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A thermodynamic analog of the Yang and Lee theorem
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Abstract

Finite size scaling for calculations of the critical parameters of the few-body Schrödinger equation is based on taking the number of
elements in a complete basis set as the size of the system. We show in an analogy with Yang and Lee theorem, which states that singu-
larities of the free energy at phase transitions occur only in the thermodynamic limit, that singularities in the ground state energy occur
only in the infinite complete basis set limit. To illustrate this analogy in the complex-parameter space, we present calculations for Yuk-
awa type potential, and a Coulomb type potential for two-electron atoms.
� 2006 Elsevier B.V. All rights reserved.
Phase transitions in statistical mechanical calculations
arise only in the thermodynamic limit, in which the volume
of the system and the number of particles go to infinity
with fixed density. Only in this limit the free energy, or
any thermodynamic quantity, is a singular function of
the temperature or external fields [1–3]. Recently, a new
classification scheme was developed [4] for phase transi-
tions in finite systems like atomic and molecular clusters
[5] based on the Yang–Lee zeros in the complex tempera-
ture plane. Finite size scaling, which was formulated by
Fisher in 1971 and further developed by a number of peo-
ple has been used in order to extrapolate the information
available from a finite system to the thermodynamic limit
[6–10]. However, in the last decade considerable attention
has concentrated on a qualitatively different class of phase
transitions, transitions which occur at the absolute zero of
temperature. These are quantum phase transitions which
are driven by quantum fluctuations as a consequence of
Heisenberg’s uncertainty principle [11,12]. These new tran-
sitions are tuned by parameters in the Hamiltonian. An
example of this kind of transition is the melting of a Wigner
crystal, orderly arrangement of electrons. As one make the
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crystal more dense, the electrons become more confined,
the uncertainty principle takes over and the fluctuations
in the momentum grow. Squeezing more on the crystal
and eventually the system transform from insulator to con-
ductor [13]. Other examples include the magnetic transi-
tions of cuprates, superconductor-insulator transitions in
alloys, metal-insulator transitions [12,14], cluster physics
[15], electronic circuits [16] and deformed shape phase tran-
sition in nuclear physics [17].

In quantum mechanics, when using variation methods,
one encounters the same finite size problem in studying the
critical behavior of a quantum Hamiltonian Hðk1; . . . ; kkÞ
as a function of its set of parameters {ki}. In this context, crit-
ical means the values of {ki} for which a bound state energy is
nonanalytic. This nonanalytic behavior can be analysed
using the theory of algebraic functions [18] and perturbation
theory [19]. We have developed finite size scaling for quan-
tum systems [20–22]. In this case, the finite size corresponds
not to the spatial dimension but to the number of elements in
a complete basis set used to expand the exact wave function
of a given Hamiltonian. This approach was very efficient and
accurate for estimating the critical screening length for one-
electron screened Coulomb potentials, the critical nuclear
charges for two-electron and three-electron atoms [20,21],
critical conditions for stable dipole and quadrupole-bound
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anions [24], simple diatomic molecules and three-body Cou-
lomb systems [22].

Recently, Cejnar et al. [23] proposed a relationship
between thermodynamic phase transitions and quantum
phase transitions based on a link between zeros of the canon-
ical partition function at complex temperatures and branch
points of a quantum Hamiltonian in the complex-extended
parameter space. Note also that in Ref. [23], the scaling fac-
tor S in the specific heat analog turns out to be inversely pro-
portional to the relevant Hilbert subspace dimension. This
approach was applied to the interacting boson model. In this
Letter, we show that singularities in the ground state energy
occur only in the infinite complete basis set limit in an anal-
ogy with Yang and Lee theorem in classical statistical
mechanics. Yang and Lee [25] developed a theory of equa-
tions of state and phase transitions that describes the con-
densed phases, the gas phases and the transition regions. A
phase transition is related to a nonanalytical behavior of
the free energy. Therefore, one can classify phase transition,
if one finds the points where the free energy or the grand
canonical potential becomes nonanalytical. However, this
can be calculated from F = �kT lnQ with the grand parti-
tion function is written as Qðz; V ; T Þ ¼

