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We combined finite size scaling method with the well-developed electronic structure methods, such as ab initio
and density functional methods, to provide a systematic procedure for obtaining quantum critical parameters for
atoms and molecules using Gaussian basis sets. The finite size scaling method is based on taking the number of
elements in a complete basis set as the size of the system, to calculate the critical parameters for a given quantum
system. We present results for the Yukawa potential and helium-like systems by expanding the wave function
with a Gaussian basis. The finite size scaling approach was then used with the ab initiomethods to find the critical
parameters of two-electron atoms. The critical values of �c and � were found to be 1.0578 and 1.0711 respectively
using Møller–Plesset (MP2) level of theory. We then applied configuration interaction single and doubles
excitation (CISD) to the helium system to improve upon the results. The critical parameters at the CISD level of
theory were �¼ 1.2891 and �c¼ 1.1259. With time-dependent density functional theory (TDDFT) using the
hybrid functional B3LYP resulted in �c¼ 1.0160. The ab initio results compare well with the exact results �¼ 1
and �c¼ 1.0971. The method is general and can be extended to calculate critical parameters for larger systems.

Keywords: Finite size scaling; Gaussian basis sets; Critical parameters

1. Introduction

The behaviour of systems near the threshold, the

separation of bound states from continuous states, is of

great relevance to the behaviour of ionization in atoms

and molecules, molecule dissociation, resonances and

scattering collisions. The energy is non-analytical

because a function of the system parameters or a

bound state does not exist at the threshold energy. The

study of quantum critical parameters is of increasing

interest in atomic and molecular physics [1–5]. Phase

transitions are associated with singularities of the free

energy. These singularities occur only in the thermo-

dynamic limit [6,7] where the dimension of the system

approaches infinity. However calculations done are

only on finite systems. A finite size scaling (FSS)

approach is needed in order to extrapolate results from

finite systems to the thermodynamic limit [8]. Finite–

size scaling is not only a formal way to understand the

asymptotic behaviour of a system when the size tends

to infinity, but the theory also gives us numerical

methods [9–16] capable of obtaining accurate results

for infinite systems by studying the corresponding

small systems.

Recently, we have developed finite size scaling for

quantum systems [1,2,17–24]. In this approach, the

finite size corresponds not to the spatial dimension, but

to the number of elements in a complete basis set used

to expand the exact eigenfunction of a given

Hamiltonian. This method is efficient and very

accurate for estimating the critical screening length

for one-electron screened Coulomb potentials [2], the

critical nuclear charges for two-electron atoms [17,21]

(which is in complete agreement with previous

calculations [25,26]), three-electron atoms [18], critical

conditions for stable dipole-bound anions [27], critical

conditions for stable quadrupole-bound anions [28],

simple diatomic mole cules [29] and three-body

Coulomb systems with charges (Q, q, Q) and masses

(M, m, M) [30].
All of our previous finite size scaling calculations

are done based on expanding the wave function

in Hyllerass-type basis sets or more generally in

Slater-type basis sets. In this paper, we will address

the question of using Gaussian-type basis sets to

perform finite size scaling calculations for criticality of

atomic and molecular systems. This is very important
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 in order to extend the finite size scaling calculations to
large atomic and molecular systems.

In the following two sections, we will briefly review
the finite size scaling method in quantum mechanics
and the use of Gaussian basis sets in quantum
chemistry calculations. In section 4, we will show
how a Gaussian basis set can be used to obtain the
criticality of the Yukawa potential. In section 5, we
perform finite size scaling calculations for two-electron
atoms using a Gaussian basis set and compare the
results with the one using Hylleraas basis sets. In the
last section we combined the finite size scaling method
with standard ab initio methods and density functional
methods.

