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Simulating a quantum system is more efficient on a quantum computer than on a classical

computer. The time required for solving the Schrödinger equation to obtain molecular energies

has been demonstrated to scale polynomially with system size on a quantum computer, in

contrast to the well-known result of exponential scaling on a classical computer. In this paper, we

present a quantum algorithm to obtain the energy spectrum of molecular systems based on the

multiconfigurational self-consistent field (MCSCF) wave function. By using a MCSCF wave

function as the initial guess, the excited states are accessible. Entire potential energy surfaces of

molecules can be studied more efficiently than if the simpler Hartree–Fock guess was employed.

We show that a small increase of the MCSCF space can dramatically increase the success

probability of the quantum algorithm, even in regions of the potential energy surface that are far

from the equilibrium geometry. For the treatment of larger systems, a multi-reference

configuration interaction approach is suggested. We demonstrate that such an algorithm can be

used to obtain the energy spectrum of the water molecule.

I. Introduction

Since the discovery of a polynomial quantum algorithm for

factorization,1 other quantum algorithms that provide expo-

nential speedup over their classical counterparts have been

found. Examples in diverse areas include the computation of

approximations to the Jones polynomial2 and certain instances

of the hidden subgroup problem.3 Feynman observed that

simulating a quantum system might be more efficient on a

quantum computer than on a classical computer.4 Further

work by others has born out this early suggestion.5–11

Although a quantum computer to carry out the calculations

that we propose is not currently experimentally realizable,

many recent developments in quantum information technol-

ogy12–15 continue to get closer towards the implementation of

such a device.

In quantum chemistry, where molecular quantum systems

are simulated on a classical computer, one is restricted to

employ a finite basis to span the formally infinite Hilbert space

that would describe the electronic structure of a molecular

system. The full configuration interaction (FCI) method16

diagonalizes the molecular Hamiltonian to provide solutions

to the electronic structure problem that are exact within this

basis. FCI scales exponentially with respect to the size of the

molecular system studied and therefore is restricted to the

treatment of small diatomic and triatomic systems.17 Recently,

a quantum algorithm for the solution of the FCI problem in

polynomial time was proposed by Aspuru-Guzik et al.9 This

algorithm employed the HF wave function as a reference for

further treatment of the correlation effects by the FCI Hamil-

tonian on the quantum computer. The excited states of

molecular systems are difficult to resolve by employing the

HF wave function as an initial trial state. The main reason for

this difficulty is due to the fact that contributions from several

configuration state functions (CSF) must be considered if one

is seeking a reasonable overlap of the trial state with the exact

wave function. In the quantum chemical study of molecular

systems, people are often interested in computing molecular

properties, such as the energy of the ground state and a few

low-lying excited states. i.e., in study of the spectroscopic

properties of molecules. In such cases, an FCI calculation

might become too expensive even for a quantum computer for

some large systems. A multi-reference configuration interac-

tion (MRCI)—truncated CI—calculation based on an a multi-

configurational self-consistent field (MCSCF) wave function

can sometimes provide results within chemical accuracy, but

with much less computational work than FCI due to the

smaller Hilbert space associated with the calculation. It is

difficult to describe various regions of molecular potential

energy surfaces, sometimes even qualitatively correct, by using

a single reference determinant. Many reference determinants

or configuration state functions are often required for the

description of bond-dissociation regions.

In this paper, we suggest a quantum algorithm to obtain

energy eigenvalues of a MRCI wave function of a molecular

system using the MCSCF wave function as initial input to a

quantum computer. We show that by improving the quality of

the trial wave function, the proposed algorithm yields sub-

stantially higher success probabilities than by employing the
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HF wave function. The use of a MCSCF wave function

simultaneously reduces the amount of quantum computing

resources needed and extends the range of reliable quantum

computations to excited states and treacherous regions of the

potential energy surface. Simulating a chemical system with a

quantum computer requires the mapping of the Fock space of

the MCSCF wave function to the Hilbert space of the quan-

tum bits (qubits) of a quantum computer. We introduce a

more compact mapping technique for molecules by employing

symmetry properties. This approach reduces the computa-

tional resources for representing the wave function on a

quantum computer and avoids the state crossing-problem.

