915.0148 au
over all 91 structures. The energy value is listed in the first
row, column 4 in Table 1. For simplicity, one may consider
this isomer as two fused octamers of oneS4 and oneD2d and
both share tetramer I (as shown in Figure 4), though hereS4

andD2d octameric structures are not respectively equivalent to
the optimized octamers in Figure 5. According to the previous
work,16,27,28its combinatorial symmetry is expressed in (D2d)(S4).
Viewed alternatively, this isomer includes the top, middle, and
bottom tetrameric layers via four hydrogen bonds between the
top and the middle and another four bonds between the middle
and the bottom. With the labels given in Figures 3 and 4, we
order the top, middle, and bottom tetramers in parentheses, so
then theC2(1) structure is IrII. Here ther over tetramer I means
a reflection in a plane perpendicular to the tetramer plane and
crossing the oxygen atoms of two diagonal water molecules.
For the tetramer, this reflection operation is also equivalent to
an operation reversing the chirality of a ring defined by four
oxygen to hydrogen connections. It is the reflection that the
chirality of the top tetramer is different from that of the middle
and bottom tetramers and that the wholeC2(1) structure is of a
net dipole moment 0.0017 D or 0.0007 au along its principal
axis.

The second lowest energy is fromC2(2) symmetry which may
be stacked with twoS4 octamers, (S4)2, or three I tetramers, III.
It has an energy of-915.0128 au as given in the third row in
Table 1, higher than the energy ofC2(1) by 0.0020 au or 1.24
kcal/mol. The structure has a net dipole moment along the
principal axis, 0.46 D or 0.18 au, 250 times larger than that of
the C2(1) structure. The third lowest energy is given on the
eighth row in column 4, Table 1, and is of symmetryC2(3). Its
energy is-915.0106 au and the dipole moment 0.28 D. Its
combinatorial expressions are (S4)(C2) and IIA. The remaining
two structures inC2 symmetry areC2(4), which is simply
expressed in (C2)(D2d) and IAA, andC2(5) in (C4a)r(D2d)r and
II rNr. Here r over an octamer also means the reflection in a
plane crossing the oxygen atoms of two diagonal water
molecules as defined before for the tetramer case, but the two
oxygen atoms are not coplanar. The reflection plane is oriented
by two lines joining the two hydrogen atoms in each of the
water molecules. The two lines are either vertical to the plane
or one of them in plane and another vertical to the plane. For
simplicity we user for one of the six reflection planes in the
octameric cube.

S4 symmetryhas an order of 4. There are two unique structures
for this symmetry,S4(1) andS4(2). TheS4(1) structure is of the
second lowest energy level, as shown in Table 1,-915.0143
au. It is higher than the energy of theC2(1) symmetry by 0.0004
au or 0.28 kcal/mol. The total dipole moment for theS4(1)
structure is zero. Compared to each other, theS4(1) andC2(2)
structures both apparently are of the same two stackedS4

octamers and three stacked I tetramers. However, theS4(1)
symmetry includes aπ/2 rotation followed by a reflection in
the plane perpendicular to the axis of the rotation whileC2(2)
symmetry includes only aπ rotation. Hence the top and bottom
tetramers in theS4(1) structure both are symmetrically com-
pacted, and produces a zero dipole moment along the axis. In
the C2(2) structures the top and bottom tetramers are not
symmetrically compacted, which leads to an axial dipole
moment.

There is also anS4(2) structure, which is stacked by twoC2

octamers, (C2)2, or three tetramers (AIA). It has an energy of
-915.0085 au, this is higher than theC2(1) structure by 0.0063
au or 3.94 kcal/mol. All data are listed in Table 1.

C1 symmetryinvolves a total of 60 structures and contributes
a structure at the fourth lowest energy. The structure includes
three stacked tetramers (EJE) or two fused octamers (C1c)r(Cs).
The fifth lowest energy isC1(2) with structure (C1c)(Cs) and
its three stacked tetramers are BJB.C1(1) and C1(2) are
structures with equal energies-915.0114 au. They are enan-
tiomeric pairs, one of them is a nonsuperimposable mirror image
of the other. Here the mirror plane crosses the oxygen atoms of
two water molecules, one in the top tetramer and one in the
bottom tetramer. The mirror is symmetrical about the covalent
bonds of each of the two water molecules. From the atom-
atom connection geometries and isoenergetic property one may
find other structure pairs with enantiomeric symmetry in Table
1: 45th and 46th, 49th and 50th, and 61st and 62nd. The small
differences (less than 10-6 are thought to be from numerical
processes with different starting geometries).

The C1(1) and C1(2) structures are followed by structure
C1(3), which is the sixth level,-915.0109 au, higher thanC1(2)
by 0.0035 au or 2.17 kcal/mol, and it may be seen as an IEE
tetrameric stacker or (C1c)(S4) octameric stacker.