P1
N¼0zN ZðN ; V ; T Þ,

where Z(N,V,T) is partition function of the total system
for a given number of particles N, Volume V and tempera-
ture T with the variable fugacity z = el/kT in term of the
chemical potential l. Yang and Lee have shown rigorously
by studying the grand partition function in the complex z-
plane that nonanalyticity occurs only in the thermodynamic
limit ðV !1;N !1; N

V ¼ constantÞ.
Finite size scaling can be used to study the quantum crit-

icality of Hamiltonians of the general form H ¼H0 þVk,
with H0 is k-independent and Vk is the k-dependent term
and k is a control parameter. At the critical value kc some
of the ground state energy derivatives of the Hamiltonian
H change discontinuously. For a given complete orthonor-
mal k-independent basis set {Un}, the ground state eigen-
function takes the form, Wk ¼

P
nanðkÞUn, where n

represents the adequate set of quantum numbers. In order
to approximate the different quantities, we have to truncate
the series at order N. Then the Hamiltonian is replaced by
M(N) · M(N) matrix HðNÞ, with M(N) being the number of
elements in the truncated basis set at order N. Using the
standard linear variational method, the Nth-order approx-
imation for the energies are given by the eigenvalues of the
matrix HðNÞ.

As in the finite size scaling ansatzs in statistical mechan-
ics [26], we assume that there exists a scaling function F H

for the truncated magnitudes such that

hHiðNÞk � hHikF HðN jk� kcjmÞ ð1Þ
with a unique scaling exponent m defined by the singularity
of the correlation length at the critical point. This is an
analogous formula to the phenomenological renormaliza-
tion equation developed by Nightingale in finite size scaling
theory [7]. To obtain the critical parameters, we define the
following function
DOðk; N ;N 0Þ ¼
ln hOiðNÞk =hOiðN

0Þ
k

� �
lnðN 0=NÞ ; ð2Þ

such that for three different values N, N 0, and N00 the curves
defined intersect at the critical point,

DOðkc; N ;N 0Þ ¼ DOðkc; N 00;NÞ. ð3Þ
This formula is valid only as an asymptotic expressions,
but unique values of kc, and the energy exponent a,
hHik � ðk� kcÞa, can be obtained as a succession of values
as a function of N,N 0 and N00 using the algorithm of Bul-
irsch and Stoer [27].

We propose in an analogy with Yang and Lee theo-
rem, that singularities in the ground state energy occur
only in the infinite complete basis set limit. To establish
such an analogy we will focus on the distribution of
branch points in the complex-parameter space as we
increase the size of the basis set. These points are the
simultaneous solutions of the two equations: det½E�
HðkÞ� ¼ 0 and o

oE det½E �HðkÞ� ¼ 0, which yield the fol-
lowing condition [23,28,29]

DðkÞ ¼ ð�1ÞNðN�1Þ=2½EjðkÞ � EiðkÞ�2 ¼ 0; ð4Þ
where the discriminant D(k) is a polynomial of order
N(N � 1) in k, and N is the dimension of the Hilbert space.
From the hermiticity of H it follows that energy eigen-
values Ei are real for real values of k. We also assume
Ei(k) 6¼ Ej(k) for i 6¼ j and for real k. On the other hand
the equation Ei(k) = Ej(k) for given values of i and j must
have a solution in the complex plane. Thus the discrimi-
nant roots occur as N(N � 1)/2 complex conjugate pairs.

As an example, let us illustrate the link between the
zeros of the canonical partition function at complex tem-
perature and pseudosingular points, branch points, of the
Yukawa potential in the complex-parameter space. The
scaled Yukawa Hamiltonian for l = 0 is given by

HðkÞ ¼ � 1

2
r2 � k

e�r

r
ð5Þ

A convenient, orthonormal basis set is

UnðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4p

ðnþ 1Þðnþ 2Þ

s
e�r=2Lð2Þn ðrÞ. ð6Þ

where n is the principle quantum number, Lð2Þn ðrÞ is the
associated Laguerre polynomial of degree n and order 2.

