THE JOURNAL OF CHEMICAL PHYSICS 128, 044307 (2008)

Critical conditions for stable dipole-bound dianions
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We present finite size scaling calculations of the critical parameters for binding two electrons to a
finite linear dipole field. This approach gives very accurate results for the critical parameters by
using a systematic expansion in a finite basis set. A complete ground state stability diagram for the
dipole-bound dianion is obtained using accurate variational and finite size scaling calculations. We
also study the near threshold behavior of the ground state energy by calculating its critical
exponent. © 2008 American Institute of Physics. [DOI: 10.1063/1.2822285]

I. INTRODUCTION

Recently, there has been increasing interest in multipole-
bound negative ions.!? Negative ions play an important role
in stellar and terrestrial atmospheres as well as in laboratory
and cosmic plasmas.3’4 For the case of dipole-bound negative
ions, the outer electron is weakly bound by the dipole mo-
ment of a neutral molecule in a diffuse orbital localized at
the positive end of the dipole. Fermi and Teller,” have shown
that, within the context of the Born-Oppenheimer approxi-
mation, molecules with dipole moments greater than .
=1.625 D (0.655 a.u.) can bind an electron to form dipole-
bound anions.”"* The ground state energy of the system
tends to zero exponentially as the dipole moment reaches its
critical value.'™"* However, subsequent experimental and
computational studies taking into account corrections to the
Born-Oppenheimer approximation give a more realistic esti-
mate of u.=2.5 D.1*%

Skurski ef al.”> have examined the problem of the bind-
ing of two electrons in a dipole field of a neutral molecule.
They have demonstrated computationally the existence of
dipole-bound dianions of different molecules.”*  Silanes
etal.” performed a full configuration interaction calculations
for two electrons moving in the field of a fixed finite dipole
in order to determine the conditions for stability relative to
one electron detachment.

In this paper, we present variational and finite size scal-
ing calculations of the critical parameters for binding two
electrons to a finite dipole field. This approach gives very
accurate results for the critical parameters by using a system-
atic expansion in a finite basis set. The paper is organized as
follows. In Sec. II, we briefly review the finite size scaling
and variational methods in quantum mechanics. The model is
presented in Sec. III. In Sec. IV, we give the numerical re-
sults for the two electron dipole. We present a complete
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ground state stability diagram and we show how is the be-
havior of the energy near the critical parameters. Finally, the
conclusions are given in Sec. V.

Il. NEAR THRESHOLD CALCULATIONS IN QUANTUM
MECHANICS

We are interested in the critical behavior of a given
quantum Hamiltonian H(\;, ...,\;) as a function of its set of
parameters {)\,-}.26’27 In this context, critical means the values
of {\;} for which a bound state energy is nonanalytic. In
many cases, this critical point is the point where a bound
state energy becomes absorbed or degenerate with a
continuum.”® Let us consider the following Hamiltonian of
the form

H:HO+V()\19)\2’--'3)\]<)3 (1)

where H, is A-independent and V is the N-dependent term. In
atomic and molecular physics, the parameters \; could be the
nuclear charges, internuclear distances, multipolar moments,
etc. We are interested in the study of how the different prop-
erties of the system change when the value of \; varies. In
this work, we vary one of the parameters \; keeping the rest
Aj«; constant. Without loss of generality, we will assume that
the Hamiltonian [Eq. (1)] has a bound state E(\{,\,,...,\;)
for N\;>\{ Vi, which becomes equal to the threshold energy
at \;=\{. The asymptotic behavior of E(\|,\,,...,\;) near
\; defines the critical exponent «;. The critical exponent
characterizes the near threshold behavior of the energy;
therefore, we expect different values for « if the system has
many possible thresholds. In our case, in the Born-
Oppenheimer approximation, the two electron system has a
unique threshold corresponding to a simple ionization, then
a=a, i=1,...,k,

ENL N, M) =&~ (=N
)\-*}}\C-F

i i

\;j=const for j # i, (2)

where &, is the threshold energy which is a function of a
subset of the parameters {\;,\,, ..., \;}.
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In order to perform numerical calculations, we choose a
\-independent basis set {®,}; the ground state eigenfunction
has the following expansion:

\I’{Ai} = 2 [ZHONT CAND VL (3)

where n represents an adequate set of quantum numbers. In
order to approximate the different quantities, we have to
truncate the series [Eq. (3)]. The truncation is made, giving
the maximum value N that can take one or more quantum
numbers (usually, the principal quantum number), and we
call it truncation at order N. Then, calculations are done in a
subspace of dimension M(N), where M(N) is the actual num-
ber of basis functions. Then, the Hamiltonian is now repre-
sented by an M X M Hermitian matrix [see below, Egs. (20)
and (21) for the two electron dipole case]. Using the Ritz
variational method,”>" we can evaluate an upper bound of
the ground state energy of the quantum Hamiltonian (1). We
solve the generalized eigenvalue problem,

det(H—- AS) =0, (4)

where A is an eigenvalue, and the matrix elements are given
by

Hy=(®[H|P), S;=(P|P)). )

The lowest eigenvalue of Eq. (4) is a variational upper bound
to the ground state energy Egv)()\l,)\z, ...,\) and the ele-
ments of the correspondent eigenvector determines the coef-
ficients a, M\ Ny eet N needed for the evaluation of the
ground state wave function \Po{x} We can evaluate critical
parameters {\{} extrapolating the values obtained from the
conditions

F2 NP PR W Enllnmre =0, (6)
but this method does not provide critical exponents. At this
point, we can obtain a ground state stability diagram in the
k-dimensional space.

Finite size scaling (FSS) provides an alternative ap-
proach to evaluate critical parameters and critical exponents.
This method has been developed for studying critical condi-
tions in quantum mechanics.”*?’ In this approach, finite size
corresponds to the number of elements in a basis set used to
expand the exact wave function of a given Hamiltonian.
From here, in order to simplify notation, we are going to
make explicit just the parameter \; that we vary, all the other
parameters are fixed )\j>)\jv j#i. In particular, to obtain
the critical exponent « for the energy, we define the follow-
ing functions:*’

In(fMY")
Ay(\;N,N') = ——— 7
rh ) In(N'/N) (7a)
(a1 an)(Y ) 1N,)
In(N'/N)

Aaﬂ‘l/ﬁ)\’-()\i;N’N’) = N (7b)

where 1, is the ionization energy, /) = Ey—E&y,. From Eq. (7),
we define the function
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Ay /(N\;;N,N'
T(\;N,N') = 0V ~ 8
AH(MQN,N)—Am/p»\[()\i;N»N)

which is independent of the values of N and N’ at the critical
point \;=\{. The particular value of I' at \;=\{ is the critical
exponent « for the ground state energy, as defined in Eq.

(2)’27
a=T(\;=\;N,N'). (9)

Actually Egs. (8) and (9) are asymptotic expressions. For
three different values of N, N', and N” (we choose N’
=N-1 and N'=N+1), the curves of I'(\;,N) as a function of
\; will intersect at successions of pseudocritical points )\C(N

T =AM N—1,N) =T\ =AY NN+ 1), (10)
giving also a set of pseudocritical exponents,
™ =T(\™;N). (11)

The successions of values of \] ‘M and a™ can be used to
obtain the extrapolated values of A and « 283

This general approach has been successfully applied to
calculate the critical parameters for two electron atoms,26
three electron atoms,32 simple diatomic molecules,33’34 one
electron dipole,12 one electron quadrupole,35 stability of
three-body Coulomb systems,36 criticality of atomic Shannon
information entropy,37 and crossover phenomena and reso-
nances in quantum systems.>®

lll. TWO ELECTRONS IN AN ELECTRIC-DIPOLE
FIELD

The Hamiltonian for two electrons in a dipole field in the
Born-Oppenheimer approximation in a.u. is given by

= 2["V2 <|

1 1 ) 1
- +—,
l’l-—R/2| |r,+R/2| rip
(12)

where the nuclei with charges Q and —Q (Q >0) are located
in the z axis at R/2 and —R/2, respectively, and ry, is the
interelectronic distance. The Hamiltonian could be scaled in
both O and R variables. Scaling in R,

1
H(Q5R7r) = FHS()\I’)\Z’I./R)7 (13)
where N\{=0R, \,=R, and

1 1 1 A
Hs = 2 - ,'2_ ( N - N ) + _2
1| 2 e, = k2| |r;+ k2| 12

(14)

It is useful for the study of the critical conditions to identify
the threshold, in this case, the one electron dipole. For this
purpose, Hamiltonian (14) can be written as

A
H,=h(N,r) + h(A 1) + —2, (15)
I

where £ is the one electron dipole Hamiltonian,
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1 1
— - - ) (16)
r—k/2| |r+k/2|

h()\],r) = %VZ_ 7\1(

Critical conditions for one electron in an electric-dipole field
have been studied in previous works.>"!? For values of the
electric-dipole moment lower than A\ ;= .= 0.655," this Sys-
tem cannot bind an electron. The ground state energy of the
one electron dipole tends to zero exponentially as the dipole
moment reaches its critical value u.. For such system, «
=oo and there is no square integrable wave function at the
threshold.”

