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Sabre Kais‡

Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA

Abstract

We studied the dynamics of the entanglement for two electron atoms as a ”bipartite” quantum

system with continuous degrees of freedom. We analyze in particular the time evolution of initial

states created from a superposition of the eigenstates of the two-electron Hamiltonian with variable

nuclear charge Z. We find that the pairwise entanglement for the two electrons propagate in a way

that is proportional to the time evolution of the Coulombic interaction between the two electrons.

Thus connecting the entanglement of the two-electron atoms to a physical quantity, the electron-

electron interaction.
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I. INTRODUCTION

The study of quantum entanglement for systems with continuous degrees of freedom

possess a number of extra problems when they are compared with systems with discrete

degrees of freedom. One particularly acute is the lack of exact solutions. The existence of

exact solutions has contributed enormously to the understanding of the entanglement for

systems with finite degrees of freedom [1]. Moreover, at least for two spin-1/2 distinguishable

particles there is an evaluable formula[2] to calculate the entanglement of formation [3],

which is a very remarkable fact since most of the entanglement measures proposed are

variational expressions, which are very difficult to evaluate. Even for highly simplified

models there are only a very reduced number of exact solution for problems involving two

particles with continuous degrees of freedom. Systems with discrete levels are the likely

arena for quantum computing [4] and continuous variable states can be used as a nonclassical

resource for quantum computation and quantum communication [5].In particular it would

be interesting to study a ”bipartite” model taking into account the interaction between the

two particles subject to an external field.

There is a number of entanglement measures [6] used to quantify the nonseparability of

an arbitrary quantum state. For continuous degrees of freedom the Jaynes and Shannon

entropies have been used to study a two-electron artificial atom [7], and the von Neumann

entropy to study the dynamics of entanglement between two trapped atoms [8]. Recently,

the influence of the quantum statistics on the definition of the entanglement has begun to

be noticed and discussed by several authors [9–17]. In particular Schliemann et. al. [10]

characterized and classified quantum correlations in two-fermion systems having 2K single-

particle states. For pure states they introduced the Slater decomposition and rank i.e.,

they decomposed the state into a combination of elementary Slater determinants formed by

pairs of mutually orthogonal single-particle states. Gittings and Fisher[13] shows that Von

Neumann entropy of the reduced density matrix of one half of the system can be used as

entanglement measure for the case of indistinguishable particles. More recently, Bester et.

al. [18] used the Von Neumann entropy for entanglement engineering in dot molecules.

We shall study the dynamics of the entanglement for a ”bipartite” quantum system with

continuous degrees of freedom. The ”bipartite” quantum system consists of two electrons

interacting with each other and with a fixed center. The Hamiltonian for the system is given
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by

H = h(1) + h(2) + λV, (1)

where

h(i) = p2
i /2 − 1/ri , λ =

1

Z
, V = 1/r12 , (2)

pi and ri are the momentum operator and the position operator of the i = 1, 2 electron,

r12 is the distance between them, and Z is the nuclear charge. We shall concentrate on the

dynamics of the entanglement when the system evolves from a chosen initial condition. In

particular we will address the following question: Is there a physical quantity that can be

used to explain in a direct way the time evolution of the entanglement between the electrons?

We shall use the von Neumann entropy as the entanglement measure[10, 13, 14, 18] for

the two-electrons system. For pure states the von Neumann entropy is a good entanglement

measure [6] since that, under appropriate conditions, all entanglement measures coincide

on pure bipartite states and are equal to the von Neumann entropy of the corresponding

reduced operator. The von Neumann entropy for two-electron atoms is given by

S = −tr(ρ̂red log ρ̂red), (3)

where the reduced density operator is[19, 20]

ρ̂red(r1, r
′
1, t) = tr2 |Ψ〉 〈Ψ| , (4)

here the trace is taken over one electron, and |Ψ〉 is the total two-electron wave function.

This approach gives the same results for the entanglement if one take the two electron atom

in 2m-dimensional spin-orbital basis set and calculate entanglement based on the generalized

Slater decomposition method[13] for indistinguishable particles.