The structure of this work is as follows. In section II we will

review the implementation of the FCI scheme on a quantum

computer. Section III describes the properties of the MCSCF

wave function. In section IV we describe a quantum algorithm

for using MCSCF trial wave functions in a FCI quantum

algorithm. In section V we discuss numerical evidence for the

feasibility of this scheme as applied to calculations for the

water molecule. We finalize with a conclusions section.

II. Implementation of CI scheme on a quantum

computer

A closed quantum system in the non-relativistic limit can be

described by its Schrödinger equation (atomic units are used),

i
@c
@t
¼ Ĥc: ð1Þ

Feit18 and coworkers suggested a method to solve the

Schrödinger equation based on the spectral properties of the

solutions to the time-dependent Schrödinger equation. Its

solution can be expressed as a linear superpositions of eigen-

functions of the Hamiltonian,

cðr; tÞ ¼
X
n

AnunðrÞ expð�iEntÞ ð2Þ

where the function un(r) satisfies the equation Ĥun = Enun. The

method requires a numerical solution of |c(r, t)i and the

correlation function P(t):

P(t) = hc(r, 0)|c(r, t)i =
R
c*(r, 0)c(r, t)dr, (3)

where |c(r, 0)i is the wave function at t = 0. P(t) can then be

expressed as

PðtÞ ¼
X
n

hAni2 expð�iEntÞ; ð4Þ

which can be Fourier transformed to display the energy

spectrum of the system as a set of sharp local maxima at

E = En.

PðEÞ ¼
X
n

hAni2dðE� EnÞ: ð5Þ

A scheme similar to the one proposed by Feit can be

implemented on a quantum computer. Abrams and Lloyd7

suggested finding eigenvalues and eigenvectors using a quan-

tum phase estimation technique. Eigenfunctions of the

Hamiltonian are also eigenfunctions of the unitary time-

evolution operator, U(t) = exp(�iĤt), whose eigenvalues

can be expressed as a phase factor. A quantum Fourier

transform22 (QFT) is used to retrieve the phase in a binary

expansion and thus obtain the eigenenergy. This scheme has

been proposed to simulate quantum systems, especially Fer-

mion systems, on a quantum computer.5,9,19,20 If the Hamil-

tonian can be decomposed by means of a split-operator

technique,6,8,11,18 the quantum computational cost is polyno-

mial, it can provide an exponential speed increase over its

classical counterpart.

The details of the algorithm proceeds as follows:7,21 First,

one must prepare two quantum registers, one is the index

register composed of m qubits, which are used as control

qubits and to perform a QFT operation. Another register of

n qubits is the target register that is used to represent the wave

function of the system. The index register is initially prepared

in the zero state |0i. The quantum bits of the index register are

entangled with successive binary powers of the unitary evolu-

tion operator on the target register. After the time-evolution of

the target register, the index register encodes an eigenvalue of

the time evolution operator U of the target system as a phase

represented in a binary notation. By performing a QFT, the

phase, and therefore the eigenvalue of the system can be

obtained.

The algorithm begins by initializing the quantum computer

into the state:

|C0i = |0i|ci (6)

Performing a p/2 rotation on each qubit in the index register

results on the state

jC1i ¼
1ffiffiffiffiffi
M
p

XM�1
j¼0
jjijci ð7Þ

where M = 2m. By performing a series of controlled-U

operations on this state, it is transformed into:

jC2i ¼
1ffiffiffiffiffi
M
p

XM�1
j¼0

Û
j jjijci ð8Þ

The approximate vector |ci can be written as a sum of

eigenvectors of U,

jci ¼
X
k

ckjfki ð9Þ

where k sums over the dimensionality of the target register.

The eigenvalue associated with |fki is eifk , which can be

written as e2piok=M, where ok A [0, M). Using this fact, the

state can be rewritten as:

jC2i ¼
X
k

ckjfki
1ffiffiffiffiffi
M
p

XM�1
j¼0

e2pijok=Mjji: ð10Þ

A QFT performed on the index qubits will reveal the phases

ok and thereby the eigenvalues. The QFT requires Bm2

operations.22 Consequently, only a polynomial number of

trials are required to obtain any eigenvalue for which the

corresponding eigenvector is not exponentially small in the

initial guess. If the initial guess is close to the desired state,

then only a few trials may be necessary. Once a measurement is

made and an eigenvalue is determined, the target register
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qubits will collapse into the state of the corresponding eigen-

vector.

