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We study the dynamics of entanglement for a one-dimensional spin system, where spins are coupled through
nearest-neighbor exchange interaction and subject to different external magnetic fields. First we examine the
system size effect on the entanglement with three different external magnetic fields changing with time t: an
exponential function e�−Kt� and two periodic sin�Kt� and cos�Kt� functions, where K is a control parameter. We
have found that the entanglement fluctuates shortly after a disturbance by an external magnetic field when the
system size is small. For larger system size, the entanglement reaches a stable state for a long time before it
fluctuates. However, this fluctuation of entanglement disappears when the system size goes to infinity. We also
show that in a periodic external magnetic field, the nearest-neighbor entanglement displays a periodic structure
with a period related to that of the magnetic field. Moreover, changing the direction of the magnetic field will
destroy the concurrence in the system.
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I. INTRODUCTION

Quantum entanglement is one of the most striking prop-
erties of quantum theory and has no classical analog �1–4�.
Investigation of quantum entanglement is currently a very
active area of research and has been studied intensely �5–10�
due to its potential applications in quantum computation
such as quantum teleportation �11,12�, superdense coding
�13�, quantum key distribution �14,15�, and decoherence in
quantum computers �16–19�. For quantum computation, tele-
portation, or quantum cryptography, entanglement must be
precisely controlled during the process. However, quantum
states and entanglement are very fragile due to the decoher-
ence with the environment. Quantum error correction �20�
and decoherence free subspace �17,21� have been proposed
to protect the quantum property during the computation pro-
cess.

Multiparticle systems are of central interest in the field of
quantum information, in particular, quantification of the en-
tanglement contained in quantum states, because the en-
tanglement is the physical resource to perform some of the
most important quantum information tasks. Osterloh et al.
�22� among others �23–25� connected the theory of critical
phenomena with quantum information by exploring the en-
tangling resources of a system close to the quantum critical
point in a class of one-dimensional magnetic systems. They
have found that entanglement reaches the maximum near the
critical point. However, one still needs to study the dynamics
of entanglement near the critical point subject to general ex-
ternal magnetic fields.

Recently �26�, we have demonstrated that for a class of
one-dimensional magnetic systems entanglement can be con-
trolled and tuned by varying the anisotropy parameter in the
XY Hamiltonian and by introducing impurities into the sys-
tems in the equilibrium state. However, offering a potentially
ideal protection against environmentally induced decoher-

ence is difficult in information encoding and readout. In
NMR quantum computers, a series of magnetic pulses were
applied to a selected nucleus of a molecule to implement
quantum gates. The size effect of the molecule on the NMR
spectral intensities has been investigated �27�. However, a
study of the size effect on the dynamics of pair-spin en-
tanglement is needed. Moreover, the spin-pair entanglement
is a reasonable measure for decoherence between the consid-
ered two-spin system and the environmental spins. The en-
tanglement between the system and the environment leads to
the decoherence of the system and the decrease of entangle-
ment between the two spins. Evaluating the entanglement
remaining in the considered system will help us to under-
stand the behavior of the decoherence between the consid-
ered two spins and their environment �28�. In the quantum
computer, it is important to keep the entanglement between
qubits in order to prevent individual qubit decoherence. Thus
studying the entanglement between qubits might provide a
direct way to maintain it during the quantum computation.

This study of entanglement evolution will help us to un-
derstand the behavior of decoherence between the considered
system and the environment. It is important to investigate the
change of entanglement between two nuclei of the system
under these magnetic-field pulses in quantum computation
and quantum information. In our previous work, we have
studied the evolution of entanglement in a one-dimensional
spin system, modeled by the XY Hamiltonian, by applying
the step function magnetic field. We have found that the en-
tanglement can be localized between nearest-neighbor qubits
for certain values of the external time-dependent magnetic
field. Moreover, as known for the magnetization of this
model, the entanglement shows nonergodic behavior, it does
not approach its equilibrium value at the infinite time limit
�29�.

In this paper, we consider the dynamics of entanglement
in one-dimensional spin systems near the phase-transition
point, where spins are coupled through an exchange interac-
tion and subject to three types of time-dependent magnetic
fields: an exponential function e�−Kt� and two periodic sin�Kt�
and cos�Kt�, where K is a constant. In Sec. II, we briefly*Corresponding author. Electronic address: kais@purdue.edu
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introduce the Liouville equation for the density matrix and
the numerical solution of the general XY model in a lattice
with N sites in a time-dependent external magnetic field. In
Sec. III, we present the method to construct the reduced den-
sity matrix for two sites by calculating the spin-spin correla-
tion functions of these sites. Based on the reduced density
matrix we calculate the entanglement of formation. Finally,
we present the results and discussion in Sec. IV.