Using the finite size scaling equation, Eq. (2), we can
define the following function:

Caðk; N ;N 0Þ ¼ DHðk; N ;N 0Þ
DHðk; N ;N 0Þ � DoVk=okðk; N ;N 0Þ ð7Þ

which is independent of the values of N and N 0 at the crit-
ical point k = kc and gives the critical exponent a = Ca(kc;
N, N 0). Using this function we can obtain successive curve
crossings as the number of functions in the basis set in-
creases. In Fig. 1, we show the pseudocritical points kðNÞc

as a function of 1/N for even and odd values of N. In the



Table 1
Results of the complex k analysis for the critical parameters of the
Yukawa potential and two-electron atoms for ground state, l = 0

N kðNÞc For Yukawa potential kðNÞc For two-electron atoms

2 1.074630 ± 0.3446870i 1.34477 ± 0.2283220i
3 1.046600 ± 0.3213890i 1.87989 ± 0.2981270i
4 0.964489 ± 0.2106080i 1.18676 ± 0.0648140i
5 0.948479 ± 0.1876140i 1.15630 ± 0.0586431i
6 0.924654 ± 0.1523830i 1.14841 ± 0.0292630i
7 0.915001 ± 0.1361560i 1.13704 ± 0.0251776i
8 0.904174 ± 0.1188130i 1.13142 ± 0.0156169i
9 0.897862 ± 0.1076450i 1.12578 ± 0.0130579i

10 0.891668 ± 0.0971325i 1.12212 ± 0.0090999i
11 0.887289 ± 0.0892111i 1.11882 ± 0.0075290i

1 0.839908 1.09766
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Fig. 1. kN as a function of 1/N, for the ground state of the Yukawa potential.
The points were obtained from the curve crossings shown in the window.
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upper window we show the curve crossings as N increases
and the value of the extrapolated kc = 0.839903 is shown
by a dot. In the complex-k plane, the critical value of k
at each order, kðNÞc , is calculated by first obtaining the Ham-
iltonian matrix in an analytical form, with the elements as
functions of k only. The Hamiltonian matrix elements are
given by

H a;b ¼ Ua �
1

2
r2 � k

e�r

r

����
����Ub

� �

¼ � 1

2
Ua

d2

dr2
þ 2

r
d

dr
þ 2k

e�r

r

����
����Ub

� �
. ð8Þ

By expanding the first two terms with the differentiation
properties of the Laguerre polynomials and integration of
the Hamiltonian matrix elements one obtain the general
formula

H a;b ¼ �
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ 1Þðaþ 2Þðbþ 1Þðbþ 2Þ

p
� 1

4

Cðaþ 3Þ
a!

dða; bÞ
�

þ 2k
Xa

i¼0

Xb

j¼0

f ð2Þa ðiÞf
ð2Þ
b ðiÞ

� ðiþ jþ 1Þ!
2ðiþjþ2Þ � ðbþ 1ÞCðminða; bÞ þ 3Þ

2 minða; bÞ!

� b
Cðminða; bÞ þ 3Þ

6 minða; bÞ! ð2½aþ b� 2 minða; bÞ þ 1�

þ ðaþ bþ 1ÞÞþðbþ 2ÞCðminða; b� 1Þ þ 3Þ
6 minða; b� 1Þ!

�ð2½aþ b� 1� 2 minða; b� 1Þ þ 1� þ ðaþ bÞÞ
	
;

ð9Þ
where C(x) is the Euler gamma function of x, d(n1,n2) is the
Kronecker delta of n1 and n2, and f ð2Þn ðmÞ is the mth coef-
ficient of the Laguerre polynomial of degree n and order
2. It is given by a minor modification to the series definition
of the Laguerre polynomial

f k
n ðmÞ ¼ ð�1Þm ðnþ kÞ!

ðn� mÞ!ðk þ mÞ!m!
. ð10Þ

The eigenvalues are obtained by solving the characteristic
equation of the matrix,

detðH� EÞ ¼ 0; ð11Þ
where E is used for the matrix eigenvalues.

The characteristic equation is simply a polynomial in E,
and analytical forms for all of the roots can be obtained.
The value of kðNÞc is found by numerically solving the
equation

EðNÞi ðkÞ ¼ EðNÞj ðkÞ ð12Þ

for k for all combinations of i and j where i 6¼ j and i,j 6 N.
In the case of N = 2, there are only two eigenvalues so
there is only one possible solution for kðNÞc . For higher-or-
der calculations, the desired value of kðNÞc is the one which
follows the trend from the previous order calculations; spe-
cifically, the magnitude of both the real and imaginary
components decreases as N!1 and kðNÞc ! kc. These cal-
culations were performed with the computational package
MATHEMATICA [30]. The results are given in Table 1. In
Fig. 2, we show the pairwise complex conjugated pseudo-
critical points in the complex kN-plane for the ground state
of the Yukawa potential. As one increases the size of the
basis set, the pairwise complex conjugated pseudocritical
points converge to the real axis kc = 0.839908.

