
ARTICLE IN PRESS
www.elsevier.com/locate/cplett

Chemical Physics Letters 413 (2005) 1–5
Entanglement as measure of electron–electron correlation
in quantum chemistry calculations
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Abstract

In quantum chemistry calculations, the correlation energy is defined as the difference between the Hartree–Fock limit energy and
the exact solution of the nonrelativistic Schrödinger equation. With this definition, the electron correlation effects are not directly
observable. In this report, we show that the entanglement can be used as an alternative measure of the electron correlation in quan-
tum chemistry calculations. Entanglement is directly observable and it is one of the most striking properties of quantum mechanics.
As an example we calculate the entanglement for He atom and H2 molecule with different basis sets.
� 2005 Elsevier B.V. All rights reserved.
The Hartree–Fock self-consistent field approxima-
tion, which is based on the idea that we can approx-
imately describe an interacting fermion system in
terms of an effective single-particle model, remains
the starting point and the major approach for quanti-
tative electronic structure calculations. In quantum
chemistry calculations, the correlation energy is
defined as the energy error of the Hartree–Fock wave
function, i.e., the difference between the Hartree–Fock
limit energy and the exact solution of the nonrelativis-
tic Schrödinger equation [1]. There also exists other
measures of electron correlation in the literature such
as the statistical correlation coefficients [2] and more
recently the Shannon entropy as a measure of the cor-
relation strength [3,4]. Electron correlations have a
strong influence on many atomic, molecular [5], and
solid properties [6]. Recovering the correlation energy
for large systems remains one of the most challenging
problems in quantum chemistry.
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The concept of electron correlation as defined in
quantum chemistry calculations is useful but not directly
observable, i.e., there is no operator in quantum
mechanics that its measurement gives the correlation en-
ergy. In this Letter, we propose to use the entanglement
as a measure of the electron correlation. Entanglement is
directly observable and it is one of the most striking
properties of quantum mechanics.

It was nearly 70 years ago when Schrödinger gave
the name �entanglement� to a correlation of quantum
nature. He stated that for an entangled state �the best
possible knowledge of the whole does not include the
best possible knowledge of its parts� [7]. Over the dec-
ades the meaning of the word �entanglement� has
changed its flavor and our view of the nature of
entanglement may continue to be modified [8]. Entan-
glement is a quantum mechanical property that de-
scribes a correlation between quantum mechanical
systems that has no classical analog [9–12]. A pure
state of a pair of quantum systems is called entangled
if it is unfactorizable, as for example, the singlet state
of two spin-1/2 particles, 1ffiffi

2
p ðj"#i� j#"iÞ. A mixed

state is entangled if it can not be represented as a
mixture of factorizable pure states [13–15]. Since the
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seminal work of Einstein, Podolsky, and Rosen [16]
there has been a quest for generating entanglement
between quantum particles [10,17]. Investigation of
quantum entanglement is currently a very active area
and has been studied intensely due to its potential
applications in quantum communications and infor-
mation processing [10] such as quantum teleportation
[18,19], superdense coding [20], quantum key distribu-
tion [21], telecoloning, and decoherence in quantum
computers [22–24].

In order to employ the entanglement as an alternative
method of measuring the electron correlation, we pres-
ent the scheme to quantify entanglement based on the
entanglement measure for two-particle systems [25,26].
We will obtain a general approach to quantify the entan-
glement between different spin-orbitals of atomic and
molecular systems.

For two electron system in 2m-dimensional spin-
space orbital with ca and cya denote the fermionic annihi-
lation and creation operators of single-particle states
and |0æ represents the vacuum state, a pure two-electron
state |Uæ can be written as

jUi ¼
X

a;b2f1;2;3;4;...;2mg
xa;bcyac

y
bj0i; ð1Þ

where a, b run over the orthonormalized single particle
states, and Pauli exclusion requires that the 2m · 2m
expansion coefficient matrix x is antisymmetric:
xa, b = �xb, a, and xi, i = 0.

In the occupation number representation
(n1›, n1fl, n2›, n2fl, . . . , nm›, nmfl), where › and fl mean
a and b electrons, respectively, the subscripts denote the
spatial orbital index and m is the total spatial orbital
number. By tracing out all other spatial orbitals except
n1, we can get a (4 · 4) reduced density matrix for the
spatial orbital n1

qn1 ¼ Trn1 jUihUj

¼

qn1;0 0 0 0

0 4
Pm�1

i¼1

jx2;2iþ1j2 0 0

0 0 4
Pm
i¼2

jx1;2ij2 0

0 0 0 qn1;2

0
BBBBBBBB@

1
CCCCCCCCA
; ð2Þ

where qn1;0 denotes an �empty orbital�,

qn1;0 ¼ 4
Xm�1

i¼1

Xm�1

j¼1

jx2iþ1;2jþ2j2 ð3Þ

and qn1,2 denotes �two electron occupied orbital�,

qn1;2 ¼ 4jx1;2j2. ð4Þ

The �one electron occupied orbital�, in (›, fl) basis set is
given by
qn1;1 ¼
4
Pm�1

