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We present a detailed study of the stability conditions of hydrogen-antihydrogen–like quasimolecules using
both variational and finite-size scaling calculations. The stability diagram of the nuclear charge Z as a function
of the internuclear distance R shows bound and unbound regions separated by a first-order critical line.
Calculations of the leptonic annihilation rate show a peculiar behavior for nuclear charges Z�2, which was not
observed for the hydrogen-antihydrogen quasimolecule; it goes through a maximum before it decays exponen-
tially for large interhadronic distances. This might have a practical impact on the study of stability of matter-
antimatter systems.
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I. INTRODUCTION

The behavior and properties of antimatter have been the
subject of research for many decades �1,2�. However, recent
experimental success in the production of antihydrogen at-
oms and the potential application of antihydrogen for charge-
parity-time invariance and the weak equivalence principle
have raised interest in the interaction between atoms and
antiatoms �3–5�. Froelich et al. have found that, when col-
liding at low speeds, hydrogen and antihydrogen have a ten-
dency to recombine into protonium �proton plus antiproton,
Pn� and positronium �electron plus positron, Ps� before the
particles and antiparticles annihilate. Both Pn and Ps are
highly unstable but are slightly longer lived than they would
be in the absence of the other pairing; that is, the positronium
helps to screen the proton-antiproton interaction �6�. They
also have shown that leptonic annihilation is three orders of
magnitude slower than proton-antiproton annihilation �7�.

In this work, we have calculated the complete stability
diagram for hydrogen-antihydrogen–like molecules with
varying nuclear charges to include the isoelectronic atoms of
hydrogen such as He+, Li2+, etc., and their antiatoms. We
also have shown that the leptonic annihilation rate has a
peculiar behavior for nuclear charges Z�2, which was not
observed for the hydrogen-antihydrogen molecule; it goes
through a maximum before it decays exponentially for large
interhadronic distances. This might have a practical impact
on the study of stability of matter-antimatter systems by pre-
paring antihydrogenlike atoms.

The paper is organized as follows. In Sec. II, we briefly
describe the hydrogen-antihydrogen like molecule. In Sec.
III we present numerical and analytical results. Finally, the
conclusions are given in Sec. IV.

II. MODEL

The hydrogen-antihydrogen–like molecules consists of
four particles, two hadrons �a proton with a charge Z and an
antiproton with a charge −Z� and two leptons �an electron
and a positron�. The leptonic Hamiltonian for a molecule
formed with a one-electron atom with nuclear charge Z�0
and a one-positron antiatom of nuclear charge −Z, in the
Born-Oppenheimer approximation, can be written as the
Hamiltonian of an electron-positron pair in a finite dipole
field of charges Z and −Z separated by a distance R. In
atomic units the Hamiltonian is given by

H = h�Z,R;r�e−� + h�− Z,R;r�e+� −
1

r12
, �1�

where r�e− and r�e+ denote the coordinates of the electron and
the positron, respectively, r12 is the interleptonic distance,
and h�Z ,R ;r�� is the one-electron dipole Hamiltonian

h�Z,R;r�� = −
1

2
�2 − Z� 1

�r� − R� /2�
−

1

�r� + R� /2�
� , �2�

where the nuclei with charges Z and −Z �Z�0� correspond-
ing to the nuclei of the atom and the antiatom are located
along the z axis at R

2 and − R
2 , respectively.

In the separated-atom limit the ground state is given by a
hydrogenlike atom and an antihydrogenlike atom. The corre-
sponding energy is that of two noninteracting hydrogenlike
atoms, −Z2 a.u. In the opposite limit, the united-atom limit,
the charges of the proton �Z� and antiproton �−Z� cancel each
other, and thus the energy is that of an electron-positron pair,
the ground state of the positronium atom, − 1

4 a.u. The had-
ronic energy − Z2

R is in this approximation an additive con-
stant, and we are not taking it into account in our analysis.

III. GROUND-STATE STABILITY

In this section we study the ground-state stability of
hydrogen-antihydrogen–like molecules against ionization
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and annihilation of the electron-positron pair. Numerical and
analytical results are presented.