2. Finite size scaling in quantum mechanics

In quantum mechanics, the finite size problem arises
when looking at the critical behaviour of the
Hamiltonian H (�1, . . . , �k). The Hamiltonian is a
function of its parameters �i. We are interested in
values of �i that have bound state energies become
non-analytical. This critical point is where the bound
state becomes degenerate with the continuum. In this
case the finite size corresponds to the number
of elements in a complete basis set used to expand
the exact wave function of the Hamiltonian [31].
The application of FSS to quantum mechanics
concerns Hamiltonians with the form H¼H0 þ V�,
where H0 is the �-independent term and V� is the �-
dependent term. We are interested to see the properties
of the system as � is varied, and assume that the
Hamiltonian has a bound state for E� when � 4 �c
[32]. For quantum calculations the variation method is
used to approximate the solution of the Schrödinger
Equation [33]. For accurate results, the wave function
is expanded in a complete basis set and the number of
functions is taken to infinity. In practice, the expansion
is truncated at order N. The ground state eigenfunction
has the following expansion �¼�n an �n, where n
represents the set of quantum numbers.
To approximate the different quantities, the series is
truncated at order N. The Hamiltonian is replaced by a
M (N) � M (N) matrix, with M (N) being the number
of elements in the expansion. The Nth-order approx-
imation for the expectation value of any operator O
is then

hOiðNÞ ¼
XN
n,m

a�nanOn,m: ð1Þ

The expectation value of hOi will be non-analytical
at �c. The associated critical exponent �0 is defined by

hOi� �
�!�c

ð�� �cÞ
�O : ð2Þ

However, the basis set is � independent and N is finite,

so it is easy to prove that any expectation value

truncated at order N is analytical at the critical point

�c. Just like in FSS for statistical mechanics, we assume

an existing scaling function for the truncated

magnitudes.

hOi
ðNÞ

� � hOi�FOðNj�� �cj
vÞ: ð3Þ

with different scaling function FO for different

operators, but with the scaling exponent v being

unique. With hOi
ðNÞ

� being analytical at �c

FO � x��0=v: ð4Þ

We can define the following function

Oð�;N;N
0Þ ¼

ln ðhOiðNÞ=hOiðN
0ÞÞ

ln ðN0=NÞ
: ð5Þ

Then at the critical point �c, we obtain the equation for

the ratio of the critical exponents

Oð�c;N;N
0Þ ¼

�0

v
; ð6Þ

which are independent of N and N0. Now for three

different values of N, N0, and N00 the curves intersect at

the critical point

Oð�c;N;N
0Þ ¼ Oð�c;N

00;NÞ: ð7Þ

To obtain the critical exponent � we can take

O¼H and �0¼ �.

�Hð�c;N;N
0Þ ¼

�

v
: ð8Þ

Then by applying the Hellmann–Feynman theorem

@E�
@�

¼
@H

@�

� �
�

¼
@V�
@�

� �
�

: ð9Þ

We will now define the function ��:

�ð�;N;N
0Þ ¼

Hð�;N;N
0Þ

Hð�;N;N0Þ �@V� =@�ð�;N;N
0Þ
: ð10Þ

The value of �� are independent of the values of N

and N0 at the critical point. Now the critical exponent

� is then

�ð�c;N;N
0Þ ¼ �: ð11Þ

These equations are valid only for the asymptotic

limit N ! 1, but for a finite basis set, values of �c
can be obtained with a succession of values as a

function of N, N0 and N00. The critical parameters

are then obtained by a systematic extrapolation

algorithm [31].

204 W. Moy et al.
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3. Gaussian basis sets

Modern quantum chemistry computations are generally

carried out using mainly three types of basis sets: Slater

orbitals, Gaussian orbitals, and plane waves, the last

being reserved primarily for extended systems in solid

state. Each of these has their advantages and disadvan-

tages. The preferred type of functions in atomic and

molecular computations are Slater-type functions due

to their similarities to the atomic orbitals of hydrogen.

The Slater-type orbitals (STO) are given by

 ð�; n; l;m; r; �; �Þ ¼ Nrn�1 exp ð��rÞYlmð�; �Þ, ð12Þ

where (n, l, m) are integers, N is the normalization

constant, r, � and � are the spherical coordinates, and

Ylm are the spherical harmonics. However, these STO

do not allow for fast molecular calculations requiring

the evaluation of many-centre two-electron integrals.

