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Stability conditions for hydrogen-antihydrogen-like quasimolecules
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We present a detailed study of the stability conditions of hydrogen-antihydrogen—like quasimolecules using
both variational and finite-size scaling calculations. The stability diagram of the nuclear charge Z as a function
of the internuclear distance R shows bound and unbound regions separated by a first-order critical line.
Calculations of the leptonic annihilation rate show a peculiar behavior for nuclear charges Z= 2, which was not
observed for the hydrogen-antihydrogen quasimolecule; it goes through a maximum before it decays exponen-
tially for large interhadronic distances. This might have a practical impact on the study of stability of matter-

antimatter systems.
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I. INTRODUCTION

The behavior and properties of antimatter have been the
subject of research for many decades [1,2]. However, recent
experimental success in the production of antihydrogen at-
oms and the potential application of antihydrogen for charge-
parity-time invariance and the weak equivalence principle
have raised interest in the interaction between atoms and
antiatoms [3-5]. Froelich er al. have found that, when col-
liding at low speeds, hydrogen and antihydrogen have a ten-
dency to recombine into protonium (proton plus antiproton,
Pn) and positronium (electron plus positron, Ps) before the
particles and antiparticles annihilate. Both Pn and Ps are
highly unstable but are slightly longer lived than they would
be in the absence of the other pairing; that is, the positronium
helps to screen the proton-antiproton interaction [6]. They
also have shown that leptonic annihilation is three orders of
magnitude slower than proton-antiproton annihilation [7].

In this work, we have calculated the complete stability
diagram for hydrogen-antihydrogen—like molecules with
varying nuclear charges to include the isoelectronic atoms of
hydrogen such as He*, Li%*, etc., and their antiatoms. We
also have shown that the leptonic annihilation rate has a
peculiar behavior for nuclear charges Z=2, which was not
observed for the hydrogen-antihydrogen molecule; it goes
through a maximum before it decays exponentially for large
interhadronic distances. This might have a practical impact
on the study of stability of matter-antimatter systems by pre-
paring antihydrogenlike atoms.

The paper is organized as follows. In Sec. II, we briefly
describe the hydrogen-antihydrogen like molecule. In Sec.
IIT we present numerical and analytical results. Finally, the
conclusions are given in Sec. IV.
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II. MODEL

The hydrogen-antihydrogen—like molecules consists of
four particles, two hadrons (a proton with a charge Z and an
antiproton with a charge —Z) and two leptons (an electron
and a positron). The leptonic Hamiltonian for a molecule
formed with a one-electron atom with nuclear charge Z>0
and a one-positron antiatom of nuclear charge —Z, in the
Born-Oppenheimer approximation, can be written as the
Hamiltonian of an electron-positron pair in a finite dipole
field of charges Z and —Z separated by a distance R. In
atomic units the Hamiltonian is given by

N . 1
H=hZ,R;r,-) + h(-=Z,R;F,+) — —, (1)
r2

where 7,- and 7,+ denote the coordinates of the electron and
the positron, respectively, rj, is the interleptonic distance,
and h(Z,R;F) is the one-electron dipole Hamiltonian

1 1
N > - N - )9 (2)
|F=R/2| |F+R/2|

1
hZ,R;F) =- EVZ - Z(

where the nuclei with charges Z and —Z (Z>0) correspond-
ing to the nuclei of the atom and the antiatom are located
along the z axis at § and —g, respectively.

In the separated-atom limit the ground state is given by a
hydrogenlike atom and an antihydrogenlike atom. The corre-
sponding energy is that of two noninteracting hydrogenlike
atoms, —Z% a.u. In the opposite limit, the united-atom limit,
the charges of the proton (Z) and antiproton (—Z) cancel each
other, and thus the energy is that of an electron-positron pair,
the ground state70f the positronium atom, —31 a.u. The had-
ronic energy —% is in this approximation an additive con-
stant, and we are not taking it into account in our analysis.

III. GROUND-STATE STABILITY

In this section we study the ground-state stability of
hydrogen-antihydrogen—like molecules against ionization
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and annihilation of the electron-positron pair. Numerical and
analytical results are presented.