The paper is organized as follows: In Section II the time independent Schrödinger equa-

tion for the two electron problem is solved using a linear variational approach, this provides

a set of approximate eigenfunctions and eigenvalues. We use this set to obtain the density

matrix |Ψ〉 〈Ψ| and the reduced density operator ρ̂red in Section III. Then, the eigenvalue

problem for the reduced density operator is solved and the von Neumann entropy is calcu-

lated using these eigenvalues. finally, in Section IV the results and conclusions are presented.
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II. SOLUTION OF THE SCHRÖDINGER EQUATION

The time independent Schrödinger equation for two electron atoms is given by

H |Ψ(1, 2)〉 = E |Ψ(1, 2)〉 , (5)

where H is the Hamiltonian given in Eq. (1). This equation can be solved by using the

Rayleigh-Ritz variational approximation with nonorthogonal basis functions [21]. Using a

set of variational eigenfunctions |ψi(1, 2)〉, the eigenvalue problem of Eq. (5) can be recast

as an algebraic generalized eigenvalue one of the form

H(N)c(i) = EiMc(i) , (6)

with

(H(N))kj = 〈k|H |j〉 , Mkj = 〈k|j〉 , (7)

and the functions |ψi〉 and the coefficients c(i) are related by

|ψi(1, 2)〉 =
M
∑

j=1

c
(i)
j |j〉 , c

(i)
j = (c(i))j. (8)

The Ei, i = 1, . . . , N are the variational eigenvalues such that Ei ≤ 0, it is obvious that in

most cases N � M . The M functions |j〉 must be chosen in such a way that they form a

complete basis for the problem. So, for any initial condition |Ψ0(1, 2)〉 of the two-electron

problem the time dependent wave function is given by

|Ψ〉 =
∑

j

αje
−iEjt |ψj(1, 2)〉 , (9)

where αj = 〈Ψ0(1, 2)|ψj(1, 2)〉. Note that the basis {|j〉} is not orthonormal, i.e. Mkj =

〈k|j〉 6= δij. The approximate eigenfunctions |ψj(1, 2)〉 and eigenvalues Ei can be obtained

more accurately taking M as large as possible. There are some practical issues that limit

the number of functions in the basis, in particular as the basis is not orthonormal detM
goes to zero when the number of functions in the basis is increased, making the inversion of

M an ill posed problem.

Since the Hamiltonian is spin independent, for the sake of simplicity we restricted our

investigation to the study of singlet states with zero total angular momentum, so the |j〉’s
are given by

|j〉 ≡ |n1, n2; l〉 = (φn1
(r1)φn2

(r2)sY l
0,0(Ω1,Ω2) , (10)
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where n2 ≤ n1, l ≤ n2, and the Y l
0,0(Ω1,Ω2) are given by

Y l
0,0(Ω1,Ω2) =

(−1)l

√
2l + 1

l
∑

m=−l

(−1)mYl m(Ω1)Yl−m(Ω2) , (11)

i.e. they are eigenfunctions of the total angular momentum with zero eigenvalue and the

Yl m are the spherical harmonics. The radial term (φn1
(r1)φn2

(r2))s has the appropriated

symmetry for a singlet state,

(φn1
(r1)φn2

(r2))s =
φn1

(r1)φn2
(r2) + φn1

(r2)φn2
(r1)

[2(1 + 〈n1|n2〉2)]1/2
(12)

where

〈n1|n2〉 =
∫ ∞

0
r2φn1

(r)φn2
(r) dr , (13)

the φ’s are chosen to satisfy 〈n1|n1〉 = 1. The numerical results in section IV are obtained

by taking the Slater type forms for the orbitals

φn(r) =

[

α2n+3

(2n+ 2)!

]1/2

rne−αr/2. (14)

It is clear that in terms of the functions defined in Eq. (10) the variational eigenfunctions

reads as

|ψi(1, 2)〉 =
∑

n1n2l

c
(i)
n1n2l |n1, n2; l〉 . (15)

The matrix elements of the kinetic energy, the Coulombic repulsion between the electrons

and other mathematical details involving the functions |n1, n2; l〉 are given in reference [22].

III. THE REDUCED DENSITY OPERATOR

The wave function |Ψ >, Eq. (9) can be used to obtain the reduced density operator

defined in Eq. (4). Using the variational functions given by Eq. (15) and Eqs. (10), (11),

(12), (14), the reduced density operator takes the form

ρred(r1, r
′
1, t) =

∑

ij

α(i)(α(j))?e−i(Ei−Ej)t
∑

n1,n2,ν1,ν2

min (n2,ν2)
∑

l=0

c
(i)
n1n2l (c

(j)
ν1ν2L)? I{n1,n2,ν1,ν2}(r1, r

′
1) ×

1

(2l + 1)

l
∑

m=−l

Yl m(Ω1)Y
?
lm(Ω′

1) , (16)

where
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I{n1,n2,ν1,ν2}(r1, r
′
1) = g(n1|n2)g(ν1|ν2) × [φν1