By variational arguments, using a product of two one-
electron dipole wave functions �0 as a trial function,
��r�e+ ,r�e−�=�0�−r�e+��0�r�e−�, we can show that the one-
electron dipole �OED� is never the threshold system,

E0�Z,R� � ���H��	 = 2EOED�Z,R� − 
�� 1

r12
���

� EOED�Z,R� . �3�

The threshold system is an unbound electron-positron atom;
therefore the threshold energy is Eth=− 1

4 a.u. Thus, we have
an upper bound for the stability line; the atom-antiatom sys-
tem is stable if

EOED�Z,R� � Eth = −
1

4
, �4�

where EOED�Z ,R� is the energy of a one-electron dipole.
Note that, because of matter-antimatter symmetry,
EOED�Z ,R�=EOPD�Z ,R�, where EOPD�Z ,R� is the energy of a
one-positron dipole.

In order to apply the variational approach we used the
trial wave function

��r�e−,r�e+� = 

�n�

an�n�r�e−,r�e+� , �5�

where �n� represents the corresponding set of quantum num-
bers. The basis set ��n� is obtained using explicitly corre-
lated James-Coolidge �8� type basis functions. In order to
approximate the different quantities, we have to truncate the
series Eq. �5� at order N, where N is an integer number
related to the powers in the James-Coolidge functions �8,9�.
Then the Hamiltonian is replaced by an M�N�	M�N� ma-
trix, with M�N� being the number of elements in the trun-
cated basis set at order N. Using the Ritz variational method
�10� we can evaluate an upper bound of the ground-state
energy E0

�N��Z ,R� of the Hamiltonian �1� and the correspond-
ing coefficients an

�N� needed for the evaluation of the ground-
state wave function. The critical line Zc�R� for stability can
be obtained by equating the ground-state energy, obtained
from the variational calculation, to the threshold energy
�Eth=−1 /4�,

��E0
�N��Z,R� − Eth��Z=Zc

�N� = 0. �6�

Finite-size scaling provides an alternative approach to evalu-
ate critical parameters and critical exponents �11–13�. The
critical exponent 
 characterizes the near-threshold behavior
of the energy and is given by

E0�Z,R� − Eth � �Z − Zc�
 for Z → Zc
+. �7�

This method has been developed for studying critical condi-
tions in quantum mechanics �14–17�. In this approach, finite
size relates to the number of elements in a basis set used to
expand the exact wave function of a given Hamiltonian.
Briefly, the critical line Zc�R� and the critical exponent can
be obtained from extrapolated values of the pseudocritical

points Zc
�N��R� and pseudocritical exponents 
�N�, obtained

from the finite-size scaling equation �15�:

�„Z�R� = Zc
�N�;N − 1,N… = �„Z�R� = Zc

�N�;N,N + 1… = 
�N�,

�8�

where

�„Z�R�;N,N�… =
�H

�H − ��H/�Z
,

�H„Z�R�;N,N�… =
ln�IZ�R�

�N� /IZ�R�
�N���

ln�N�/N�
, �9�

and IZ�R� is the ionization energy IZ�R��E0−Eth.
The integrals needed for the evaluation of the matrix ele-

ments required for the calculation of the ground-state energy
and any other expectation value were obtained in a previous
work �18� and used successfully in the study of the stability
of two-electron diatomic molecules �9,19�. The finite-size-
scaling approach has been successfully applied to calculate
the critical parameters for few-electron systems �9,19–27�.

In Fig. 1 we show the stability diagram for the ground-
state energy of the hydrogen-antihydrogen–like quasimole-
cule calculated with the variational method �solid line� and
the finite-size-scaling approach �dots�; the two are in com-
plete agreement. We also included in the diagram the one-
electron �-positron� dipole threshold curve �EOED�Z ,R�=0�
and the upper-bound curve obtained from the equation
EOED�Z ,R�=−1 /4. Note that the one-electron dipole thresh-
old curve, which is a lower bound, is very close to the varia-
tional curve for large values of Z�3, which shows that our
calculations are accurate and reliable for large values of Z.
This is very important for a later analysis of the peculiar
leptonic coalescence probability distribution. The possibility
of binding two leptons in the case Z=1 has been studied by
many authors. The critical distance Rc�Z=1� for this particu-
lar system can be calculated with our method as in Fig. 1,
obtaining Rc

var=0.7745 from the variational calculation,

0 1 2 3
R

0

1

2

3

Z

0
0

BOUNDED

UNBOUNDED

FSS
Variational
OED threshold
OED upper-bond

FIG. 1. Ground-state stability diagram for one-electron–one-
positron atom-antiatom molecules in atomic units. The solid line
represents the variational calculations and the dots are the finite-
size-scaling calculations. The dotted line is obtained from the one-
electron dipole threshold and the dashed line from the one-electron
dipole upper-bound condition.
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Rc
FSS=0.7599 from finite-size-scaling �FSS� calculations,

Rc
UB=3.855 from the upper-bound line, and Rc

LB=0.655 from
the lower-bound line. The variational and FSS results are in
agreement with recent calculations �29,28�.