To avoid the difficulty in computing molecular

integrals, Boys suggested the use of the following

functions [34]

gð�; l;m; n; x; y; zÞ ¼ Nxnylzm exp ½��ðx2 þ y2 þ z2Þ�,

ð13Þ

where N is the normalization constant and (n, l, m)

are integers. The sum of the exponents L¼ n þ l þ m at

the Cartesian coordinates designates the type of

Gaussian that the function is. For example, s-type,

p-type, d-type, and f-type is when L¼ 0, L¼ 1, L¼ 2

and L¼ 3 respectively, which is similar to the angular

momentum quantum number. These functions are

referred to as Gaussian functions. Notice that with

Gaussian functions of d-type and higher, extra func-

tions will be present. For d-type orbitals, there are six

possible Cartesian Gaussians. If all six functions are to

be used a 3s Gaussian function will be present since

3dxx þ 3dyy þ 3dzz ¼ Nðx2 þ y2 þ z2Þ exp ð��r2Þ ¼ 3s:

ð14Þ

For the f-type functions there are three spurious

functions: 4px, 4py and 4pz.
The use of these types of functions simplify

the evaluation of molecular integrals significantly.

All integrals needed for molecular computation can

be done analytically. The drawback in using these

functions concerns the accuracy of the calculations.

The Gaussian functions are not as suitable for

expanding the wave functions of atoms and molecules

compared to Slater functions. To obtain better results,

the use of a larger set of Gaussian functions are

needed. When comparing Slater functions to Gaussian

functions, the Slater functions of 1s, 2s, 3s, . . .

functions have the behaviour of exp (��r), r exp

(��r), r2 exp (��r) respectively while all s Gaussian

functions have the behaviour of exp (��r2). The pz
functions are all taken to be in the form z exp (��r2);
similarly all dxy functions have the form xy exp (��r2).
As a result of removing the rn � 1 term, the Gaussian

functions only approximate the 1s, 2p, 3d, 4f . . .

orbitals. Even though the Gaussian functions have

been limited, the functions are still sufficient even for

higher atomic orbitals [35].

4. Finite size scaling for the Yukawa potential using

Gaussian basis-set

This section will discuss using the finite size scaling

ansatz to obtain the critical parameters for the Yukawa

potential using a Gaussian basis and compare the

results with an s-wave complete orthonormal basis set.

The Hamiltonian (in atomic units) is given by

Hð�Þ ¼ �
1

2
r2 � �

exp ð�rÞ

r
: ð15Þ

The FSS ansatz was applied directly to calculate the

critical parameters for this Hamiltonian. This

approach assumes that the asymptotic behaviour of

the mean values near the critical point have an explicit

form. The critical parameters are then found by

systematic expansion in a finite basis using an s-wave

complete orthonormal basis set of the form [20]

nðrÞ ¼
1

4�ðnþ 1Þðnþ 2Þ½ �
1=2

exp �
r

2

� �
Lð2Þ
n ðrÞ: ð16Þ

Due to the spherical symmetry of the potential,

the exact ground state wave function only has a

radial dependence, the basis functions with angular

dependence will be orthogonal to the ground state

wave function. Then, for potentials with spherical

symmetry, instead of the basis set Equation (16) we are

going to use only symmetric Gaussian functions

mð�; rÞ ¼ Cm exp ð��r2=2Þrm: ð17Þ

The different functions are not orthogonal, but by

using again the spherical symmetry we can use an

orthonormal basis set that is a linear combination of

functions Equation (17)

�Nð�; rÞ ¼
1

2N 4�ð2Nþ 1Þ!½ �
1=2

�

�

� �1=4

�
exp ð��r2=2Þ

r
H2Nþ1ð�

1=2rÞ, ð18Þ

where H2Nþ1 are the usual Hermite polynomials.

These functions are orthonormal, hMjNi ¼ 	M,N.

Molecular Physics 205
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Now, we have to calculate hMjHjNi; the matrix
elements for the kinetic energy are just the harmonic
oscillator matrix elements. The potential energy matrix
elements are more complicated, but they can still be
calculated analytically.

We use FSS to calculate the critical parameters �c
and �. In order to compare with the values using Slater
type orbitals as shown in [20,21], we did FSS calcula-
tions using Gaussian type functions with
N¼ 0, 1, . . . , 500.