Ci symmetryis characterized with its inversion operation.
There are 10Ci unique structures and they contribute the seventh
lowest energy level in Table 1. Its symmetry isCi(1) in Figure
2. In the combinatorial expression it is (C1c)r(C1c) from Figure
5 and EJB from Figures 3 and 4. If the chirality of hydrogen
bonds of its middle tetramer is reversed, then another structure
with higher energy is obtained. Its symmetry is Ci(2). We
designate this structure (Cs)r(Cs) and BJE.

Furthermore, starting from structure Ci(1) and if taking an
atomic reflection in a plane across the centers of two water
molecules, which is in the top and bottom tetrameric planes
and on the diagonal position, then structure Ci(3) is obtained,
the 10th energy level. Its combining structure is (Cs)(Cs)r, and
three tetramers EJB. Hence Ci(1) and Ci(3) are of energies
-915.0103 and-915.0103 au respectively. Although their
energy difference is smaller than 10-6 (see Table 1), Ci(1) is
not an enantiomer of Ci(3) because the inversion operation is
improper. Ci symmetry has seven higher energy structures. The
17th is a combination of (Ci)r

2 and JJJ. Results for the 19th,
27th, 29th, 40th, 78th, and 81th energy levels are given in Table
1.

C. Symmetry for the High Energy State Structures.The
following are the structural and energetic description of the
remaining symmetries,D2, D2h, C4, andCs.

D2 symmetryhas an order of 4. In this symmetry there is
only one unique structure in a combinatorial symmetry (C2)r

2

with three tetramers (IAI). Here (C2)r is a mirror image of
octamerC2 with respect to a plane involving two pairs of oxygen
atoms of two diagonal water molecules in theC2 cube. TheD2

structure has an energy of-915.0070 au that is the 20th level.
D2h symmetryis of the highest order 8 in all stable structures,

but its energy-915.0036 au is not the lowest. It is about 0.0112
au or 7.00 kcal/mol higher than the lowest energy-915.0148
au of symmetryC2(1). This energy is numbered as the 32nd
level. and its combinatorial structure is (D2d)2 as shown in the
previous studies.16,27,28 We also express it by three tetramers
(AA ′A) in which A′ differs from A by a rotation of 90° about
the principal axis.

Cs symmetryhas symmetry order 2. Our calculation shows
that there is only one unique structure for symmetryCs which
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has an energy of-914.9966 au, numbered as the 71th level in
Table 1. The isomer includes two head-to-end octamers
(C1b)r(C1b) or three stacking tetramers (EAB).

C4 symmetryis an interesting one since there are a total of
five structures. Their energies are the highest ones at the MP2
level of theory, from the 87th through the 91st in Table 1. The
87th structure,C4(1), is a combination of two exactly stacked
octamers (C4b)2 or stacked tetramers (NrNrNr) with an energy
of -914.9875 au. The following structure, the 88th, isC4(2),
0.00008 au or 0.05 kcal/mol higher in energy and can be
expressed in combination symmetry (C4b)(C4a)r and three
tetramers (NNNr).

If the reflection operation is made on the middle tetramer of
C4(1), then C4(3) structure is obtained with an energy of
-914.9873 au, a combinatorial symmetry (C4a)r(C4b)r, and the
three tetrameric expression NNrNr. If structuresC4(2) andC4(3)
are compared, the expression (C4b)(C4a)r is found not to be
equivalent to expression (C4a)r(C4b)r because of the planar
reflections and the four axially oriented dangling hydrogens.
After a similar operation on the middle tetramer, one may have
structureC4(4) with an energy-914.9872003 au, which are
fused octamers (C4a)(C4a)r and stacked tetramers (NrNNr).

A structure not previously known isC4(5) and its energy is
-914.9590 au, higher than that ofC4(4) by 0.0282 au or 17.68
kcal/mol. Its energy is also higher than the energy ofC2(1) by
0.0558 au or 34.98 kcal/mol, the largest energy gap for all of
the structures. Each of its octamers cannot be stable, because
the middle tetramer is the reflection of not a tetramer (N) but
the optimized (o) one as shown in Figures 1 and 4 as well as
Table 1. Its tetrameric expression may be NrNoNr.

V. Discussion

We described optimized structures of fused cube water
clusters (H2O)12 using combined methods of quantum chemistry
calculation, graph theory, and the binary encoding technique.
Our energy optimization starts with selected Po´lya graphs under
the ice rules. At the Hartree-Fock level of theory, we only
maintain one structure and remove the remaining structures in
a group of all isoenergetic structures (numerical error smaller
than 10-8 au), and hence, a reduced set of the energetically
allowed structures are obtained. Figure 6 is a diagram for the
energy levels of such a reduced set of unique structures. The
maximal difference of energies is 34.98 kcal/mol.