By variational arguments, using a product of two one-
electron dipole wave functions ¢, as a trial function,
DO(rp+,7,-)=¢o(—=F ) y(7,-), we can show that the one-
electron dipole (OED) is never the threshold system,

d

< Eop(Z.R). (3)

2

E(Z,R) = (®|H|®) = 2Eqpp(Z.R) - <(D

The threshold system is an unbound electron-positron atom;
therefore the threshold energy is &h:—j-‘ a.u. Thus, we have
an upper bound for the stability line; the atom-antiatom sys-
tem is stable if

1
EOED(ZaR) < gt == Za (4)

where Eqpp(Z,R) is the energy of a one-electron dipole.
Note that, because of matter-antimatter symmetry,
Eorp(Z,R)=Eopp(Z,R), where Eqpp(Z, R) is the energy of a
one-positron dipole.

In order to apply the variational approach we used the
trial wave function

‘P(;e" Fe") = E anq)n(’:)e";e*) > (5)
{n}

where {n} represents the corresponding set of quantum num-
bers. The basis set {®,} is obtained using explicitly corre-
lated James-Coolidge [8] type basis functions. In order to
approximate the different quantities, we have to truncate the
series Eq. (5) at order N, where N is an integer number
related to the powers in the James-Coolidge functions [8,9].
Then the Hamiltonian is replaced by an M(N) X M(N) ma-
trix, with M(N) being the number of elements in the trun-
cated basis set at order N. Using the Ritz variational method
[10] we can evaluate an upper bound of the ground-state
energy EBN )(Z,R) of the Hamiltonian (1) and the correspond-
ing coefficients ale ) needed for the evaluation of the ground-
state wave function. The critical line Z.(R) for stability can
be obtained by equating the ground-state energy, obtained
from the variational calculation, to the threshold energy
(En=-1/4),

[E§"(Z,R) = El 7=z =0. (©)

Finite-size scaling provides an alternative approach to evalu-
ate critical parameters and critical exponents [11-13]. The
critical exponent « characterizes the near-threshold behavior
of the energy and is given by

EfZR) - &y~ (Z-2)% for Z— Z7. )

This method has been developed for studying critical condi-
tions in quantum mechanics [14-17]. In this approach, finite
size relates to the number of elements in a basis set used to
expand the exact wave function of a given Hamiltonian.
Briefly, the critical line Z.(R) and the critical exponent can
be obtained from extrapolated values of the pseudocritical
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FIG. 1. Ground-state stability diagram for one-electron—one-
positron atom-antiatom molecules in atomic units. The solid line
represents the variational calculations and the dots are the finite-
size-scaling calculations. The dotted line is obtained from the one-
electron dipole threshold and the dashed line from the one-electron
dipole upper-bound condition.

points ZE,N)(R) and pseudocritical exponents o), obtained
from the finite-size scaling equation [15]:

I'ZR) =ZM:N-1,N)=T'(Z(R) =Z";:N.N+ 1) = oV,

(8)
where
Ay
I'(Z(R);N,N') = .
Ay = Aoz
In(I5% /1 (ZI(VR)Q
Ay(Z(R);N,N') = —————, )

In(N'/N)

and Iz is the ionization energy I = Ej—Ey,.

The integrals needed for the evaluation of the matrix ele-
ments required for the calculation of the ground-state energy
and any other expectation value were obtained in a previous
work [18] and used successfully in the study of the stability
of two-electron diatomic molecules [9,19]. The finite-size-
scaling approach has been successfully applied to calculate
the critical parameters for few-electron systems [9,19-27].

In Fig. 1 we show the stability diagram for the ground-
state energy of the hydrogen-antihydrogen-like quasimole-
cule calculated with the variational method (solid line) and
the finite-size-scaling approach (dots); the two are in com-
plete agreement. We also included in the diagram the one-
electron (-positron) dipole threshold curve [Eqpp(Z,R)=0]
and the upper-bound curve obtained from the equation
Eopp(Z,R)=-1/4. Note that the one-electron dipole thresh-
old curve, which is a lower bound, is very close to the varia-
tional curve for large values of Z~ 3, which shows that our
calculations are accurate and reliable for large values of Z.
This is very important for a later analysis of the peculiar
leptonic coalescence probability distribution. The possibility
of binding two leptons in the case Z=1 has been studied by
many authors. The critical distance R.(Z=1) for this particu-
lar system can be calculated with our method as in Fig. 1,
obtaining R)"=0.7745 from the variational calculation,
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FIG. 2. Leptonic annihilation probability distribution as a func-
tion of R>R,. (a.u.) (R, black square) for three different values of Z
(a.u.). For the H-H molecule P decreases monotonically with in-
creasing R, but for the He*-He* and Li>*-Li>* molecules the prob-
abilities reach a maximum for stable configurations before decreas-

ing with increasing R.