We observed rather poor values near the threshold
energy because of the use of Gaussian functions to
approximate the exact wave function. The exact
ground wave function decays slowly in comparison to
the much faster decaying Gaussian functions.
However, better near-threshold results are obtainable
by adjusting � to a smaller value. Figure 1 shows the
behaviour of the energies with �¼ 0.5 and �¼ 1 with
the exact energy. The dashed vertical line in Figure 1
indicates where the threshold energy Eth (�c)¼ 0 occurs
for �c’ 0.8399. Comparing the two values �c obtained
with �¼ 0.5 and �¼ 1, �100¼ (�¼ 0.5)’ 0.865 while
�100 (�¼ 1)’ 0.899; �500 (�¼ 1)’ 0.866. The accurate
value of �c’ 0.839904 [36] compared well with our FSS
values �100c ’ 0:839 903 15 and �500c ’ 0:839 903 88.

In Figure 2, we compared the behaviour of � as a
function of � with both Gaussian-and Slater-type
functions. At the critical point (�c), � is defined to be
the critical exponent � (Equation (10)). We observe
that fewer Slater-type functions are needed to converge
to the correct values of �c and �. The Gaussian-type
functions needed a larger N to converge to the correct
values of �c and �.

The best values for �(N) and �(N) as shown in

Figures 3 and 4 are obtained with �¼ 1. As in previous

papers [20,21], we also find a parity effect with

Gaussian functions, therefore FSS equations are

applied using N0 ¼N þ 2. As before, different curves

are obtained for even and odd values of N. As shown

in Figure 3, for �¼ 1 the upper (lower) curve

corresponds to odd (even) values of N. A similar

effect for � is shown in Figure 4.
By switching to a Gaussian basis, we found that a

large number of functions was needed to obtain good

convergence. When we applied the Gaussian basis to a

non-symmetric many-electron system we needed up to

N’ 10. These results are very encouraging and show

that one can use Gaussian basis sets to obtain critical

parameters of the Yukawa potential.

5. Finite size scaling for the helium-like atoms using

a Gaussian basis set

We have applied FSS to study the critical properties

of two-electron atoms. The scaled Hamiltonian is

given by

Hð�Þ ¼ �
1

2
r2
1 þ r2

2

� �
�

1

r1
�

1

r2
þ �

1

r12
: ð19Þ

The basis set is a set of Gaussian functions symmetric

in x1, x2, these functions are a complete set for s-waves

i;j;kð�; x1; x2Þ ¼ Cijk exp ð��ðu2 þ v2Þ=2Þuiv2jrk12, ð20Þ

where u¼ (r1þ r2)/2; v¼ (r1� r2)/2; Cijk is the normal-

ization constant, and � is a free parameter. Note that

these functions are symmetric. Antisymmetric wave

functions are obtained using odd powers of v.

0.75 0.8 0.85 0.9 0.95

λ

−0.01

−0.005

0

0.005

Ε0

0.8 1

0

β = 1
β = 0.5
Exact

Figure 1. Ground state energy of the Yukawa potential as a
function of � for N ¼ 100. The values obtained with � ¼ 1
and � ¼ 0.5 are compared with accurate values of the energy
obtained from a 1500 Slater-type basis function expansion.

0.82 0.84 0.86

λ
0.82 0.84 0.86

λ

Γ

1

1.5

2

2.5

3

N = 10

N = 100

N = 10

N = 100

(a) (b)

Figure 2. Finite size scaling calculations of the critical � for
the Yukawa potential using (a) Gaussian functions and
(b) Slater functions. N is the number of functions and � is
defined in such a way that one can read from the
crossings the critical exponent � for the energy and the
critical value �c, see the text equation (10). The accurate
value is �c ¼ 0.839 904.
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FSS for this Hamiltonian were done in detail in [22]

using the complete non-orthonormal Hylleraas basis

set for s-waves

ijkðx1; x2Þ ¼ Cijkr
i
1r

j
2r

k
12 exp ð��r1Þ exp ð��r2Þ: ð21Þ

Gaussian basis-set Equation (20), as Hylleraas, are

non-orthonormal and complete for s-waves. In order

to make FSS calculations, we truncate the basis set at

order N, where N¼max (i, 2j, k), then the matrices

are M(N)�M(N), with M(N)¼ ([N/2]þ 1) (Nþ 1)2.