(r′1) (〈n2|ν2〉φn1
(r1) + 〈n1|ν2〉φn2

(r1)) +

φν2
(r′1) (〈n2|ν1〉φn1

(r1) + 〈n1|ν1〉φn2
(r1))] , (17)

and

g(n1|n2) =
1

[2(1 + 〈n1|n2〉2)]1/2
. (18)

Diagonalizing the reduced density operator we get the eigenfunctions ϕν(r1, t) which are

solutions of
∫ ∞

−∞
ρred(r1, r

′
1, t)ϕν(r

′
1, t) dr

′
1 = λν(t)ϕν(r1, t) (19)

with eigenvalues λν(t). In terms of the λν(t) the von Neumann entropy can be calculated as

S(t) = −
∞
∑

ν=0

λν(t) log λν(t) . (20)

To solve the eigenvalue problem of Eq. (19), the functions ϕν(r1, t) can be expanded as

ϕν(r1, t) =
∑

nlm

κ
(ν)
nlm(t)φn(r1)Ylm(Ω1) , (21)

which reduces the integral eigenvalue problem of Eq. (19) to an algebraic one

∑

n1l1m1

Anlm
n1l1m1

κ
(ν)
n1l1m1

= λν(t)
∑

n1l1m1

Mnlm
n1l1m1

κ
(ν)
n1l1m1

, (22)

where

Mnlm
n1l1m1

= 〈n1|n 〉 δll1δmm1
(23)

(the 〈n1|n〉 are defined in Eq. (13)), and

Anlm
n′l′m′ =

∫

φn(r1)Y
?
lm(Ω1) ρ

red(r1, r
′
1, t)φn′(r′1)Yl′m′(Ω′

1) dr1 dr
′
1. (24)

The expansion of Eq. (21) has the advantage that the coefficients Anlm
n′l′m′ in Eq. (24) can

be obtained in terms of matrix elements already calculated to get the coefficients c
(i)
n1n2l.

A useful quantity, which will help us understand the behavior of the entanglement, is the

Coulombic repulsion between the two electrons
〈

1

r12

〉

=
〈

Ψ
∣

∣

∣

∣

1

r12

∣

∣

∣

∣

Ψ
〉

. (25)

In terms of the quantities introduced above, the Coulombic repulsion can be written as
〈

1

r12

〉

=
∑

ij

α(i)(α(j))?e−i(Ei−Ej)t
∑

n1,n2,ν1,ν2,l,l′
c
(i)
n1n2l (c

(j)
ν1ν2l′)

?
〈

n′
1, n

′
2; l

′

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

n1, n2; l
〉

(26)
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The relation between the entanglement, measured by von Neumann entropy, and the

Coulombic repulsion between the two electrons can be qualitatively shown to be linear.

Using Hellmann-Feynman theorem for the two-electron Hamiltonian, Eq. (1),

dE

dλ
=

〈

Ψ

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

Ψ
〉

. (27)

Recently, in analogy with first order phase transition in classical statistical mechanics[23],

we have shown that the ground state energy for two electron atoms E bends sharply at the

transition point λc = 1
Zc

= 1.0971, this leads to discontinuity of the first derivative of the en-

ergy with respect to λ. Thus the behavior of ground state energy as a function of λ resemble

a ”first-order phase transition”[24]. At the critical point, the ground state energy becomes

degenerate with the hydrogenic threshold. The Shannon-information entropy develops a

step-like discontinuity at λc. Further analysis indicate that the entropy as a function of λ

is proportional to the first derivative of the energy with respect to λ[25, 26]. Since dE
dλ

is

proportional to ”negative entropy”, we expect a linear relation between the entanglement

and the Coulombic repulsion between the two electrons.

We want to address the problem of the time evolution of the entanglement from specified

initial conditions. As a result of the restrictions imposed on the variational functions used

in our approach we have to confine our study to initial conditions with zero total angular

moment, i.e to singlet states. A rather natural choice are the eigenstates of the Hamiltonian

in Eq. (5) with a charge different to the one used during the time evolution of the system. As

we shall see the “collisions” between the electrons allows a direct interpretation of the time

evolution of the entanglement. The collisions are signaled by local maxima of the Coulombic

repulsion.