The aim of this work is to make a complete analysis of
the near threshold behavior for the two electron dipole [Eq.
(14)]. Tt is possible to show that for N> u,, there exists
NS(N)>0 such that for N,<\j, the system binds two
electrons.*® In order to be consistent with Sec. II, we should
define A,=1/R, but this is not necessary because this is an
arbitrary choice and it is physically more adequate than A,
=R. We want to obtain the ground state stability diagram in
the space of the Hamiltonian parameters \;. At the moment
we know where the system is stable with one electron. In the
next section, we will calculate the values of the parameters
which make the system stable with two additional electrons.

IV. FINITE SIZE SCALING AND VARIATIONAL
CALCULATIONS

In order to apply finite size scaling and variational meth-
ods, we have to introduce appropriate basis sets. The Schro-
dinger equation for the two electron dipole is

240

240

The integrals needed for the evaluation of the matrix ele-
ments [Eq. (5)] required for the evaluation of the ground
state energy and any other expectation value were solved in a
previous work** and used successfully in the study of the
stability of two electron diatomic molecules.** In our previ-
ous Work,42 we have developed an efficient method to evalu-
ate these integrals. All the integrals needed for the evaluation
of the matrix elements are obtained as analytic recursion ex-
pressions. In order to obtain accurate results, we used multi-
precision FORTRAN,* an extension of standard FORTRAN 90
that allows us to work with an arbitrary number of significant
figures. Once the matrix elements are obtained, the eigen-
value problem is solved using a standard double precision
FORTRAN code.

The threshold energy corresponds to the ground state
energy of the one electron Hamiltonian,

L(N+ DIN+3)(N+5)(13+N(N+6)), N isodd.
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HN AWy, M N ) = Eg(N | N ) Wo(ry,ra, N, \,),
(17)

where H, is defined in Eq. (14) and from Sec. II, our trial
function takes the form

\I’(rlvl'z;)\]’)\z):2%(7\1,7\2)%(1'1,1'2)- (18)

The basis set {®,} consists of functions of the type

@, = Ce PTG &rmy + Ermy &y, (19)
where C is the normalization constant, (&, 77, ) (Ref. 31) are
the usual prolate spheroidal coordinates, ¢ is the azimuthal
angle, ¢=(r,+r,), n=(r,—r,), r, and r, are the distances to
the centers, and S is a variational parameter. Powers are
integer numbers with p,,q,,7,,5,,m,=0. This basis set has
been used since the pioneering work of James and
Coolidge.41

For the numerical calculation, the basis set is truncated
at order N by the condition

Pntqn+ry+s,+m, <N, (20)

obtaining for the number of basis functions,

L(N+ 2)(N+3)(N+4)(10+ N(N+6)), N iseven

1)

h()\l)d’o(l‘»)\l) =50()\1)¢0(1',)\1), (22)

where £ is defined in Eq. (16). The critical conditions for Eq.
(22) were studied in Ref. 12 using Slater-type functions.

At this point, we are ready to estimate the critical param-
eters \{ and \j using the results of Sec. II. In order to evalu-
ate the ground state energy and the required expectation val-
ues, we start with a variational optimization of the wave
function parameter 8. The optimal value S is different for
each region of the Hamiltonian parameters A\ and \,. In this
work, all the numerical calculations were done using S
=1.0, 0.9, 0.4, 0.2, and 0.15.

In Fig. 1, we show the FSS calculations for a fixed value
of N\, (A\,=1.0) using Eq. (8). These numerical calculations
were done for N<9, which means that we used up to 1036
basis functions. As mentioned in Sec. II, the curves I'y inter-
sects for different values of N, giving us the values of the
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FIG. 1. '(\{,N\,,N=1,N) as a function of \, for the ground state energy of
the two-electron dipole for different values of N, $=0.9 and \,=1.0.

critical exponent a=1.0044 +0.0002 and the critical param-
eter )\i(FSS)=2.7794i 0.0001. The critical parameter can be
calculated using just the variational method and Eq. (6); for
A=1.0, we obtain \V*=2.7801+0.0001. We repeat this
procedure for different values of \,, obtaining the critical or
the ionization line A{(\,). With these results and the known
results for the one electron dipole,s’12 we construct, in Fig. 2,
the complete ground state stability diagram. It is clear that
the three different regions exist in this figure. The first one
(from the left) is the region where the system cannot attach
an electron. In the middle, we have the one electron dipole as
a stable configuration. These regions are separated by a
single ionization line; at this line, there is no square inte-
grable wave function and the ground state energy goes expo-

05

025

FIG. 2. Ground state stability diagram of the two-electron dipole for N=8
and $=0.9, 0.4, 0.2, and 0.15. The full black line represents the variational
single ionization line and the stars are the FSS calculations of this line. The
dotted and dashed lines are the exact and variational ionization lines for the
one electron dipole, respectively.