RF5=0.7599 from finite-size-scaling (FSS) calculations,
REJB =3.855 from the upper-bound line, and RLL,B=0.655 from
the lower-bound line. The variational and FSS results are in
agreement with recent calculations [29,28].

The conditional probability density P(R) for the electron
and positron to coalesce while the hadrons are at a distance R
apart is given by [7]

P(Z’R) = <5(Fe_ - Fe+)>

= f &, f Ex |V (Z,R;F 7 )P O(F - = F.0).
(10)

For the unbound electron-positron pair, this probability does
not depend on the hadronic parameters R and Z and is given
by

P(Z:R <R.2)) = |p(0)]* = 1/(8m), (11)

where (7) is the ground-state wave function of the hydro-
genic atom with reduced mass pu=1/2.

For R— o, the interaction between the atom and the an-
tiatom can be neglected; the total energy is the sum of two
hydrogenlike atomic energies Eq(Z,R=%)=—Z>. Then the
system turns metastable at Z*=1/2, where the energy is de-
generate with the energy of the unbound electron-positron
pair. The metastable region Z<<Z*=1/2 might correspond to
long-lived resonances in the exact four-body solution of the
problem.

For large values of R, the ground-state wave function can
be approximated by the product of hydrogenic functions cen-
tered at the hadronic positions,

Wo(Z,R — 037y For) = (P — RI2)iy(Fr + RI2).
(12)

In this approximation, P(Z;R) can be calculated analytically:
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2 p2
P(Z:R) ~ e'22R<Z K

. +0(R)>, R—», Z=Z.(R).

(13)

Equations (11) and (13) show that P(Z;R) presents a discon-
tinuity at Z=Z.(R), at least for large values of R.

The critical exponent « can be calculated analytically for
large values of R, using the unperturbed wave function Eq.
(12) to obtain the energy up to second order. The Hamil-
tonian could be written as the sum of three terms, a hydro-
genlike atom, an antihydrogenlike atom, and a perturbation
potential V, the interaction between matter and antimatter:

H=hy(p,e”) + hy(p,e") +V, (14)
where
Z Z 1

= + - .
R-7,| |R+7r| |R+7r_—7F,]

(15)

Here R is the vector from the antinuclei to the nuclei, 7_ is
the position of the electron with respect to the nuclei, and 7,
is the position of the positron with respect to the antinuclei.
A Taylor expansion in the variables 7_/R,r,/R gives

V= %(22— 1+ %(z_—@)) +O0(1/R%.  (16)

The first term, a monopole-monopole interaction, gives a
first-order perturbation contribution EE)')=(2Z—1)/R. All
other terms in the complete expansion of V gave no first-
order contribution. The second term, corresponding to the
monopole-dipole interaction, gives

(1-27
EY)=-C : 17
0 Z'R* (17
where C is a positive constant. For large values of R,
2Z-1/12)  (1-2)?
Ey=-Z"+ -C +O0(1/R). (18
0 R 2R (/R%).  (18)

This expression shows that the energy at Z=1/2 is still less
than the threshold energy for large (but finite) values of R;
then the critical charge is smaller than 1/2. Since Z,—1/2
for R— 0, then we can assume the form

1

A
Z=--—

<=5 T RP for R — (19)

with A and f positive constants. Thus expression in Eq. (18)
gives

B=4, A=4C. (20)

Using the standard definition for the critical exponent « for
the energy Eq. (7), we can obtain its value by studying the
behavior of Ey—&;, for a charge close to but larger than Z,,

Ey(Z,R) - &, ~[-1+0(1/R)](Z-2,) for R— .
21

This linear near-threshold behavior gives a=1 for large val-
ues of R. The critical exponent is also @=1 for two-electron
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FIG. 3. Average distance (r;,) (a.u.) between leptons as a func-
tion of R>R, (a.u.) (R, black square) for different values of Z
=0.8,1,2.3 a.u.

systems, like the heliumlike atom [14] and the H, molecule
[19]. Thus, we assume that the critical exponent is a=1 for
the whole critical line. This value of the exponent implies
that above the critical line defined by the condition
Ey(Z.(R),R)=-1/4 [17], the molecule is bound, having the
same energy as for the electron-positron pair.