This approach is more computationally intensive than
the straightforward finite size scaling method. While those
calculations were done up to N = 100, the complex k anal-
ysis is performed up to N = 11, because the nonnumerical
matrix becomes too difficult to diagonalize. However, it
has some distinct advantages. Most notably, the data anal-
ysis is simplified significantly since the oVk=ok operator
and DO notation is no longer necessary.
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Fig. 3. Pseudocritical points in the complex kN-plane for the ground state
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Now, let us demonstrate this analogy for calculating the
critical parameters for two-electron atoms. In our previous
studies, we have shown that near the critical charge for
two-electron atoms, the minimum charge necessary to bind
two electrons, can be modeled by the following Hamilto-
nian [31],

H ¼ � 1

2
r2 � 1

r
þ k

r
ð1� e�drÞ; ð13Þ

where k ¼ 1
Z, Z is the nuclear charge and d is determined by

the following equation:

d ¼ d0ðk� c1Þ � d1ðk� c0Þ
c0 � c1

. ð14Þ

Here (d0,c0) and (d1,c1) are parameters corresponding to
the neutral atom and its isoelectronic negative ion respec-
tively. For Helium-like atom, d0 = 1.066, c0 = 0.5,
d1 = 0.881, and c1 = 1.0. Choosing the same complete basis
set as in the previous example, Eq. (2), we can obtained a
similar formula for the Hamiltonian matrix elements,

Ha;b ¼ �
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ 1Þðaþ 2Þðbþ 1Þðbþ 2Þ

p
� 1

4

Cðaþ 3Þ
a!

dða; bÞ
�

þ 2k
d

Xa

i¼0

Xb

j¼0

f ð2Þa ðiÞf
ð2Þ
b ðiÞ

� ðiþ jþ 1Þ!
2ðiþjþ2Þ � 2k

d
� 2

d
þ bþ 1


 �
Cðminða; bÞ þ 3Þ

2 minða; bÞ!

� b
Cðminða; bÞ þ 3Þ

6 minða; bÞ! ð2½aþ b� 2 minða; bÞ þ 1�

þ ðaþ bþ 1ÞÞþðbþ 2ÞCðminða; b� 1Þ þ 3Þ
6 minða; b� 1Þ!

� ð2½aþ b� 1� 2 minða; b� 1Þ þ 1� þ ðaþ bÞÞ
	

.

ð15Þ
Solving the characteristic equation, which is a polyno-
mial in E, gives an analytic eigenvalues. The values of kðNÞc

are found by numerically equating EðNÞi ðkÞ ¼ EðNÞj ðkÞ, for k
with all combinations of i and j where i 6¼ j and i,j 6 N.
The results are given in Table 1. As in the previous case,
Fig. 3 shows the pairwise complex conjugated pseudocriti-
cal points in the complex kN-plane for the ground state of
the two-electron atoms. As one increases the size of the
basis set, the pairwise complex conjugated pseudocritical
points converge to the real axis kc = 1.09766. When
k < kc = 1.09766 the nuclear charge is large enough to bind
two electrons, and this situation remains until the system
reaches a critical point kc, the minimum charge necessary
to bind two electrons. For k > kc, one of the electrons jumps
to infinity with zero kinetic energy.

In summary, we have established a complete analogy
between the application of finite size scaling, based on
the number of particles, in thermodynamic phase transi-
tions and quantum finite size scaling, based on the number
of basis functions, in quantum phase transitions in systems
with variable Hamiltonian parameters. We have shown rig-
orously that singularities in the ground state energy occur
only in the infinite complete basis set limit in an analogy
with Yang and Lee theorem in classical statistical mechan-
ics. Moreover, this method is general and might be used to
analyze quantum critical phenomena in many physical sys-
tems such as nuclei, atoms, molecules, quantum dots, clus-
ters, and solids.
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