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Electron–electron correlation in quantum chemistry calculations can be analysed
in terms of entanglement between electrons. Two exactly solvable models: two
fixed spin-1/2 particles and two-electron two-site Hubbard model are used to
define and discuss the entanglement as a function of the system parameters.
Ab initio configuration interaction calculation for entanglement is presented for
the H2 molecule. Qualitatively, entanglement and electron–electron correlation
have similar behaviour. Thus, entanglement might be used as an alternative
measure of electron correlation in quantum chemistry calculations.

1. Introduction

Ever since the appearance of the famous Einstein, Podolsky and Rosen (EPR)

paper [1], the phenomenon of entanglement [2], which features the essential

difference between classical and quantum physics [3], has received wide theoretical

and experimental attention [3–10]. Generally speaking, if two particles are in an

entangled state, then even if the particles are physically separated by a great distance,

they behave in some respect as a single entity rather than as two separate entities.

There is no doubt that entanglement lies at the heart of the foundation of quantum

mechanics.
Recently a desire to understand quantum entanglement has been fuelled by the

development of quantum computation, which started in the 1980s with the pioneer-

ing work of Benioff [11], Bennett [12], Deutsch [13], Feynman [14] and Landauer [16]

but gathered momentum and increased research interest only after Peter Shor’s

revolutionary discovery [15] of a quantum algorithm in 1994 that would efficiently

find the prime factors of composite integers [17, 18]. Besides quantum computations,

entanglement has also been the core of much other active research such as quantum

teleportation [19, 20], dense coding [21, 22], quantum communication [23], quantum

cryptography [24] and decohernce in quantum computers [25–27].
Generally, the strict definitions of the four most prominent entanglement

measures can be summarized as follows [28]: (1) entanglement of distillation ED;
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(2) entanglement of cost EC; (3) entanglement of formation EF; and finally (4) relative
entropy of entanglement ER. At the current time, there is no simple way to carry out
calculations with all these entanglement measures. However, for the case where both
subsystems A and B are spin-1/2 particles, there exists a simple formula from which
the entanglement of formation can be calculated [29]. In this case the entanglement
of formation is given in terms of another entanglement measure, the concurrence
C [29–31]. The concurrence varies from C¼ 0 for a separable state to C¼ 1 for a
maximally entangled state.The entanglement of formation varies monotonically with
the concurrence.

Entanglement is a quantum mechanical property that describes a correlation
between quantum systems that has no classical analogue [32–35]. Thus, it might
be useful as an alternative measure of electron–electron correlation in quantum
chemistry calculations. In quantum chemistry calculations, the correlation energy is
defined as the energy error of the Hartree–Fock wave function, i.e. the difference
between the Hartree–Fock limit energy and the exact solution of the nonrelativistic
Schr €odinger equation [36]. There also exists other measures of electron correlation in
the literature such as the statistical correlation coefficients [37] and more recently
the Shannon entropy as a measure of the correlation strength [38–42]. Electron
correlations have a strong influence on many atomic, molecular [43], and solid
properties [44]. The concept of electron correlation as defined in quantum chemistry
calculations is useful but not directly observable, i.e. there is no operator in
quantum mechanics such that its measurement gives the correlation energy.
Moreover, there are cases where the kinetic energy dominates the Coulomb
repulsion between electrons, and the electron correlation alone fails as a correlation
measure [40].

In this paper, we discuss the use of the entanglement as a measure of the
electron correlation for molecular systems. Besides the theoretical calculations of
the entanglement, people have suggested experimental measure of many-fermion
entanglement [45], a set of circuits that can measure a few qubits entanglement for
pure states has also been proposed [46]. Also, people have developed ideas of
observable-based distinguished subspace entanglement [47] and entanglement
based on the Lie-algebraic measure of purity of a quantum state [48]. So it seems
that entanglement will be a measurable physical quantity, just like energy and the
other physical properties of a system. In the next section we discuss the entanglement
for two-spin systems as a simple model to understand the entanglement for the H2

molecule. In section 3, we present detailed entanglement calculations for the
two-electron two-site Hubbard model. In section 4, we generalize the Hubbard
model to two-site three-electrons. Finally we give ab initio configuration interaction
calculations for entanglement of two-electron systems.