Aspuru-Guzik et al.9 extended the algorithm to the study of

molecular systems and simplified the algorithm by introducing

a recursive phase-estimation technique that saves the qubits

for performing the phase estimation. They also introduced an

adiabatic state preparation (ASP) technique for obtaining

molecular ground states. They demonstrated that such algo-

rithms can be applied to problems of chemical interest using

modest numbers of quantum bits.

III. MCSCF wave function

In the previous quantum computing for quantum chemistry

work,9 a HF wave function was used as the initial trial wave

function. The HF method23 represents the wave function as a

single Slater determinant. In most cases, the HF wave function

by itself is not sufficiently accurate to generate useful chemical

predictions such as relative energies of products and reactants,

and therefore a correlated calculation is necessary. Often, the

HF wave function is not a good initial guess to the exact wave

function of the system, especially for the excited states calcula-

tions, in which contributions from several Slater determinants

must be considered, even for a qualitatively correct descrip-

tion. If a number of electron configurations are relatively close

in energy (i.e. degenerate or near-degenerate), then the HF

approximation is particularly poor. This is the usual case when

one explores regions of avoided crossings (or anti-crossings),

molecules close to the dissociation limit, in the limit of large

system size, or in the study of a chemical reaction path24 In

such cases, it is more appropriate to describe the system with

more appropriate wave functions in which several different

electron configurations are taken into account.

One realization of such a wave function comes from

MCSCF theory. The general form of an MCSCF wave func-

tion is:

cMCSCF ¼
X
K

DKFK ð11Þ

FK ¼ ðN!Þ�1=2 det
Y
i�K

fi

�����
����� ð12Þ

fi ¼
X
m

wmCmi ð13Þ

which is a linear combination of several electron configuration

state functions (CSF). Each CSF differs in how the electrons

are distributed between the molecular orbitals (MOs), fi. For

a particular system, the CSFs can be chosen based on physical

consideration of the system. The MOs are usually expanded in

a basis of atomic orbitals (AOs), wm. To obtain a MCSCF wave

function, both the configuration expansion coefficients DK and

the MO expansion coefficients Cmi are variationally optimized.

Hence, the optimized vector is the best approximation to the

exact wave function of the system in a specific parameter

space. For a given set of orbital and configuration parameters,

even in a small variational space, the MCSCF wave function

can give a much better approximation than the HF wave

function. A truncated CI based on an MCSCF wave function,

the so-called multi-reference CI method, normally gives better

results than a CI using a HF wave function as a reference,

when small Hilbert spaces are involved. The trade-off between

the MRCI approach and the FCI approach is that chemical

intuition is involved in selecting the apprpopriate CSFs for

constructing the CI expansion.

As mentioned above, computational resource requirements

are significantly less for any reasonable MCSCF calculation

than for an FCI calculation in the same orbital space. Simple

combinatorial arguments show that there are
2M
N

� �
possible

Slater determinants formed from M molecular orbitals and N

electrons, and although their number can be reduced by space-

and spin-symmetry considerations, the growth in the number

of determinants with system size remains exponential. Even a

well-constructed algorithm that uses an iterative process for a

subset of the roots (such as that by Lanzcos or Davidson)25

will have CPU requirements that scale roughly as the square of

the number of determinants. Moreover, the storage require-

ments scale as the number of determinants. Consequently, the

FCI problem scales exponentially with system size.