II. SOLUTION OF THE TIME-DEPENDENT XY MODEL

In this section, we briefly introduce the numerical solution
of the XY model for a one-dimensional lattice with N sites in
an external time-dependent magnetic field h�t�. The Hamil-
tonian for such a chain of interacting spins, with nearest-
neighbor interaction only, is given by

H = −
J

2
�1 + ���

i=1

N

�i
x�i+1

x −
J

2
�1 − ���

i=1

N

�i
y�i+1

y − �
i=1

N

h�t��i
z,

�1�

where J is the coupling constant, �a are the Pauli matrices
�a=x ,y ,z�, and � is the degree of anisotropy. We set J=1 for
convenience �all units of external magnetic fields are scaled
by J�. The periodic boundary condition is cyclic, namely,
�N+1

a =�1
a.

In order to solve Eq. �1�, we follow the standard proce-
dure �30–35� by defining the raising and lowering operators
ai

†, ai,

ai
† =

1

2
��i

x + i�i
y�, ai =

1

2
��i

x − i�i
y� . �2�

Then, we introduce the Fermi operators bi, bi
†,

ai = exp�− �i�
j=1

i−1

bj
†bj�bi, ai

† = bi
†exp��i�

j=1

i−1

bj
†bj� . �3�

Finally, we apply the Fourier transform

bj
† =

1
�N

�
p=−N/2

N/2

exp�ij�p�cp
†, bj =

1
�N

�
p=−N/2

N/2

exp�− ij�p�cp,

�4�

where �p=2�p /N. Thus the Hamiltonian assumes the fol-
lowing form:

H = �
p=1

N/2

�p�t��cp
†cp + c−p

† c−p� + i�p�cp
†c−p

† + cpc−p� + 2h�t�

= �
p=1

N/2

H̃p�t� , �5�

where �p�t�=−2 cos �p−2h�t� and �p=2� sin �p. Since

�H̃m�t� , H̃n�t��=0, we can decompose the whole space into
noninteracting subspaces, each of four dimensions. Using the
following basis for the pth subspace:

�	0
;cp
†c−p

† 	0
;cp
†	0
;c−p

† 	0
� , �6�

we can explicitly obtain

H̃p�t� =�
2h�t� − i�p 0 0

i�p − 4 cos �p − 2h�t� 0 0

0 0 − 2 cos �p 0

0 0 0 − 2 cos �p

� . �7�

Instead of solving the Hamiltonian in the whole space of the
initial problem, we can solve for each subspace individually
and calculate its properties. The initial condition chosen at
t=0 is a thermal equilibrium of the system, namely, the den-
sity matrix of the pth subspace at t=0 is given by

�p�0� = e−�H̃p�0�, � = 1/kT , �8�

k is the Boltzmann constant. Let Up�t� be the time-evolution
matrix in the pth subspace, then the Liouville equation of the
pth subspace given by

i
d�p�t�

dt
= �Hp

˜ �t�,�p�t�� �9�

can be solved exactly. The solution of Liouville equation is

�p�t� = Up�t��p�0�Up�t�†. �10�

To describe the phenomena under fluctuations of external
magnetic fields, we apply three different external magnetic
fields: an exponential magnetic field hI�t�, and two periodic
magnetic fields hII�t� and hIII�t�. The explicit functional
forms are given by

hI�t� = a t 	 0

b + �a − b�e−Kt t 
 0
� , �11�

hII�t� = a t 	 0

a − a sin�Kt� t 
 0
� , �12�

hIII�t� = 0 t 	 0

a − a cos�Kt� t 
 0
� , �13�

where a, b, and K are varying parameters.
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III. MAGNETIZATION AND SPIN-SPIN
CORRELATION FUNCTIONS

The magnetization is defined as

M =
1

N
�
j=1

N

Sj
z, �14�

which can be written in terms of the operators cp
†, cp as

M =
1

N
�
p=1

N/2

Mp, �15�

where Mp=cp
†cp+c−p

† c−p−1. So we can get the z direction
magnetization

Mz�t� =
1

N

Tr�M��
Tr���

=
1

N
�
p=1

N/2
Tr�Mp�p�t��

Tr��p�0��
. �16�

The three instantaneous spin-spin correlation functions
are defined as

Slm
x = �Sl

xSm
x 
, Slm

y = �Sl
ySm

y 
, Slm
z = �Sl

zSm
z 
 . �17�

Lieb, Schultz, and Mattis �LSM� �30� show that

Slm
x =

1

4
�BlAl+1Bl ¯ Am−1Bm−1Am
 , �18�

Slm
y =

1

4
�− 1�l−m�AlBl+1Al+1Bl+2 ¯ Bm−1Am−1Bm
 , �19�

Slm
z =

1

4
�AlBlAmBm
 , �20�

where

Ai = bi
† + bi; Bi = bi

† − bi. �21�

These three correlation functions are given as expectation
values of products of fermion operators. Using the Wick
�36–40� theorem, the expressions can be expressed as Pfaf-
fians �pf�. In particular, we have