2. Entanglement for two-spin systems: a model for H2 molecule

To understand entanglement for two-electron diatomic molecules, we start by
calculating entanglement for a simpler two-spin model system. This is a model of
two spin-ð1=2Þ electrons with an exchange coupling constant J (a.u.) in an effective
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transverse magnetic field of strength B (a.u.). The general Hamiltonian for such a
system is given by [49]

H ¼ �
J

2
ð1þ �Þ�x

1 � �x
2 �

J

2
ð1� �Þ�y

1 � �y
2 � B�z

1 � I2 � BI1 � �z
2, ð1Þ

where �a are the Pauli matrices (a¼ x, y, z) and � is the degree of anisotropy. For
�¼ 1 equation (1) reduces to the Ising model, whereas for �¼ 0 it is the XY model.

This model admits an exact solution, which is simply a ð4� 4Þmatrix of the form,

H ¼

�2B 0 0 �J�

0 0 �J 0

0 �J 0 0

�J� 0 0 2B

0
BBB@

1
CCCA, ð2Þ

with the following four eigenvalues

�1 ¼ �J, �2 ¼ J, �3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B2 þ J2�2

p
, �4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B2 þ J2�2

p
ð3Þ

and the corresponding eigenvectors in the basis set fj ""i, j "#i, j #"i, j ##ig, can be
written as [49]

j�1i ¼
1ffiffiffi
2

p ðj #"i þ j "#iÞ, ð4Þ

j�2i ¼
1ffiffiffi
2

p ðj #"i � j "#iÞ, ð5Þ

j�3i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 2B

2�

r
j ##i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 2B

2�

r
j ""i, ð6Þ

j�4i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 2B

2�

r
j ##i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 2B

2�

r
j ""i, ð7Þ

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B2 þ J2�2

p
.

Now we confine our interest to the calculation of the entanglement between the
two spins. For simplicity we take �¼ 1, equation (1) reduces to the Ising model with
the ground state energy �3 and the corresponding eigenvector j�3i. All the informa-
tion needed for quantifying the entanglement in this case is contained in the reduced
density matrix �ði, jÞ. Wootters [29, 30] has shown, for a pair of binary qubits,
that the concurrence C, which goes from 0 to 1, can be taken as a measure
of entanglement. The concurrence between sites i and j is defined as [29]

Cð�Þ ¼ max 0, �1 � �2 � �3 � �4f g, ð8Þ

where the �i are the eigenvalues of the Hermitian matrix R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

p
~�

ffiffiffi
�

pp
. The spin

flipped state ~�, for a general state � of two qubits, is given by

~� ¼ ð�y � �yÞ �
? ð�y � �yÞ, ð9Þ

where the �? is the complex conjugate of � and is taken in the standard basis [29],
which for a pair of spin-ð1=2Þ particles is fj ""i, j "#i, j #"i, j ##ig.
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For our model system in the ground state j�3i, the density matrix in the basis
setð"" , "# , #" , ##) is given by

� ¼

�þ 2B

2�
0 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4B2

4�2

r

0 0 0 0

0 0 0 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4B2

4�2

r
0 0

�þ 2B

2�

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð10Þ

The eigenvalues of the Hermitian matrix R can be calculated analytically.
We obtained �2 ¼ �3 ¼ �4 ¼ 0 and therefore,

Cð�Þ ¼ �1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

4þ �2

s
, ð11Þ

where � ¼ J=B. Entanglement is a monotonically increasing function of the
concurrence and is given by

EðCÞ ¼ hðyÞ ¼ �ylog2y � ð1� yÞlog2ð1� yÞ; y ¼
1

2
þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p
: ð12Þ

Substituting the value of the concurrence C, equation (11), gives

E ¼ �
1

2
log2

1

4
�

1

4þ �2

� �
þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ �2

p log2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ �2

p
� 2ffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ �2
p

þ 2
: ð13Þ

This result for entanglement is equivalent to the von Neumann entropy [49]
of the reduced density matrix �A. For our model system of the form AB in the
ground state j�3i, the reduced density matrix �A ¼ TrBð�ABÞ in the basis setð" , #Þ is
given by

�A ¼

�þ 2B

2�
0

0
�� 2B

2�

0
BB@

1
CCA: ð14Þ

When a bipartite quantum system AB is in a pure state there is essentially a unique
measure of the entanglement between the subsystems A and B given by the von
Neumann entropy S � �Tr½�Alog2�A�. This approach gives exactly the same formula
as the one given in equation (13).