The conditional probability density P�R� for the electron
and positron to coalesce while the hadrons are at a distance R
apart is given by �7�

P�Z;R� = �
�r�e− − r�e+�	

=� d3xe−� d3xe+��0�Z,R;r�e−,r�e+��2
�r�e− − r�e+� .

�10�

For the unbound electron-positron pair, this probability does
not depend on the hadronic parameters R and Z and is given
by

P„Z;R � Rc�Z�… = ��0�0��2 = 1/�8�� , �11�

where �0�r�� is the ground-state wave function of the hydro-
genic atom with reduced mass �=1 /2.

For R→�, the interaction between the atom and the an-
tiatom can be neglected; the total energy is the sum of two
hydrogenlike atomic energies E0�Z ,R=��=−Z2. Then the
system turns metastable at Z�=1 /2, where the energy is de-
generate with the energy of the unbound electron-positron
pair. The metastable region Z�Z�=1 /2 might correspond to
long-lived resonances in the exact four-body solution of the
problem.

For large values of R, the ground-state wave function can
be approximated by the product of hydrogenic functions cen-
tered at the hadronic positions,

�0�Z,R → �;r�e−,r�e+� � �0�r�e− − R� /2��0�r�e+ + R� /2� .

�12�

In this approximation, P�Z ;R� can be calculated analytically:

P�Z;R� � e−2ZR�Z2R2

6
+ O�R��, R → �, Z � Zc�R� .

�13�

Equations �11� and �13� show that P�Z ;R� presents a discon-
tinuity at Z=Zc�R�, at least for large values of R.

The critical exponent 
 can be calculated analytically for
large values of R, using the unperturbed wave function Eq.
�12� to obtain the energy up to second order. The Hamil-
tonian could be written as the sum of three terms, a hydro-
genlike atom, an antihydrogenlike atom, and a perturbation
potential V, the interaction between matter and antimatter:

H = h0�p,e−� + h0�p̄,e+� + V , �14�

where

V =
Z

�R� − r�+�
+

Z

�R� + r�−�
−

1

�R� + r�− − r�+�
. �15�

Here R� is the vector from the antinuclei to the nuclei, r�− is
the position of the electron with respect to the nuclei, and r�+
is the position of the positron with respect to the antinuclei.
A Taylor expansion in the variables r�− /R ,r�+ /R gives

V =
1

R
�2Z − 1 +

1 − Z

R
�z− − z+�� + O�1/R3� . �16�

The first term, a monopole-monopole interaction, gives a
first-order perturbation contribution E0

�1�= �2Z−1� /R. All
other terms in the complete expansion of V gave no first-
order contribution. The second term, corresponding to the
monopole-dipole interaction, gives

E0
�2� = − C �1 − Z�2

Z4R4 , �17�

where C is a positive constant. For large values of R,

E0 = − Z2 +
2�Z − 1/2�

R
− C �1 − Z�2

Z4R4 + O�1/R5� . �18�

This expression shows that the energy at Z=1 /2 is still less
than the threshold energy for large �but finite� values of R;
then the critical charge is smaller than 1/2. Since Zc→1 /2
for R→�, then we can assume the form

Zc =
1

2
−

�

R� for R → � �19�

with � and � positive constants. Thus expression in Eq. �18�
gives

� = 4, � = 4C . �20�

Using the standard definition for the critical exponent 
 for
the energy Eq. �7�, we can obtain its value by studying the
behavior of E0−Eth for a charge close to but larger than Zc,

E0�Z,R� − Eth � �− 1 + O�1/R���Z − Zc� for R → � .