In contrast, MCSCF uses an iterative process to obtain an

optimal (in the variational sense) space of specific size, e.g., 8

electrons in 12 orbitals. Even if one adopts the most costly (but

simply definable) MCSCF calculation, the so-called complete

active space SCF (CASSCF), and the resulting number of

determinants is given by the same formula as for full CI, the

CASSCF space is a tiny fraction of the full CI space. The

number of iterations required to determine the optimal space

is usually on the order of 10. The non-CI part of an MCSCF

calculation is typically dominated by the transformation of

electron repulsion integrals from the atomic basis in which

they are calculated to the molecular orbital basis, which scales

as M5. In fact, in real MCSCF calculations, the integral

transformation step is often the limiting step. It is worth

noting that more complex MCSCF calculations can be made

possible by the use of the macroconfiguation approach,26

which can reduce the number of determinants in an MCSCF

to a polynomial number even for larger orbital spaces. This

essentially guarantees that a physically meaningful and math-

ematically robust MCSCF calculation will be integrally

bound, and therefore scale as M5 with system size27,28 for

systems of tens of atoms. Asymptotically, MCSCF has an

exponential cost as well and therefore a quantum computer

still provides an exponential speedup for this method.

In the MCSCF method, several states can be calculated

simultaneously through a state-averaged approach.29,30 For

the nth MCSCF CI root, the energy function can be written as,

En ¼
hcnjHjcni
hcnjcni

ð14Þ

A more general energy-like function can be constructed by use

of weighting vector,31

E ¼
X
i

wiEi ð15Þ

where wi is the weight for state i. So, if we are interested in a

few evenly or non-evenly weighted states, the MO expansion

coefficients are optimized for all these states. By diagonalizing
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the one-particle density matrix, we can obtain the occupation

numbers in Fock space for each state. This will be used as

initial guess and map to the qubits on a quantum computer in

the quantum algorithm proposed in this work.

IV. Implementation of a general CI algorithm

based on an MCSCF wave function on a quantum

computer

The first step for the proposed simulation algorithm is to map

the wave function of the system to the state of the target

register. In quantum chemistry basis set methods, many-

particle molecular wave functions are represented in terms of

a single-particle basis expanded in terms of atomic orbitals and

a many-particle basis expanded in terms of Slater determinants

or CSFs. In direct mapping,9 each qubit represents the fer-

mionic occupation state of a particular atomic orbital. The

Fock space of the molecular system is mapped to the Hilbert

space of the qubits. The direct mapping has the advantage of

yielding a simple Trotter expannsion in terms of a polynomial

number of second-quantized Fermion operators.

The compact mapping considers the restriction of the multi-

plicity of the system and reduces the number of qubits to

represent the wave function to a Hilbert space where all the

quantum states of the target register correspond to valid

electronic configurations within a given spin symmetry. The

challenge of employing the compact mapping to general

quantum systems is that the representation of the time-evolu-

tion operator may involve a larger number of non-local

quantum gates.

Here we introduce a more compact mapping technique,

which considers the symmetry restriction of the molecules.

The electronic states can be categorized into different ir-

reducible representation of their point group. The subspace

associated with a particular irreducible representation can be

mapped to the Hilbert space of the target register. This results

in considerable savings in the number of qubits required to

represent the wave function. Since there is no interaction

between states that belong to different irreducible representa-

tions, this mapping technique can aid in solving certain cases

of the state crossing problem.16

For the proposed scheme, the wave function of the desired

state is implemented as the initial input to the phase estimation

algorithm using the MCSCF approach. The approximation to

the exact wave function of the ith state |Cii, is |CMCSCF
i i. The

probability of observing the exact ith state is |hCi|C
MCSCF
i i|2.

Since the MCSCF wave function provides a much better

approximation to the ground state wave function of the system

than does the HF wave function, and also provides a better

description of excited states than a Koopmans’ theorem

estimate16 from a HF wave function, the probability of

obtaining the correct energy of the system in the phase

estimation procedure is higher for MCSCF wave functions

than for HF wave functions.

The first step for the quantum algorithm involves the

preparation of a MCSCF calculation for N states that are of

interest for the system. The MCSCF wave function for the

state of interest are used as the initial guess for the trial wave

function:

|Ci = |c0
ni, (16)

where |c0
ni is the MCSCF wave function for the nth state. The

next step is to map the MCSCF wave function for the nth state

as the initial input to the quantum computer This will have to

be prepared using a state-preparation algorithm.32 General

state preparation is a hard problem, but generally the MCSCF

wave function contains a polynomial number of non-zero

terms in the Hilbert space, and therefore may be prepared

efficiently.33 Feeding the MCSCF wave function into the phase

estimation algorithm as initial guess, the eigenenergies of the

corresponding CI state can be retrieved.