This simple model can be used to examine the entanglement for two electron
diatomic molecules. The value of J, the exchange coupling constant between
the spins of the two electrons, can be calculated as half the energy difference
between the lowest singlet and triplet states of the hydrogen molecule.
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Herring and Flicker have shown [50] that J for H2 molecule can be approximated
as a function of the interatomic distance R. In atomic units, the expression for large

R is given by

JðRÞ ¼ �0:821 R5=2e�2R þOðR2e�2RÞ: ð15Þ

Figure 1 shows the calculated concurrence C(�) as a function of the distance
between the two electronic spins R, using J(R) of equation (15), for different values
of the magnetic field strength B. At the limit R!1 the exchange interaction
J vanishes as a result the two electronic spins are up and the wave function is
factorizable, i.e. the concurrence is zero. At the other limit, when R¼ 0 the

concurrence or the entanglement is zero for this model because J¼ 0. As R
increases, the exchange interaction increases leading to increasing concurrence
between the two electronic spins. However this increase in the concurrence reaches
a maximum limit as shown in the figure. For large distance, the exchange
interaction decreases exponentially with R and thus the decrease of the concur-

rence. Figure 1 also shows that the concurrence increases with decreasing the
magnetic field strength. This can be attributed to effectively increasing the exchange
interaction. This behaviour of the concurrence as a function of the internuclear
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Figure 1. The concurrence (C) as a function of the distance R between the two spins for
different values of the magnetic field strength B.
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distance R is typical for two-electron diatomic molecules. We will show later in

section 5 that by using accurate ab initio calculations we essentially obtained the

same curve for entanglement for the H2 molecule as a function of the internuclear

distance R.

3. Two-electron two-sites Hubbard model

Many-electron systems such as molecules and quantum dots show the complex

phenomena of electron correlation caused by the Coulomb interaction. This

phenomena can be described to some extent by the Hubbard model [51]. This is a

simple model, capture the main physics of the problem and admits an exact solution

in some special cases. To calculate the entanglement for electrons described by this

model we will use the Zanardi’s measure, which is given in Fock space as the von

Neumann entropy [52].

3.1 Exact solution

The Hamiltonian of the two-electron two-site Hubbard model can be written as

H ¼ �
t

2

X
i, �

cyi�c�i� þ 2U
X
i

n̂i"n̂i#, ð16Þ

where cyi� and ci� are the Fermi creation and annihilation operators at site i and
with spin � ¼" , # and n̂

i�¼cy
i�ci�

is the spin-dependent occupancy operator at site i.

For two-site system i ¼ 1 and 2, �i ¼ 3� i, ðt=2Þ is the hopping term of different site

and 2U is the on-site interaction(U>0 for repulsion in our case). The factors t=2 and
2U are chosen to make the following expressions for eigenvalues and eigenvectors as

simple as possible. This Hamiltonian can be solved exactly in the basis set

j1 " , 1 # , 2 " , 2 #i, it is simply a ð4� 4Þ matrix of the form

H ¼

2U �
t

2
�

t

2
0

�
t

2
0 0 �

t

2

�
t

2
0 0 �

t

2

0 �
t

2
�

t

2
2U

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
, ð17Þ

with the following four eigenvalues and eigenvectors

�1 ¼ U�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þU2

p
, �2 ¼ 0, �3 ¼ 2U, �4 ¼ Uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þU2

p
ð18Þ
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and the corresponding eigenvectors

j�1i ¼

1

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

1

0
BBBBB@

1
CCCCCA, j�2i ¼

0

�1

1

0

0
BBBBB@

1
CCCCCA,

j�3i ¼

�1

0

0

1

0
BBBBB@

1
CCCCCA, j�4i ¼

1

x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

1

0
BBBBB@

1
CCCCCA,

ð19Þ

with x ¼ U=t. The eigenvalue and eigenvector for the ground state are

E ¼ U�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þU2

p
ð20Þ

and

jGSi ¼ j1, xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
, xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
, 1i: ð21Þ