IV. RESULTS AND CONCLUSIONS

In this section we present the numerical results showing the time evolution of the entan-

glement for different initial conditions, in all cases the time evolution corresponds to the

two-electron atom with the nuclear charge Z = 2.

Figure (1) shows the periodic behavior of the von Numann entropy S(t) as a function

of time when the initial condition is given by a linear combination of the ground and first

exited states with zero total angular momentum, (|0 > +|1 >)/
√

(2) and nuclear charge
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FIG. 1: Time evolution of the von Neumann entropy as a function of time. The initial condition

for the wave function is the ground state wave function corresponding to the nuclear charge Z = 2

Z = 2.

Figure (2) shows the time evolution of the entanglement when the initial condition is the

ground state of Hamiltonian (1) with Z = 1.2. Also shown is the evolution of the Coulombic

repulsion between the electrons
〈

1
r12

〉

.

It is clear that the local maxima of the entanglement corresponds to the local minima of

the Coulombic repulsion and vice versa. Since for the initial condition the mean (square)

distance between the electrons, corresponding to an atom with Z = 1.2, is larger than the

mean distance in an atom with Z = 2 it is reasonable that a stronger potential will diminish

this distance and, after expending some time approaching, the electrons will bounce back.

The time evolution is not periodic as shown in figure (1) since there are a number of levels

which are mixed by the time evolution of the system. The scenario described above is

consistent with the time evolution of the entanglement shown in Figure (3) which correspond

to the time evolution of the ground state of an atom with initial condition corresponds to

Z = 3. As in Figure (2) the upper part shows the time evolution of the entanglement S(t),

and the lower one shows the time evolution of the Coulombic repulsion interaction between

electrons
〈

1
r12

〉

. In Figure (4) we show the time evolution of the entanglement for the second

exited state with zero total angular momentum.
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FIG. 2: Time evolution of the von Neumann entropy (upper graph) and the Coulombic repulsion

between the electrons (lower graph). The initial condition for the wave function is the ground state

wave function corresponding to the nuclear charge Z = 1.2

Figures (1)-(4), obtained by using M = 165 functions |n1, n2; l〉. The value of M is

obtained by performing the following sum

8
∑

n1=0

∑

n2≤n1

∑

l≤n2

1 = 165.

Since our solution is only an approximate one, it is necessary to check its validity. In

Figure (5) we show the time evolution of the ground state corresponding to Z = 1.2 for M =

165 and M = 286 (which corresponds to n1 = 10). The agreement is very good, especially

for short times. This reinforces the idea that the time evolution of the entanglement is

qualitatively well described. In particular its relationship with the Coulombic repulsion

between the two electrons.

In the model studied, since the increase (or decrease) of the entanglement from that of the

initial state is determined somehow by the excess (or lack) of Coulombic repulsion between

the two electrons (compared with the Coulombic repulsion that the electrons would have if

they were in an eigenstate of the atom with Z = 2), and being this excess (or lack) bounded

it is clear that the entanglement will not increase (or decrease) beyond some limits. The
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FIG. 3: Time evolution of the von Neumann entropy (upper graph) and the Coulombic repulsion

between the electrons (lower graph) . The initial condition for the wave function is the ground

state function corresponding to the nuclear charge Z = 3

precise relationship between the entanglement and the bounds of the Coulombic will be the

subject of future study.

Since the seminal paper of Osterloh et al [1] there has been increasing interest in studying

the scaling properties of the entanglement of system near a critical point. The two-electron

atom exhibit a critical point for the ground state energy and a another for the second

excited state. In this context critical means the value of the nuclear charge Z where a

bound state becomes absorbed or degenerates with the continuum[23]. Finite size scaling

method has been used to calculate critical parameters for atomic and molecular systems

[27] and scaling of entanglement at quantum phase transition for two-dimensional array of

quantum dots[15, 16]. Work is in progress using the finite size scaling method to examine the

scaling of entanglement for two-electron systems in the neighborhood of the critical nuclear

charges.
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FIG. 4: Time evolution of the von Neumann entropy (upper graph and the Coulombic repulsion

between the electrons (lower graph) . The initial condition for the wave function is the second

excited state function corresponding to the nuclear charge Z = 1.2
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FIG. 5: Time evolution of the von Neumann entropy. The initial condition for the wave function is

the ground state function corresponding to the nuclear charge Z = 1.2. The solid line corresponds

to 165 basis set functions and the dashed line to 286 basis set functions, respectively
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