J. Chem. Phys. 128, 044307 (2008)

2 T T I T T .
.
L5 . " -
™~ | |
& ® s “u.,
o . .
(et 222 et ST
. P
] -
Le i
o
L ].".... 1 | 1 | 1
0'50 0.1 02 0.3 04
A'2

FIG. 3. Different solutions of Eq. (8) for 8=0.15 (circle), 0.20 (triangle),
and 0.40 (square).

nentially to the threshold energy. The last region is where the
system can bind two electrons and is separated from the one
electron region by a single ionization line. Our calculations
show that for N, > )\: =0, the critical exponent for the energy
is a=1 and then, the two electron wave function is square
integrable at the threshold.* It is easy to show that for A,
=0 (non interacting electrons), we have \{=u,, a=% and
then, we are in the presence of a double ionization. We could
not determine numerically if there exist X, >0 such that the
critical exponent is a# 1. If this occurs we could have a
double ionization line. All the calculations for the two elec-
tron system were done with N<8 (671 functions) and vari-
ous variational parameters .

It is interesting to note that Eq. (8) has two solutions for
some Hamiltonian parameters for each value of N. This iden-
tical phenomenon has been observed in our previous
studies.* In Fig. 3, we show the two critical exponents ob-
tained using these two solutions. For values of N\, where the
variational parameter 8 works better, both solutions are
closer. We must remember that Eq. (8) is an asymptotic ex-
pression, and for N— <, both solutions must converge to the
same value. It is clear from Fig. 3 that numerical calculations
are much more difficult as the parameter \, decreased. This
occurs because for A, small, the threshold of the two electron
system is closer to the threshold of the one electron system
where the critical exponent is a=¢.

In order to show the locations of the two electrons rela-
tive to the dipole axis and to each other, we plot in Fig. 4 the
average square distance on the dipole axis (z?) as a function
of N\, for different values of A,=0.1, 0.5, and 1.0 and differ-
ent variational parameter $=0.2, 0.4, and 0.9. Note the jump
in the distance as one crosses the transition line and loses one
electron. This same behavior occurs for the distance between
the two electrons (r;,), as shown in Fig. 5. As we move from
the stable region with two electrons at large values of \; to
the one electron stable dipole, the electron-electron distance
increases, indicating the transition from dipole-bound dian-
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FIG. 4. (Color online) The average square distance on the dipole axis (z%) as
a function of \; for different values of \,=0.1, 0.5, and 1.0 and different
variational parameter 5=0.2, 0.4, and 0.9.

ions to dipole-bound anions. This first-order jump in the dis-
tance is consistent with the energy exponent of a=1.

V. CONCLUSIONS

The problem of binding excess electrons to polar mol-
ecules and their clusters has long fascinated researchers. In
this paper, we have presented finite size scaling and varia-
tional calculations of the critical parameters for stability of
two electrons bound by a dipole field. We have shown a
complete analysis of the ground state stability diagram for
the dipole-bound dianions in the Born-Oppenheimer ap-
proximation. Our developed method for the evaluation of
two center two electron integrals34’42 gives us enough accu-
racy to perform FSS calculations in a wide region of the

30 T T T T T

<r12> S ]
05 —
0 L 1 T :

A

1

FIG. 5. (Color online) The average distance between the two electrons (r;,)
as a function of \, for different values of \,=0.1, 0.5, and 1.0 and different
variational parameter 8=0.2, 0.4, and 0.9.
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Hamiltonian parameters. We performed a detailed study of
the ground state stability of this system and obtained the
stability diagram and the critical exponents.

Jordan and Wang45 have discussed the shortcoming of
the finite dipole model which gives electron binding energies
much larger than those determined experimentally for real
molecules with the same dipole moment. This is because of
the neglect of repulsive interactions of the excess electrons
with electrons of the neutral molecule. This can be overcome
by incorporating into the Hamiltonian a repulsive term de-
scribing the interaction of the excess electrons with the dis-
tribution of charges of the neutral molecule. Work is cur-
rently underway to modify the Hamiltonian to include the
effects of valence and core electrons and to calculate its criti-
cal parameters.
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