i¼1

jx2;2iþ1j2 0

0 4
Pm
i¼2

jx1;2ij2

0
BBB@

1
CCCA. ð5Þ

The matrix elements of x can be calculated from the
expansion coefficient of the ab initio Configure Interac-
tion (CI) method. The CI wave function with single and
double excitation can be written as

jUi ¼ c0jW0i þ
X
ar

crajWr
ai þ

X
a<b;r<s

cr;sa;bjW
r;s
a;bi; ð6Þ

where |W0æ is the ground state Hartree–Fock wave func-
tion, cra is the coefficient for single excitation from orbi-
tal a to r, and cr;sa;b is the double excitation from orbital a
and b to r and s. Now the matrix elements of x can be
written in terms of the CI expansion coefficients

x1;2 ¼
c0
2
; x2;2iþ1 ¼

c2iþ1
1

2
;

x1;2iþ2 ¼
c2iþ2
2

2
; x2iþ1;2jþ2 ¼ �

c2iþ1;2jþ2
1;2

2
; ð7Þ

where i, j = 1, 2, . . . , m. In this general approach, the
ground state entanglement is given by von Neumann
entropy of the reduced density matrix qn1,

Sðqn1Þ ¼ �Trðqn1 log2qn1Þ. ð8Þ

We are now ready to evaluate the entanglement for
the H2 molecule as a function of R using a direct and
simpler approach based on the two-electron density ma-
trix calculated from the CI wave function with single
and double electronic excitations. In the occupation
number representation, the CI wave function is given by

jUi ¼ c0j1100 . . .i þ c31j0110 . . .i þ c42j1001 . . .i
þ c3;41;2j0011 . . .i þ � � � ð9Þ

By tracing out all other orbitals except 1, we can get the
reduced density matrix for (n1› = 0, 1)

q1 ¼ Tr1jUihUj

¼

Pm�1

i¼1

jc2iþ1
1 j2 þ

Pm�1

i¼1

jc2iþ1;2iþ2
1;2 j2 0

0 jc0j2 þ
Pm�1

i¼1

jc2iþ2
2 j2

0
BBB@

1
CCCA.

ð10Þ

The CI wave function expansion coefficients are calcu-
lated with the electronic structure package GAUSSIAN

[27]. Thus, the entanglement of H2 molecule is readily
calculated by the von Neumann entropy

Sðq1Þ ¼ �Trðq1log2q1Þ. ð11Þ
Fig. 1 shows the calculated entanglement S for H2

molecule, Eq. (11), as a function of the internuclear
distance R using Gaussian basis set 3-21G [27]. For
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Fig. 1. Comparison between the absolute value of the electron
correlation Ec = |EExact � EUHF| and the von Neumann Entanglement
(S) as a function of the internuclear distance R for the H2 molecule
using Gaussian basis set 3-21G. At the limit R = 0, the dot represents
the electron correlation for the He atom, Ec = 0.0149 (a.u.) using
3-21G basis set compared with the entanglement for He atom
S = 0.0313. The equilibrium distance using 3-21G basis set is
Req = 0.74 Å.
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comparison we included the usual electron correlation
(Ec = |EExact � EUHF|) and spin-unrestricted Hartree–
Fock (UHF) calculations [27] using the same basis set
in the figure. At the limit R = 0, the dot represents the
electron correlation for the He atom, Ec = 0.0149
(a.u.) using 3-21G basis set compared with the entangle-
ment for the He atom S = 0.0313. With a larger basis
set, cc-pV5Z [28], we obtain numerically Ec = 0.0415
(a.u.) and S = 0.0675. Thus, qualitatively entanglement
and absolute correlation have similar behavior. At the
united atom limit, R! 0, both have small values, then
rise to a maximum value and finally vanishes at the sep-
arated atom limit, R! 1. However, note that for
R > 3 Å the correlation between the two electrons is
almost zero but the entanglement is maximal until
around R � 4 Å, the entanglement vanishes for R > 4 Å.

To understand the entanglement behavior for H2

molecule using ab initio quantum chemistry methods,
we calculate the entanglement for a simpler two-electron
model system. This is a model of two spin-1/2 electrons
with an exchange coupling constant J (a.u.) in an effec-
tive transverse magnetic field of strength B (a.u.). In
order to describe the environment of the electrons in a
molecule, we simply introduce a small effective external
magnetic field B. The general Hamiltonian for such a
system is given by

H ¼ � J
2
ð1þ cÞrx

1 � rx
2 �

J
2
ð1� cÞry

1 � ry
2 � Brz

1

� I2 � BI1 � rz
2; ð12Þ

where ra are the Pauli matrices (a = x, y, z) and c is the
degree of anisotropy. For c = 1 Eq. (12) reduces to the
Ising model, whereas for c = 0 it is the XY model.
Our two spin problem admits an exact solution, it is
simply a (4 · 4) matrix with the following four
eigenvalues:

k1 ¼ �J ; k2 ¼ J ; k3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B2 þ J 2c2

q
;

k4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B2 þ J 2c2

q
ð13Þ

and the corresponding eigenvectors:

j/1i ¼

0

1=
ffiffiffi
2

p

1=
ffiffiffi
2

p

0

0
BBB@

1
CCCA; j/2i ¼

0

�1=
ffiffiffi
2

p

1=
ffiffiffi
2

p

0

0
BBB@

1
CCCA;

j/3i ¼

ffiffiffiffiffiffiffiffi
aþ2B
2a

q
0

0ffiffiffiffiffiffiffiffi
a�2B
2a

q

0
BBBBB@

1
CCCCCA; j/4i ¼

�
ffiffiffiffiffiffiffiffi
a�2B
2a

q
0

0ffiffiffiffiffiffiffiffi
aþ2B
2a

q

0
BBBBB@

1
CCCCCA; ð14Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B2 þ J 2c2

p
. In the basis set {|››æ, |›flæ,

|fl›æ, |flflæ}, the eigenvectors can be written as

j/1i ¼
1ffiffiffi
2

p ðj#"iþ j"#iÞ; ð15Þ

j/2i ¼
1ffiffiffi
2

p ðj#"i� j"#iÞ; ð16Þ

j/3i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� 2B
2a

r
j##i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 2B
2a

r
j""i; ð17Þ

j/4i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 2B
2a

r
j##i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� 2B
2a

r
j""i. ð18Þ

Now we confine our interest to the calculation of the
entanglement between the two electronic spins. For sim-
plicity we take c = 1, Eq. (12) reduces to the Ising model
with the ground state energy k3 and the corresponding
eigenvector j/3æ. All the information needed for quanti-
fying the entanglement in this case is contained in the
two-electron density matrix.

When a biparticle quantum system AB is in a pure
state there is essentially a unique measure of the
entanglement between the subsystems A and B given
by the von Neumann entropy S [29]. If we denote
qA the partial trace of qAB with respect to subsystem
B, qA = TrB(qAB), the entanglement of the state qAB is
defined as the von Neumann entropy of the reduced
density operator qA, S(qAB) ” �Tr[qAlog2qA].

For our model system in the ground state j/3æ, the
reduced density matrix in the basis set (›,fl) is given
by

qA ¼
aþ2h
2a 0

0 a�2h
2a

 !
. ð19Þ

Thus, the entanglement is simply given by
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S ¼ � 1

2
log2

1

4
� 1

4þ k2

� �
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ k2
p log2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ k2

p
� 2ffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ k2
p

þ 2
;

ð20Þ
where k = J/B.

The value of J, the exchange coupling constant be-
tween the spins of the two electrons, can be calculated
as half the energy difference between the lowest singlet
and triplet states of the hydrogen molecule. Herring
and Flicker have shown [30] that J for H2 molecule
can be approximated as a function of the interatomic
distance R. In atomic units, the expression for large R

is given by

JðRÞ ¼ �0.821R5=2e�2R þ OðR2e�2RÞ. ð21Þ
Fig. 2 shows the calculated von Neumann Entangle-

ment (S), Eq. (20), as a function of the distance between
the two electronic spins R, using J(R) of Eq. (21), for
different values of the magnetic field strength B. At the
limit R ! 1 the exchange interaction J vanishes as a
result the two electronic spins are up and the wave func-
tion is factorazable, i.e., the entanglement is zero. At the
other limit, when R = 0 the entanglement is zero for this
model because J = 0. As R increases, the exchange inter-
action increases leading to increasing entanglement
between the two electronic spins. However this increase
in the entanglement reaches a maximum limit as shown
in the figure. For large distance, the exchange interac-
tion decreases exponentially with R and thus the
decrease of the entanglement. The figure also shows that
the entanglement increases with decreasing the magnetic
field strength. This can be attributed to effectively
increasing the exchange interaction. Thus, we get the
similar behavior as the entanglement for the H2 mole-
cule as a function of the internuclear distance R, using
accurate ab initio methods. Because the Eq. (21) is only
applicable to the large value of R, it is not surprising to
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Fig. 2. von Neumann Entanglement (S) as a function of the distance R
between the two spins for different valuesof themagneticfield strengthB.
see, in the limit R! 0, the entanglement converges to
the He atom results in ab initio methods but disappears
in this simple model.

Recently, a new promising approach is emerging for
the realization of quantum chemistry calculations with-
out wave functions through first order semidefinite
programming [31]. The electronic energies and proper-
ties of atoms and molecules are computable simply from
an effective two-electron reduced density matrix q(AB).
Thus, the electron correlation can be directly calculated
as effectively with the entanglement between the two
electrons, which is readily calculated as the von Neu-
mann entropy S = �TrqAlog2qA, where qA = TrBq(AB).
Utilizing this combined approach, one calculates the
electronic energies and properties of atoms and mole-
cules including correlation without wave functions or
Hartree–Fock reference systems.

In summary, we presented the entanglement as an
alternative measure of the electron electron correlation
in quantum chemistry calculations for atoms and mole-
cules. All the information needed for quantifying the
entanglement is contained in the two-electron density
matrix. This measure is readily calculated by evaluating
the von Neumann entropy of the one electron reduced
density operator. This definition of correlation has deep
roots in quantum theory, observable, and does not need
a reference system such as Hartree–Fock calculations.
The approach is general and can be used for larger
atomic and molecular systems.
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