An MCSCF vector can be expanded as follows:

jc0
ni ¼

X
k

ckjcki; ð17Þ

where |cki is the eigenvector of the CI matrix. |cn|
2 = |hcn|c

0
ni|2

is the probability of obtaining the eigenvector |cni. A CI vector

for the nth state can be written as:

|cni = |cm
n i + |cp

ni = |c0
ni + |cdev

n i + |cp
ni, (18)

where |cm
n i is the part of the CI vector in the model space,

which is used to construct the MCSCF wave function; |cp
ni is

the part of the CI vector in the space external to the model

space; |cdev
n i is the deviation of MCSCF wave function |c0

ni
from |cm

n i, the projection of the CI vector in the model space.

Then we have:

hc0
n|cni = 1 + hc0

n|c
dev
n i + hc0

n|c
p
ni (19)

The vectors in model space and external space are orthogonal,

hcp
n|c

0
ni= hcp

n|c
m
n i= 0. We can see that if the deviation vector

goes to 0, the overlap of the MCSCF vector with the CI vector

is 1, the algorithm will be deterministic.

V. Application to the water molecule

We have performed a quantum simulation for the ground state

and the first singlet excited state of the water molecule using

the cc-pVDZ basis set.34 For the ground state, considering the

C2V symmetry of the water molecule, the HF wave function of

water is:

(1a1)
2(2a1)

2(1b2)
2(3a1)

2(1b1)
2 (20)

We consider a complete active space (CAS) typeMCSCFmethod:

the first two a1 orbitals are frozen, the active space consists of

3a1 � 6a1 orbitals, 1b1, and 1b2 and 2b2 orbitals. The MRCI is

performed using the same model space but considering the single

and double excitations to the external space. The MCSCF space

contains 152 CSFs. The CI space contains 13872 CSFs, here

log138722 = 13.76, so 14 qubits are required to represent the CI

wave function on a quantum computer. The geometry used in the

calculation is near the equilibrium geometry (R0 = 1.8435a0 and

+HOH = 110.57). We varied both OH bonds from 0.5 to 10

times of the equilibrium distance simultaneously, keeping the C2v

symmetry, R = aR0, a = 0.5–10. The success probability of the

quantum algorithm for using HF and MCSCF wave function as

initial input |hCHF
i |CCI

i i|2 and |hCMCSCF
i |CCI

i i|2, are shown in
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Fig. 1. By following the stretch coordinate, we observe that the

success probability for using MCSCF wave function as initial

guess is very high (40.9) through the stretching, while the success

probability for using HF wave function as initial guess decreases

very fast as the OH bond is stretched. We can still obtain high

probability of success by using just a few CSFs instead of all 152

CSFs in the MCSCF model space. In Fig. 2, we show the success

probability for both the ground state and excited states using 6

and 8 CSFs, respectively. With a relatively small number of CSFs

one can have a reasonable overlap with the desired state.

We further studied the performance of the method for

excited states. We explored the first excited state of the water

molecule at the equilibrium geometry using the STO-3G basis

set.35 The first two a1 orbitals were frozen. The model space

for the MCSCF is a complete active space that includes the

3a1, 4a1, 1b1 and 1b2 orbitals. The MRCI calculation uses the

same model space, but considers the single and double excita-

tion to the external space.

We use the scheme introduced by Parker and Plenio36 to

implement the QFT. This method is known as the measured

quantum Fourier transform (mQFT) approach. In this

scheme, only one control qubit is used, more qubits are saved

for representing the wave function. The mQFT approach is

based on the fact that the gates within the Fourier transform

are applied sequentially on the qubits. Thus, instead of

performing the entire transform and then making measure-

ments on all control qubits afterwards, one can apply the

single qubit operation to the first qubit and then measure it.

The operations controlled by this first qubit are then replaced

by single qubit operations given the result of the measurement

on the first. The measurement outcome is fed back into the

quantum calculation and this procedure is recycled till all the

required binary digits are resolved. The target register must

remain coherent during the whole procedure. For more details

on this procedure, the reader is referred to ref. 36.