3.2 Hartree–Fock (HF) approximation

In quantum chemistry, the correlation energy Ecorr is defined as Ecorr ¼ Eexact � EHF.
In order to calculate the correlation energy of our system, we show how to calculate
the ground state using the Hartree–Fock (HF) approximation. The main idea is to
expand the exact wave function in the form of configuration interaction (CI) picture.
The first term of this expansion corresponds to the HF wave function. As a first step
we calculate the spin-traced one particle density matrix [39] (1PDM) �

�ij ¼ GS
X
�

cyi�cj�

�����
�����GS

* +
: ð22Þ

We obtain

� ¼
1 2��

2� 1

� �
, ð23Þ

where

� ¼
1ffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

x

1þ x2

r
and � ¼

1ffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

x

1þ x2

r
:

Diagonalize this 1PDM we can get the binding (þ) and unbinding (�) molecular
natural orbitals (NOs)

j�i ¼
1ffiffiffi
2

p ðj1i � j2iÞ, ð24Þ
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and the corresponding eigenvalues

n� ¼ 1�
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p , ð25Þ

where j1i and j2i are the spatial orbitals of site 1 and 2 respectively. The NOs for
different spins are defined as

j � �i ¼
1ffiffiffi
2

p cy1� � cy2�

� �
j0i � cy��j0i, ð26Þ

where j0i is the vacuum state. After we define the geminals j � �i ¼ cy�"c
y

�#j0i,
we can express jGSi in terms of NOs as

jGSi ¼

ffiffiffiffiffiffi
nþ
2

r
j þ þi � sgnU

ffiffiffiffiffiffi
n�
2

r
j � �i: ð27Þ

In the HF approximation, the GS is give by jHFi ¼ j þ þi and EHF ¼ �tþU.
Let us examine the HF results by defining the ionic and nonionic geminals,
i.e. the electrons are localized on one site or delocalized on both sites, respectively:

jAi ¼
1ffiffiffi
2

p cy1"c
y

1# þ cy2"c
y

2#

� �
j0i

jBi ¼
1ffiffiffi
2

p cy1"c
y

2# þ cy2"c
y

1#

� �
j0i:

ð28Þ

If x ! 0, the system is equally mixed between ionic and nonionic germinal, jHFi ¼
jAi þ jBi. When x ! þ1, jGSi ! jBi, which indicate that as x becomes large,
our system goes to the nonionic state. Similarly, jGSi ! jCi, as x ! �1, where
jCi ¼ ð1=

ffiffiffi
2

p
Þðcy1"c

y

1# � cy2"c
y

2#Þj0i. Thus, the HF results are a good approximation only
when x ! 0. The unreasonable diverging behaviour results from not suppressing the
ionic state jAi in jHFi when jxj ! 1. In order to correct this shortcoming of the
HF method we can consider combining different wave functions in different ranges
to obtain a better wave function for our system. This can be done as follows:

3.3 Correlation entropy

The correlation entropy is a good measure of electron correlation in molecular

systems [39, 41]. It is defined using the eigenvalues nk of the one-particle density

matrix 1PDM,

S ¼
X
k

nkð� ln nkÞ,
X
k

nk ¼ N: ð29Þ

Range GS energy correlation energy wave function nþ n�

U > t 0 U�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ t2

p
jBi 1 1

�t � U � t �tþU t�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ t2

p 1ffiffiffi
2

p ðjAi þ jBiÞ 2 0

U < �t 2U �U�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ t2

p
jCi 1 1
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This correlation entropy is based on the nonidempotency of the natural occupation
number (NON) nk and proves to be an appropriate measure of the correlation
strength if the reference state defining correlation is a single Slater determinant.
In addition to the eigenvalues nk of the ‘full’ (spin-dependent) 1PDM, it seems
reasonable to consider also the eigenvalues nk of the spin-traced 1PDM. Among all
the nk there is certain number N0 of NON nk0 with values between 1 and 2 and all the
other N1 NON’s nk1 also have values between 0 and 1. So one possible measure of the
correlation strength of spin traced 1PDM is

S1 ¼ �
X
k0

ðnk0 � 1Þ lnðnk0 � 1Þ �
X
k1

nk1 ln nk1 : ð30Þ

Since all the nk / 2 have values between 0 and 1, there is another possible
measurement of the correlation strength