In Fig. 2 we show the leptonic annihilation probability
distribution as a function of R for three different values of Z.
For Z=1, we reproduced the earlier known results [31]. For
Z=2, the probability shows a maximum near the critical ra-
dius R, which is absent in the case of the neutral H-H mol-
ecule [31]. For Z=3, the Li**-Li*>* molecule, the probability
density presents a notable maximum at R=2.1R.. In Fig. 3
the electron-positron average distance (r|,) is plotted as a
function of R for Z=0.8,1,2,3. These calculations were
done with 679 basis functions. It is interesting to note that
for large values of Z there exists a minimum in the interpar-
ticle distance. This minimum disappears for Z=0.8 while for
Z=1 it starts to be distinguishable. Finally, in Fig. 4 we plot
contours of the ground-state leptonic density for Z=1 and 3
for fixed interhadronic separation R=2R. in the (x/R,z/R)
plane, where the hadronic axis points along the z axis. Due to
the special symmetry, only the electronic density is shown
[28]. While for the hydrogen-antihydrogen molecule (Z=1),
the shown leptonic density is almost identical to that of an

AT 47—
L Z=1.0 - - 7=3.0 -
2 4 aF
72N\
x/R O @ 1 or
21 H aF
PR [ S I T N P I T I T
-4-4 2 0 2 4 _4-4 -2 0 2 4
z/R z/R

FIG. 4. Contours of leptonic densities in the ground state for
Z=1 and 3 a.u. molecules for fixed interhadronic separation R
=2R.(a.u.).
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isolated hydrogen atom, a deviation from the spherical sym-
metry is apparent for Z=3 (Li**-Li>* molecule) for the same
values of R/R,. The density contours are consistent with the
results shown in previous figures; the large overlap for Z
=3 is responsible for the maximum in the leptonic annihila-
tion probability distribution.

IV. CONCLUSION

Our results for the hydrogen-antihydrogen quasimolecule
(Z=1) are in complete agreement with the known results
[31]. The physical picture is clear for large values of R: for a
fixed value of Z there exists a value of R (R") such that the
overlap between the leptons is essentially zero. We can get a
crude estimation of the value of R*. For an isolated one-
electron atom (or antiatom) the probability to find an electron
at a distance r=r, from the nucleus, where r(Z)=(r)+Ar
and Ar=\(r?)—(r)?, is P(r)=4m[{|*r*dr~0.975 for all
values of Z. Thus, defining R* as the distance between had-
rons such that the overlap between leptons is essentially
zero, R*(Z)=2r,(Z), we get ZR*(Z)=3(1++2)~7.2.

For small values of R we have a different picture. For
large values of R the leptonic density is almost identical to
that of an isolated atom; as we decrease the interhadronic
distance, for any value of the nuclear charge, a deviation
from the spherical symmetry appears. For small values of the
nuclear charge the behavior of the system is qualitatively
similar to that of the known hydrogen-antihydrogen quasi-
molecule [28,30,31]. The most interesting results appear for
large values of Z and small values of R. The critical line
Z.(R) goes asymptotically to the one-electron dipole critical
line for large values of Z as seen in Fig. 1. As we see in Fig.
3 for Z=2 and 3, the mean value of the interleptonic distance
has a minimum for R=1 and R=0.7, respectively. Close to
the minimum the overlap between the electron density and
the positron density increases with Z as shown in Fig. 4,
giving a maximum in P(Z,R). The leptons are not around
one nucleus, but surrounding both hadrons. Thus the nuclear
potential could be approximated by a dipolar field near the
critical moment. Therefore the leptons are weakly bound to
the nuclei and the wave function goes to a quasispherical
ground state close to the free leptonic wave function, but
with the center of mass weakly bound by the dipole field.

The stability conditions of exotic hydrogen-antihydrogen—
like quasimolecules have been discussed using variational
and finite-size-scaling calculations. Calculations of the lep-
tonic annihilation rate shows a maximum for nuclear charges
Z=72 which was not observed for the hydrogen-antihydrogen
quasimolecule. In view of the ongoing antihydrogen experi-
ments, studies of antihydrogenlike atoms might have a prac-
tical impact on the study of stability of matter-antimatter
systems.
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