Now, we have to calculate the overlap hmjni and the

Hamiltonian matrix hmjHjni. All the matrix elements

could be calculated analytically.
In Figure 5 we show the energy versus the

variational parameter � for �¼ 0.5 (He), for � ¼1

(H�) and for the near-threshold value � ¼1.05, both

calculated with N¼ 10. All the curves present a plateau

for �’ (0.15, 0.6), therefore the values of the energies

are not very sensitive with �. In all the calculations we

used �¼ 0.25.
In Figure 6 we compared the ground state energy

E
ðNÞ

0 as a function of � for N¼ 10 using both the

Gaussian and the Hylleraas basis sets. We obtain good

values for the energy for small values of �, but for the
near-threshold behaviour the Hylleraas basis set gives

a better result.
In many FSS calculations we found parity

effects, which made taking N0 ¼N þ 2 necessary.

However parity effects were not reported for the

helium atom in [22]. Strong parity effects are present in

our calculations with the Gaussian basis set. It is

possible that parity effects are present when using

Hylleraas functions, but the effect was too small for

observation in this case. Therefore we calculated

critical values using Equation (16) from [20] with
N0 ¼Nþ 2, and different curves are obtained for even
and odd values of N. Figures 7 and 8 shows � as a

function of �. Figure 7 uses even values of N, while
Figure 8 uses odd values of N.

In Figure 9, we observe the behaviour of �(N) as a
function of 1/N; because of the parity effect the even

and odd values of N are plotted separately. Once again
there is a need for larger N to converge to the correct
value of �, which is the same behaviour as before from
the Yukawa example.

In Figure 10, we plot the values of �(N) as a

function of 1/N; once again because of the parity effect

0 0.02 0.04 0.06 0.08

1/N

1.8

1.9

2

2.1

2.2

α(N) 2

Gaussian
Slater

N even

N odd

N even

N odd

Figure 4. �(N) as a function of 1/N for the Yukawa potential
for both even and odd basis functions of Gaussian and Slater
types.

0 0.02 0.04 0.06 0.08
1/N

0.83

0.84

0.85

0.86

λc
(N)

Gaussian
Slater

N even

N even

N odd

N odd

Figure 3. �ðNÞ
c as a function of 1/N for the Yukawa potential

for both even and odd basis functions of Gaussian and Slater
types.

0 0.2 0.4 0.6 0.8 1

β

−0.7

−0.6

−0.5

−0.4

E
0(1

0)

λ = 0.5
λ = 1
λ = 1.05

Figure 5. Ground state energy for the two-electron atom as a
function of � for N ¼ 10 and three values of �.
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 the even and odd values of N are plotted separately.

Just as before, we notice the need for larger values of N

to converge for �. The exact value is �¼ 1. The results

indicate that Gaussian basis sets can be used to obtain

accurately the critical parameters for two-electron

atoms.

6. Finite size scaling and traditional electronic

structure methods

We have demonstrated that a Gaussian basis will

indeed allow us to obtain the critical exponents needed

for FSS calculations. Now, we are in a position to

propose a generalization of this method for larger

systems. In order to calculate the matrix elements

needed for finite size scaling one can use traditional

electronic structure methods (depending on the com-

plexity of the system) such as ab initio [37], density

functionals [38] and density matrices [39,40], semi-

empirical, quantum Monte Carlo [41–43], and and

electron propagator methods [44,45]. As an initial test,

we consider the two-electron atoms. The basis set used

is Dunning’s correlation consistent basis set.

These basis sets give results that can recover much of

the correlation energy.
The selection of a convenient basis is a little more

tricky for this system. We elected to use basis sets

that are readily available to ab initio packages.

0 0.5 1 1.5

λ

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

E
0(1

0)

Gaussian
Hylleraas

Figure 6. EðNÞ

0 as a function of � for N ¼ 10 for the two-
electron atom obtained with the Gaussian and the Hylleraas
basis set.

1 1.05 1.1 1.15

λ

0.5

1

1.5

Γ
(N

)

N = 4

N = 12

Figure 7. �(N) as a function of � for the two-electron atom
with even values of N obtained with the Gaussian basis set.

1 1.05 1.1 1.15

λ

0.5

1

1.5

Γ
(N

)

N = 5

N = 11

Figure 8. �(N) as a function of � for the two-electron atom
with odd values of N obtained with the Gaussian basis set.