S2 ¼ �
X
k

nk
2
ln
nk
2
: ð31Þ

3.4 Entanglement

The entanglement measure is given by von Neumann entropy [52]

Ej ¼ �Trð�jlog2�jÞ, �j ¼ Trjðj�ih�jÞ ð32Þ

where T(rj) denotes the trace over all but the jth site, j�i is the antisymmetric wave
function of the fermions system and �j is the reduced density matrix. Hence Ej

actually describes the entanglement of the jth site with the remaining sites [53].
In the Hubbard model, the electron occupation of each site has four possibilities,

there are four possible local states at each site, j	ij ¼ j0ij, j "ij, j #ij, j "#ij.
The reduced density matrix of the jth site with the other sites is given by [56]

�j ¼ zj0ih0j þ uþj "ih" j þ u�j #ih# j þ wj "#ih"# j ð33Þ

with

w ¼ hnj"nj#i ¼ Trðnj"nj#�jÞ ð34Þ

uþ ¼ hnj"i � w, u� ¼ hnj#i � w ð35Þ

z ¼ 1� uþ � u� � w ¼ 1� hnj"i � hnj#i þ w: ð36Þ

and the entanglement between the jth site and other sites is given by

Ej ¼ �zLog2z� uþLog2u
þ � u�Log2u

� � wLog2w: ð37Þ

The entanglement of the identical particles, the fermions in the system, is measured
in terms of the Fock-space occupation number basis. In this measurement, the
Fock-space occupation number basis we use is a convenient basis in which the tensor
product structure is manifestly recovered, with the local states describing electronic
modes easily accessible to an observer. The system is split into two parts, the
Fock-space reduced density matrix is obtained from the full density matrix by
tracing out the local states of the other part. So the entanglement measure in this
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system, which is defined by von Neumann entropy, is a measure of the entanglement
between the electron modes of a single site and the electron modes of the other
sites [45, 48, 54, 55].

For the one-dimensional Hubbard model with half-filling electrons, we have
hn"i ¼ hn#i ¼ ð1=2Þ, uþ ¼ u� ¼ ð1=2Þ � w, and the entanglement is given by

Ej ¼ �2wlog2w� 2
1

2
� w

� �
log2

1

2
� w

� �
: ð38Þ

Consider the particle-hole symmetry of the one-dimensional Hubbard model, one
can obtain wð�UÞ ¼ ð1=2Þ � wðUÞ, so the entanglement is an even function of U,
Ejð�UÞ ¼ EjðUÞ.

For our case of a two-sites two-electrons system w ¼ ð1=ð2þ 2½xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
�
2
ÞÞ.

Thus the entanglement is readily calculated from equation (38). In figure 2, we
show the entanglement between the two sites, top curve, and the correlation
entropy S1 and S2 as function of x ¼ U=t. The entanglement measure is given
by the von Neumann entropy in which the density matrix of the system is traced
over the other site to get the reduced density matrix; the reduced density matrix
describes the four possible occupations on the site: j0 >, j "i, j #i, j "#i. The
minimum of the entanglement is 1 as x ! �1. It can be understood as when
U ! þ1 all the sites are singly occupied, the only difference is the spin of the
electrons on each site, which can be referred to as spin entanglement. As U ! �1,
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0.6

0.8
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1.2
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x=U/t

S1 S2

S2 Combined Wavefunction

Figure 2. Two-site Hubbard model: upper curve is the entanglement calculated by von
Newman entropy. The curves S1 and S2 are the correlation entropy of the exact wave function
as defined in the text. The dashed line is the S2 for the combined wave function based on the
range of x values. S1 for the combined wave function is zero.
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all the sites are either doubly occupied or empty, which is referred to as space
entanglement. The maximum of the entanglement is 2 at U¼ 0, all four occupa-
tions are evenly weighted, which is the sum of the spin and space entanglement of
the system. The correlation entropy S1 vanishes for x ! 0 and x ! �1 and has a
maximum near jxj ¼ 1, the correlation entropy S2 vanishes for x ! 0 and increases
monotonically and approaches ln2 for x ! �1. For x ! þ1 can be viewed as
t ! 0 for fixed U>0 or as U ! þ1 for fixed t. The first case can be understood
to indicate the sites are decoupled and the electrons are well described by the
Heitler–London model. This can be described reasonably by S1. In the second case,
the electron correlation between electrons increase as the Hubbard repulsion U
increases. This is described by S2.