For the excited-state simulation, the CI space is composed of 18

CSFs, so 5 qubits are required to represent the wave function. In

Table 1, we present the results for the calculation of the first

excited state of the water molecule in the STO-3G basis using the

mQFT algorithm. The MCSCF wave function and HF wave

function are used as different initial guesses. The MRCI energies

are obtained to different digits of accuracy depending on the

number of ancillary control qubits employed. The error bars in

the table come from the numbers of the qubits in the index

register. The more control qubits in the index register, the more

binary digits can be retrieved. For example, if n qubits are used as

control qubits, then one can only obtain up to n binary digits of

accuracy in the phase estimation, all the binary digits after these n

digits will be uncertain. Therefore, the error is the same regardless

of the initial trial state (HF orMCSF) employed. The FCI energy

is in this case is �83.464130 a.u. The first singlet excited state

energy for the water molecule using 24 qubits (E=�83.44919786
a.u.) is lower, even including the error bars, than the exact energy

using the MCSCF wave function (E = �83.449186 a.u.), this is

because the error in expansion of the unitary matrix is only up to

the second order in Trotter expansion.9

VI. Discussion and conclusions

In certain regions of molecular potential energy surfaces,

electronic states can cross each other or have low gaps, like

in the case of avoided crossing regions or at the bond-

Fig. 1 Success probability (P = |hCHF|CCIi|2 and P = |hCMCSCF|-

CCIi|2) of using HF and MCSCF wave function as the initial guess.

Black line is for HF wave function, red line is for the MCSCF wave

function of the ground state, green line is the MCSCF wave function

for the excited state. The system is the water molecule, where a= R/R0

is the ratio between the stretched bond length R and the bond length

near equilibrium distance R0 = 1.8435a0.

Fig. 2 Success probability (P0 = |hCMCSCF|CCIi|2) of using a few

CSFs as the initial guess. Black line is for the ground state and red line

is for the excited state. The system is the water molecule, where a =

R/R0 is the ratio between the stretched bond length R and the bond

length near equilibrium distance R0.

Table 1 Results for the first singlet excited state of the water molecule
using the phase estimation algorithm. The MCSCF and HF wave
function are used as initial guesses. The FCI energy is�83.464130 a.u.,
the exact energy for using MCSCF wave function is �83.449186 a.u.
and for using HF wave function is �83.443206 a.u.

Digits (qubits) Energy (MCSCF) Energy (HF)

2 �83 � 2.07 � 101 �83 � 2.07 � 101

8 �83.6386 � 5.04 � 10�1 �83.6386 � 5.04 � 10�1

16 �83.4486 � 1.28 � 10�3 �83.4435 � 1.27 � 10�3

24 �83.44919786 �
4.95 � 10�6

�83.44318182 �
4.95 � 10�6
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dissocation limit. In these cases, the interactions between

states should be considered simultaneously. Consequently,

the use of single determinant based methods is challenging.

Using anMCSCF wave function as the initial guess can deal

with the strong interaction between states straightforwardly.

This can avoid possible convergence of the state wave function

to some undesired and unphysical states when the energy gap

between these states is small.

By using the more compact mapping technique, crossing

states that belong to different irreducible representations can

be addressed separately since there is no interaction between

the states. For states in an avoided crossing region and at the

dissociation limit where states are near degenerate, since the

interaction has been considered qualitatively in the MCSCF

calculation, the overlap of the MCSCF wave functions with

the corresponding CI wave functions are still large, so that

even in such regions the probability for the reference states is

high. Therefore, we conclude that the MCSCF wave function

can be used as a good initial guess for correlated wave

functions using quantum computing to explore the whole

potential energy surfaces for ground and excited states with

high probability of success.

Using an HF wave function as the initial guess chooses a

path ĤHF - Ĥ, for the evolution from the HF state to the CI

state. In our scheme, we choose the path ĤMCSCF - Ĥ, and

the states evolve from the MCSCF state to the MRCI state.

Unlike in the case of HF wave function in which the evolution

is started from a single element of the CI matrix, the MCSCF

wave function starts the evolution from a small matrix. This

makes the evolution safer and faster, especially for a MRCI

space. From the simulation we can see that by including a few

CSFs in the initial guess, the success probability can be

increased from very small to near unity. This idea might be

used in developing other quantum algorithms.
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