Slm
x =

1

4
pf�

Fl,l+1 Gl,l+1 ¯ Gl,m−1 Fl,m

− Fl+1,l+1 ¯ − Fl+1,m−1 Ql+1,m

¯ · ·

· · · ·

· · ·

− Fm−1,m−1 Qm−1,m

Fm−1,m

� , �22�

Slm
y =

�− 1�l−m

4
pf�

− Fl,l+1 Ql,l+1 ¯ Ql,m−1 − Fl,m

Fl+1,l+1 ¯ Fl+1,m−1 Gl+1,m

¯ · ·

· · · ·

· · ·

Fm−1,m−1 Gm−1,m

− Fm−1,m

� , �23�

Slm
z =

1

4
pf�− Fl,l Ql,m − Fl,m

Fl,m Gl,m

− Fm,m
� , �24�

where

Fl,m =
1

N
�
l=1

N

�BlAl+R
, Ql,m =
1

N
�
l=1

N

�AlAl+R
 , Gl,m =
1

N
�
l=1

N

�BlBl+R
 , �25�

and R=m− l.
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IV. ENTANGLEMENT OF FORMATION

It was shown by Wootters �7� that the entanglement E���,
where � is the density matrix can be written as

E��� = E„C���… , �26�

where the function E is given by

E = h�1 + �1 − C2

2
� , �27�

where h�x�=−x log2x− �1−x�log2�1−x�, and the concurrence
C is defined as

C��� = max�0,�1 − �2 − �3 − �4� . �28�

It has been shown that the concurrence is also a good mea-
surement of entanglement and can be generalized to high
dimensions. For a general state of two qubits, �i’s are the
eigenvalues of the Hermitian matrix

R � ����̃�� , �29�

where � is the density matrix and �̃ is the spin-flipped state
defined as

�̃ = ��y � �y��*��y � �y� . �30�

Alternatively, the �i’s are the square roots of the eigenvalues
of the non-Hermitian ��̃. Since the density matrix � follows
from the symmetry properties of the Hamiltonian, the � must
be real and symmetrical �22�, plus the global phase flip sym-
metry of Hamiltonian, which implies that ��i

z� j
z ,��=0, we

obtain

� =�
�1,1 0 0 �1,4

0 �2,2 �2,3 0

0 �2,3 �3,3 0

�1,4 0 0 �4,4

� , �31�

with

�a = ��1,1�4,4 + 	�1,4	, �b = ��2,2�3,3 + 	�2,3	 , �32�

�c = 	��1,1�4,4 − 	�1,4		, �d = 	��2,2�3,3 − 	�2,3	 .

Using the definition �A
=Tr��A�, we can express all the
matrix elements in the density matrix in terms of the differ-
ent spin-spin correlation functions:

�1,1 =
1

2
Ml

z +
1

2
Mm

z + Slm
z +

1

4
, �33�

�2,2 =
1

2
Ml

z −
1

2
Mm

z − Slm
z +

1

4
, �34�

�3,3 =
1

2
Mm

z −
1

2
Ml

z − Slm
z +

1

4
, �35�

�4,4 = −
1

2
Ml

z −
1

2
Mm

z + Slm
z +

1

4
, �36�

�2,3 = Slm
x + Slm

y , �37�

�1,4 = Slm
x − Slm

y . �38�

V. RESULTS AND DISCUSSION

We start our investigation of the dynamics of the en-
tanglement, measured by the concurrence, with the one-
dimensional spin system at the limit K→� at absolute zero
temperature in a finite system. At this limit the magnetic field
hI�t� is a step function. The goal is to examine the effect of
finite system size on the dynamics of entanglement. For sim-
plicity we took �=1 in the Hamiltonian of Eq. �1�, which
reduces the calculations to the Ising model.