4. Hubbard model with two sites and three electrons

The general Hamiltonian for the Hubbard model can be written as

H ¼ �
X

<i, j>�

ti�, j�c
y

i�cj� þ
X
i

Ui", i#n̂i"n̂j#, ð39Þ

where ti�, j� is the hopping term describes the hopping between site i and j with spin �
and Ui", i# is the on-site interaction between the two electrons with the spin-
dependent site occupancy operator n̂i� ¼ cyi�ci�, with cyi�, ci� the Fermi creation
and annihilation operators (at site i and with spin � ¼" , #). In order to describe
the H�

2 molecule, we introduce two energy levels for each site and express the
Hamiltonian as

H ¼ �tA cyA1"cA2" þ cyA1#cA2#

� �
� tB cyB1"cB2" þ cyB1#cB2#

� �
� tAB cyA1"cB1" þ cyA1#cB1# þ cyA2"cB2" þ cyA2#cB2#

� �
� tAB cyA1"cB2" þ cyA1#cB2# þ cyA2"cB1" þ cyA2#cB1#

� �
þUA1 n̂A1" þ n̂A1#

� �
þUA2 n̂A2" þ n̂A2#

� �
þUB1 n̂B1" þ n̂B1#

� �
þUB2 n̂B2" þ n̂B2#

� �
þUA n̂A1"n̂A1# þ n̂A2"n̂A2#

� �
þUB n̂B1"n̂B1# þ n̂B2"n̂B2#

� �
ð40Þ

For simplicity, we set the inner hopping term tA ¼ tB ¼ 1:0, the energy level
corresponding to the first state of site 1 and site 2, UA1 ¼ UB1 ¼ 0 and the onsite
electron electron repulsion term UA¼UB¼U. After expanding this Hamiltonian in
the basis set jA1 " ,A1 # ,A2 " ,A2 # ,B1 " ,B1 # ,B2 " ,B2 #i, we diagonalize the
Hamiltonian matrix to get the ground state energy and wave function. In figure 3 we
show the entanglement of this system as a function of x ¼ U=tAB, where tAB is the
hopping term between two sites and UA2 and UB2 are the energies of the second
state of site 1 and site 2. As we observed in the figure 2, the entanglement for the
three-electron system increases as x increases and reaches a maximum value at x¼ 0.
The different curves in figure 3 correspond to different onsite energy gaps.
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The entanglement increases as the energy gap decreases. When the energy gap is

large, electrons tend to stay at the lowest energy level and reduces the entanglement

of the total system.

5. Ab initio calculations and entanglement

For the two-electron system in a 2m-dimensional spin-space orbital with ca and c
y
a

denoting the fermionic annihilation and creation operators of single-particle states

and j0i representing the vacuum state, a pure two-electron state j� > can be

written as

j�i ¼
X

a, b2f1, 2, 3, 4, :::2mg

!a, bc
y
a c
y
b j0i ð41Þ

where a, b run over the orthonormlized single particle states, and Pauli exclusion
requires that the 2m� 2m expansion coefficient matrix ! is antisymmetric:

!a, b ¼ �!b, a, and !i, i ¼ 0.
In the occupation number representation ðn1 " , n1 # , n2 " , n2 # , . . . , nm ", nm #Þ,

where " and # mean � and � electrons respectively, the subscripts denote the

spatial orbital index and m is the total spatial orbital number. By tracing out all other

spatial orbitals except n1, we can obtain a ð4� 4Þ reduced density matrix for the
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Figure 3. Two-site three-electron Hubbard model: the entanglement as a function of
x ¼ U=tAB for different values of UA2 and UB2 as defined in the text.
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spatial orbital n1

�n1 ¼ Trn1 j�ih�j

¼

4
Pm�1

i¼1

Pm�1

j¼1

j!2iþ1, 2jþ2j
2 0 0 0

0 4
Pm�1

i¼1

j!2, 2iþ1j
2 0 0

0 0 4
Pm
i¼2

j!1, 2ij
2 0

0 0 0 4j!1, 2j
2

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
:

ð42Þ

The matrix elements of ! can be calculated from the expansion coefficient of the
ab initio CI method. The CI wave function with single and double excitation can

be written as

j�i ¼ c0j�0i þ
X
ar

craj�
r
ai þ

X
a<b, r<s

cr, sa, bj�
r, s
a, bi, ð43Þ

where j�0i is the ground state Hartree–Fock wave function, cra is the coefficient for
single excitation from orbital a to r, and cr, sa, b is the double excitation from orbital a

and b to r and s. Now the matrix elements of ! can be written in terms of the CI

expansion coefficients. In this general approach, the ground state entanglement is

given by von Neumann entropy of the reduced density matrix �n1 [49]

Sð�n1Þ ¼ �Trð�n1 log2�n1 Þ: ð44Þ

We are now ready to evaluate the entanglement for the H2 molecule as a function
of R using a two-electron density matrix calculated from the CI wave function

with single and double electronic excitations [57]. Figure 4 shows the calculated

entanglement S for H2 molecule, as a function of the internuclear distance R using

a minimal Gaussian basis set STO-3G (each Slater-Type-Orbital fitted by 3 Gaussian

functions) and a split valence Gaussian basis set 3-21G[57]. For comparison we

included the usual electron correlation ðEc ¼ jEExact � EUHFjÞ and spin-unrestricted

Hartree–Fock (UHF) calculations [57] using the same basis set in the figure. At the

limit R¼ 0, the electron correlation for the He atom, Ec ¼ 0:0149ða:u:Þ using 3-21G

basis set compared with the entanglement for the He atom S¼ 0.0313. With a larger

basis set, cc� pV5Z [58], we obtain numerically Ec ¼ 0:0415ða:u:Þ and S¼ 0.0675.

Thus, qualitatively entanglement and absolute correlation have similar behaviour.

At the united atom limit, R ! 0, both have small values, then rise to a maximum

value and finally vanishes at the separated atom limit, R!1. However, note that

for R > 3Å the correlation between the two electrons is almost zero but the

entanglement is maximal until around R 	 4Å, the entanglement vanishes for

R > 4Å.
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6. Summary and outlook

We have studied the relation between electron–electron correlation, correlation
entropy and entanglement for two exactly solvable models: the Ising model and
the Hubbard model for two sites. The ab initio calculation of the entanglement for
the H2 system is also discussed. Our results show that there is a qualitatively similar
behaviour between the entanglement and absolute standard correlation of electrons
for the Ising model. Thus, entanglement might be used as an alternative measure of
electron correlation in quantum chemistry calculations. For the Hubbard model
there is a similar pattern between the entanglement and the correlation entropy S2;
both reach an extremum at x ¼ U=t ¼ 0 and tend to 1 at x!1 .

Dimensional scaling theory pioneered by Herschbach [59] provides a natural
means to examine electron–electron correlation and entanglement. At the large-
dimension limit (D!1), in a suitably scaled space electrons become fixed in position
but their geometrical configuration typically undergoes marked changes for certain
ranges of the nuclear charges. As the large-D limit is pseudoclassical, the analysis
deals with a point charge representation rather than a differential equation; thus,
energies are obtained simply by finding the minimum of a scalar effective potential.
The primary effect of electron correlation in the D!1 limit is to open up the
dihedral angles from their Hartree–Fock values [59] of exactly 90
. Angles in the
correlated solution are determined by the balance between centrifugal effects which
always favour 90
 and interelectron repulsions which always favour 180
. Since the
electrons are localized at the D!1 limit one might need to add the first harmonic
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Figure 4. Comparison between the absolute value of the electron correlation Ec ¼

jEExact � EUHFj and the von Neumann Entanglement (S) as a function of the internuclear
distance R for the H2 molecule using two Gaussian basis sets STO-3G and 3-21G.

2556 Z. Huang et al.



correction in the 1/D expansion to obtain a useful density matrix for the whole

system, and thus the von Neumann entropy. The relation between entanglement and

electron–electron correlation at the large-dimensional limit for the dimensional

scaling model of the H2 molecule [60] will be the subject of future studies.
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