�21�

This linear near-threshold behavior gives 
=1 for large val-
ues of R. The critical exponent is also 
=1 for two-electron
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FIG. 2. Leptonic annihilation probability distribution as a func-
tion of R�Rc �a.u.� �Rc black square� for three different values of Z
�a.u.�. For the H-H molecule P decreases monotonically with in-
creasing R, but for the He+-He+ and Li2+-Li2+ molecules the prob-
abilities reach a maximum for stable configurations before decreas-
ing with increasing R.
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systems, like the heliumlike atom �14� and the H2 molecule
�19�. Thus, we assume that the critical exponent is 
=1 for
the whole critical line. This value of the exponent implies
that above the critical line defined by the condition
E0(Zc�R� ,R)=−1 /4 �17�, the molecule is bound, having the
same energy as for the electron-positron pair.

In Fig. 2 we show the leptonic annihilation probability
distribution as a function of R for three different values of Z.
For Z=1, we reproduced the earlier known results �31�. For
Z=2, the probability shows a maximum near the critical ra-
dius Rc, which is absent in the case of the neutral H-H mol-
ecule �31�. For Z=3, the Li2+-Li2+ molecule, the probability
density presents a notable maximum at R�2.1Rc. In Fig. 3
the electron-positron average distance �r12	 is plotted as a
function of R for Z=0.8,1 ,2 ,3. These calculations were
done with 679 basis functions. It is interesting to note that
for large values of Z there exists a minimum in the interpar-
ticle distance. This minimum disappears for Z=0.8 while for
Z=1 it starts to be distinguishable. Finally, in Fig. 4 we plot
contours of the ground-state leptonic density for Z=1 and 3
for fixed interhadronic separation R=2Rc in the �x /R ,z /R�
plane, where the hadronic axis points along the z axis. Due to
the special symmetry, only the electronic density is shown
�28�. While for the hydrogen-antihydrogen molecule �Z=1�,
the shown leptonic density is almost identical to that of an

isolated hydrogen atom, a deviation from the spherical sym-
metry is apparent for Z=3 �Li2+-Li2+ molecule� for the same
values of R /Rc. The density contours are consistent with the
results shown in previous figures; the large overlap for Z
=3 is responsible for the maximum in the leptonic annihila-
tion probability distribution.

IV. CONCLUSION

Our results for the hydrogen-antihydrogen quasimolecule
�Z=1� are in complete agreement with the known results
�31�. The physical picture is clear for large values of R: for a
fixed value of Z there exists a value of R �R�� such that the
overlap between the leptons is essentially zero. We can get a
crude estimation of the value of R�. For an isolated one-
electron atom �or antiatom� the probability to find an electron
at a distance r�rt from the nucleus, where rt�Z�= �r	+�r
and �r=��r2	− �r	2, is P�rt�=4��0

rt���2r2dr�0.975 for all
values of Z. Thus, defining R� as the distance between had-
rons such that the overlap between leptons is essentially
zero, R��Z�=2rt�Z�, we get ZR��Z�=3�1+�2��7.2.

For small values of R we have a different picture. For
large values of R the leptonic density is almost identical to
that of an isolated atom; as we decrease the interhadronic
distance, for any value of the nuclear charge, a deviation
from the spherical symmetry appears. For small values of the
nuclear charge the behavior of the system is qualitatively
similar to that of the known hydrogen-antihydrogen quasi-
molecule �28,30,31�. The most interesting results appear for
large values of Z and small values of R. The critical line
Zc�R� goes asymptotically to the one-electron dipole critical
line for large values of Z as seen in Fig. 1. As we see in Fig.
3 for Z=2 and 3, the mean value of the interleptonic distance
has a minimum for R�1 and R�0.7, respectively. Close to
the minimum the overlap between the electron density and
the positron density increases with Z as shown in Fig. 4,
giving a maximum in P�Z ,R�. The leptons are not around
one nucleus, but surrounding both hadrons. Thus the nuclear
potential could be approximated by a dipolar field near the
critical moment. Therefore the leptons are weakly bound to
the nuclei and the wave function goes to a quasispherical
ground state close to the free leptonic wave function, but
with the center of mass weakly bound by the dipole field.

The stability conditions of exotic hydrogen-antihydrogen–
like quasimolecules have been discussed using variational
and finite-size-scaling calculations. Calculations of the lep-
tonic annihilation rate shows a maximum for nuclear charges
Z�2 which was not observed for the hydrogen-antihydrogen
quasimolecule. In view of the ongoing antihydrogen experi-
ments, studies of antihydrogenlike atoms might have a prac-
tical impact on the study of stability of matter-antimatter
systems.
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