In Fig. 1, we plot the evolution of nearest-neighbor con-
currence C�i , i+1� for a finite system with N=1000 under the
influence of a step function magnetic field with a=0.5 and
b=5.0. The upper window in Fig. 1 shows the detail dynam-
ics at short time, t= �0,5�. The concurrence changes rapidly
from the equilibrium state when the external magnetic field
is turned on. It reaches the constant value Cf =0.115 for t

20. Surprisingly, the concurrence starts oscillating again,
as shown in the lower window in Fig. 1, after t is larger than
the critic value tc=243. Moreover, it keeps oscillating around
Cf even for t→�. We also indicate the equilibrium states of
concurrence for initial magnetic field Ca=0.032 and for a
final magnetic field Cb=0.094.

As shown in Fig. 1, the entanglement starts oscillating
after a certain time tc, when the external magnetic field is
varied. In order to study the effect of the system size on tc,
we plot in Fig. 2 the evolutions of nearest-neighbor concur-
rence with different system sizes N=100, 150, 200, 250, and
N=300. It is shown that the tc increases linearly with the
increase of the system size. The spin-wave packet propaga-
tion and reflection from the boundary play an important role
in the NMR spectral intensities �27�. The perturbation of the
concurrence after the tc is caused by the spin-wave packet
propagation. In our calculation the reflection effect from the
boundary has been eliminated by introducing the periodic
boundary condition. However, the forward spin-wave packet

FIG. 1. The nearest-neighbor concurrence C�i , i+1� for the ex-
ternal magnetic field hI�t�, as defined in the text, Eq. �12�, with a
=0.5 and b=5.0 as a function of time t. The number of sites N
=1000.
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propagation still produces interference effects on the concur-
rence after tc. The observed delay time is decided by the
forward propagation time of spin-wave packet in this system.
This indicates that the stable concurrence state is shorter for
smaller system size.

It is interesting to examine the behavior of tc with differ-
ent magnetic fields and system sizes when the magnetic field
hI�t� is applied to the system. As seen in the upper panel of
Fig. 3, the tc is linear with the system size N. However, the
slope varies with the value of the final magnetic field b. For
final magnetic-field values b
1.5 the data collapse onto one
line. We also observed that the larger the size of the system,
the larger the critical time when the system is exposed to the
same external magnetic field. For further evidence of the size
effect, we plot the normalized variation of the concurrence
� / �C
 as a function of the system size for large t, t tc,
where � is the standard variation, the distance from the av-
erage, defined as ���C− �C
�2
, and �C
 is the average con-
currence. As one can see, the concurrence fluctuations are
exponentially decaying with the system size, which indicates
that the perturbation of external magnetic field has less effect
on the large system than the small system. We also show in
Fig. 3 the average concurrence as a function of the system
size. The concurrence increases exponentially for small sys-
tem size and reaches a limiting value, which is not the equi-
librium state of the final magnetic field.

In order to examine the dynamics of the concurrence un-
der the influence of a more realistic external magnetic field,
we choose an exponential magnetic field hI�t�, with a finite
value of K. For a system size N=1000 with the parameters
a=0.5 and b=5.0, we show in Fig. 4 the nearest-neighbor
concurrence C�i , i+1� as a function of t for different values
of K. By varying the constant K, we have found that as time
evolves, C�i , i+1� oscillates but it does not reach its equilib-
rium value at t→�. So the nonergodic behavior of the con-
currence is not caused by the functional form of the external
magnetic field hI�t� but this is a general behavior for slowly
changing magnetic field.

The final state of entanglement in Fig. 4 is not only given
by the final external magnetic field but also by the constant
K. We have found that when K is very small, K=0.001, the
concurrence almost did not change. This can be understood
since in the limit K→0 the magnetic filed is constant for all
t. However, when we increase the constant K, the concur-
rence starts oscillating after a critical time tc and Cf reaches
its maximum for large vales of K.

The behavior of the concurrence is dominated by the
competition between the external magnetic field and deco-
herence to the environmental spins. As shown in Figs. 1–4,
the concurrence oscillates and reaches a maximum value
shortly after the external magnetic field is applied. However,
because of the decoherence of the considered two spins with
the environment, we can see from the profile of concurrence
in these figures that it starts to drop exponentially. Finally the
concurrence reaches a stable value as a result of the compe-
tition of these two effects. When the external magnetic field
is applied, the field dominates the process and drives the
spins into an entangled state. However, not only are the two
spins entangled, they are also entangled with their environ-
ment. Increasing the entanglement between the considered
system and the environment leads to the decoherence. Thus
the exponential decrease of the entanglement between the
considered two spins. It is interesting to note that when the
external magnetic field is applied slowly, the entanglement is
totally destroyed. This can be attributed to the decoherence
effect which pulls the correlated spin state into an uncorre-
lated one. However, the entanglement maintains to some de-
gree when the external magnetic field is applied quickly. The
faster we apply the external magnetic field the less entangle-
ment is destroyed by decoherence.