From the energetic analysis we find that there are totally 4
enantiomeric pairs fromC1 symmetry. They are expressed in

the 9th and 10th, 45th and 46th, 49th and 50th, and 61st and
62nd levels in Table 1. Considering the real energy levels are
more complex than Figure 6, we expect more enantiomeric pairs
in the real energy levels; and therefore, a robust optically active
property from the dextrorotatory isomers and levorotatory
isomers in the water dodecamer.

Checking Figure 6 carefully, the lines of the energy levels
are found to have some specific distributions: after a large space,
the separation of the lines becomes small and such lines become
dense until a new space appears. This observation confirms the
distributions of classes of structures given in the graph theory
in section II. To examine the distribution of the structures, the
energy differences between two neighboring structures is
calculated and listed in Table 1 and shown in Figure 7. The
peaks indicate the energy level distributions. A higher peak
indicates a larger space between two neighboring lines or levels.
The distance between two neighboring peaks approximately
defines a band. If we choose the energy difference between two
neighboring levels to be larger than 0.0005 au, then a total of
14 bands is obtained. A relation is expected between these 14
energy level bands with the distributions of the four free
hydrogen bonds. Using graph theory and quantum chemistry
we have identified that there are seven classes for water
octamer.38 If considering the dodecamer is a combination of a
cube and another tetramer based on Redfield’s graph reduced
function,45 and if the dangling hydrogen atoms distribute in the
way to minimize the Coulomb repulsion among them, then we
have a total of 14 classes.

In symmetrical structures we noticed that some structures with
C4 symmetry are oriented by the free covalent hydrogen bond
atoms, though the maximal difference of their energies is high
(up to 0.2687 au or 168.63 kcal/mol). The high energy is the
result of Coulomb repulsions among those pseudo free hydrogen
atoms, which are restricted to a small four-membered ring (2.77
× 2.77 Å2). Those locally stable, highly symmetrical, and
oriented structures might give us hints to study the conditions
of water clusters and ice growth in some specific environments
such as extreme atmospheric conditions and pressure confine-
ments. From structureC4(1), one might obtain a number of
longer gas-phase structures (H2O)4n by stacking isochiral
tetramers. Whether or not they are stable within certain
environmental conditions, all of these need further studies with
more advanced calculations and larger basis sets that are limited
in our current computing capacity.

In our study, 83 cuboidal structures generally maintain a fused
cubic framework, and 8 structures are heavily distorted. The
distorted structures may be simply seen as two loosely patterned

Figure 6. Electronic energy level (in atomic units) diagram for a
reduced set of structures of fused cubic water dodecamer. Here reduced
means that only one structure survives at the Hartree-Fock level of
theory (see section III).

Figure 7. Energy differenceE(N+1) - E(N) (in atomic units) as a
function of the ordering index numberN (see columns 1 and 8 of Table
1) with 1 e N e 90. E(N) represents one of the ordered energies for
the dodecamer structures.
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water dimers and a disturbed cubic structure. In fact one can
see more turns and translations between two tetramers for those
nonsymmetric octamers and dodecamers. These indicate the
possibility of other structures of water dodecameric complexes
in ambient environmental conditions. These observations strongly
support a recent experimental result in the cavity of polymeric
interlinked metallocycles of Nd(III) or Gd(III) and a podand
ligand.32 The dodecameric cluster is described as an “open-cube”
octamer buttressed on two sides by two water dimers and the
clusters group occupy the voids in the organo-metallic frame-
work. A more direct identification, however, should involve
conformational variations over a larger pool of structures
including dimeric and trimeric water components.

In summary, we have presented all energetically optimized
structures of fused cube water dodecamer (H2O)12 with graph
theory and ab initio calculations. Using graph theory, we have
developed the cycle index expressions for 12 vertexes and 20
edges in a cuboidal point-group symmetryD4h, and provided
the cycle index expression for the permutation symmetric group
S12. Our analytical and numerical enumerations confirm each
other, and both set an upper limit to the numbers of graphs for
optimization. A binary encoding technique has been designed
in reconstructing the initial geometries of the graphs under the
ice rules.

Graphs that satisfy the convergence condition in the energy
using semiempirical methods (PM3) are selected for reoptimi-
zation with methods at the Hartree-Fock, density functional
theory, and second-order Møller-Plesset levels using the
6-31+G(d,p) basis set. A total of 91 structures are obtained,
which are vibrationally stable and distributed in 8 distinct point-
group symmetries, 1D2h, 2 S4, 5 C4, 1 D2, 6 C2(o) and 5C2, 10

Ci, 1 Cs, and 60C1. The diagram of the 91 structural energy
levels shows 14 bands which can be mapped to 14 classes of
two-colored graphs and correspond to the distributions of four
free hydrogens in light of Redfield’s graph reduced function.45
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