To show the effect of the periodic external magnetic field
hII�t�, we show in Fig. 5 the nearest-neighbor concurrence

FIG. 2. The nearest-neighbor concurrence C�i , i+1� for the ex-
ternal magnetic field hI�t� with a=0.5 and b=5.0 as a function of
time t with different system sizes. Dots represent the critical time tc.

FIG. 3. The critical time tc, normalized standard variation � / �C

and the average concurrence of nearest neighbors for the external
magnetic field hI�t� with a=0.5 and b=5.0 as a function of site
number N.

FIG. 4. The nearest-neighbor concurrence C�i , i+1� for different
constant K of the exponential external magnetic field hI�t� with a
=0.5 and b=5.0 as a function of time t.
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C�i , i+1� as a function of t for K=0.05 for different values of
the initial magnetic field a. Figure 5 displays the periodic
structure of the concurrence as a function of t. In the lower
panel, for comparison, we included the change of the exter-
nal magnetic field hII�t� as a function of t. This clearly dem-
onstrates that the period of the concurrence C�i , i+1� is the
same as that of the external magnetic field hII�t�. We also
observed that the concurrence disappears between two peri-
ods where the external magnetic field reaches its maximum.
This is due to the fact that large external magnetic field will
destroy the concurrence in the Ising system. Interestingly, we
have found the maximum of the concurrence appears when
the initial external magnetic field is repeated. The concur-
rence decreases from the maximum value when the external
magnetic field is close to zero, however, it does not reach
zero when the external magnetic field is zero. As the value of
the initial magnetic field a increases, the maximum value of
concurrence increases when a�1.3. The concurrence starts
to decrease when we further increase the value of a. The
square shape concurrence appears at about a=2, and the
height of the square decreases when we further increase the
values of a and it disappears when a is very large.

For the periodic external magnetic field hIII�t�, we show in
Fig. 6 that the nearest-neighbor concurrence C�i , i+1� is zero
at t=0 since the external magnetic field hIII�t=0�=0 and the
spins align along the x direction: the total wave function is
factorizable. By increasing the external magnetic field we see
the appearance of nearest-neighbor concurrence but very
small in comparison with C�i , i+1� in Fig. 5. This indicates
that the concurrence cannot be produced without background
external magnetic field in the Ising system. However, as time
evolves one can see the periodic structure of the nearest-
neighbor concurrence according to the periodic structure of
the external magnetic field hIII�t�.

In summary, we study the dynamics of entanglement, by
solving numerically the Liouville equation for the time-

dependent density matrix, for one-dimensional spin systems
subject to three types of time-dependent magnetic fields:
an exponential function e�−Kt� and two periodic functions:
sin�−Kt� and cos�−Kt�, where K is a constant. For the expo-
nential external magnetic field, by varying the constant K we
have found that as time evolves, C�i , i+1� oscillates but it
does not reach its equilibrium value at t→�. This confirms
the fact that the nonergodic behavior of the concurrence is a
general behavior for slowly changing magnetic field. For the
periodic magnetic field hII=a�1−sin�−Kt�� the nearest-
neighbor concurrence is at maximum at t=0 for values of a
close to 1, since the system exhibits a quantum phase transi-
tion at �c=J /h=1, where in our calculations we fixed J=1.
In our previous study, we have shown that the nearest-
neighbor concurrence is maximum at �c=1 �26�. Moreover,
for the two periodic sin�−Kt� and cos�−Kt� fields the nearest-
neighbor concurrence displays a periodic structure according
to the periods of their respective magnetic fields.

In the future, it will be interesting to examine the dynam-
ics of entanglement for higher temperatures than zero to see
the rate of quenching the entanglement with the increase of
temperature. Also we are planning to extend the calculations
for anisotropic coupling and disorder. For the static case, we
have demonstrated that the entanglement can be controlled
and tuned by varying the anisotropy parameter in the XY
Hamiltonian and by introducing impurities into the systems
in the equilibrium state.
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FIG. 5. �Color online� The nearest-neighbor concurrence
C�i , i+1� �upper panel� and the periodic external magnetic field
hII�t�=a�1−sin�Kt��, see Eq. �13� in the text �lower panel�, for K
=0.05 with different values of a as a function of time t.

FIG. 6. �Color online� The nearest-neighbor concurrence
C�i , i+1� �upper panel� and the periodic external magnetic field
hIII�t�=a�1−cos�Kt��, see Eq. �14� in the text �lower panel�, for K
=0.05 with different values of a as a function of time t.
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