0 0.1 0.2

1/N

1.09

1.095

1.1

λ(N)

0.05 0.15

N =6, 8, 10, 12

N = 5, 7, 9, 11

Figure 9. �(N) as a function of 1/N for the two-electron atom
obtained with the Gaussian basis set for even and odd values
of N. The exact value 1.097 66 is showed by a dot.
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 We then chose the correlation consistent basis sets:

aug-cc-pVTZ(N¼ 4), aug-cc-pVQZ(N¼ 5), aug-

cc-pV5Z(N¼ 6) and aug-cc-pV6Z(N¼ 7) [46,47].

These basis sets were then chosen to be optimized

for helium. The ab initio program that was used is

PC GAMESS version 7.0 [48]. For the calculations,

MP2, DFT(B3LYP) and CISD levels of theory

were sused.
Figure 11 shows �(N) as a function �. The exact E0

is also plotted using the Hylleraas basis set with

N¼ 10, and is compared with the value of E0 using

MP2 level of theory with the correlation consistent

basis set from N¼ 4, . . . , 7. The energy of the exact

results approach zero after �c. The results of MP2

indicate the �c¼ 1.0578 and �¼ 1.0711.
Next we used CISD to calculate for �. In Figure 12,

the two highest values of N intersect at �¼ 1.1259 and

with �¼ 1.2891 at the intersection. The plot of �(5)

crossed the other to N values. Again we plot exact E0

using the Hylleraas basis set with N¼ 10 and compared

the result of E0 with CISD using the correlation

consistent basis set from N¼ 4, . . . , 7.
For the DFT level of theory, we used a different

equation [17] to obtain the value of �c. The ratio

(E1/E0)
N is plotted as a function of � in Figure 13.

The intersection of the lines predicted the value of �c to
be 1.0160. We also plotted the exact E0 using the

Hylleraas basis set with N¼ 10 and compared the

result of E0 with DFT using the correlation consistent

basis set from N¼ 4, . . . , 7. The ab initio methods did

not provide exact results, but predicted correctly that

H� is a stable anion. These results clearly indicate that

one can use standard ab initio and density functional

methods to perform finite size scaling calculations

using Gaussian basis sets.

7. Discussion and future directions

We have shown the results for FSS using Gaussian-

type functions for the Yukawa potential and results

for the helium atom. We observed the following from
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Figure 11. Plot of �(N) as a function of � for the two-electron atom using MP2 level of theory. The behaviour of the ground state
energy as a function of � is shown in the window. The exact energy as a function of � using the Hylleraas basis set with N ¼ 10 is
also shown in the window.
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Figure 10. �(N) as a function of 1/N for the two-electron
atom obtained with the Gaussian basis set with even and odd
values of N. The exact value is � ¼ 1.
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using a Gaussian basis set: (i) the basis set required
more functions for a good convergence; (ii) the values
obtained for the critical parameters agree well with
previous studies using Slater- and Hylleraas-type basis
functions; (iii) the energies near the threshold
value were good at describing the criticality of the
systems.

After showing that a Gaussian basis is acceptable
for FSS calculations, we moved on to using the ab

initio package PC GAMESS to perform the calcula-
tions necessary for FSS. We observed that critical
parameters obtained from MP2, DFT and CISD gave
good estimations for �c and the critical exponent for
the energy �. We expect that better values will be
obtained by using a higher level of theory and larger
basis sets.

The method for FSS with ab initio is simple to
apply. In general, we need only to identify the
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Figure 13. Plot of the ratio of the ground state energy, E0, and the first excited state, E1, raised to the power N as a function of �
for the two-electron atom using B3LYP level of theory. The behaviour of the ground state energy as a function of � is shown in
the window. The exact energy as a function of � using the Hylleraas basis set with N ¼ 10 is also shown in the window.
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Figure 12. Plot of �(N) as a function of � for the two-electron atom using CISD level of theory. The behaviour of the ground
state energy as a function of � is shown in the window. The exact energy as a function of � using the Hylleraas basis set with N ¼

10 is also shown in the window.
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 parameter to manipulate for our calculations. We have
shown that the Gaussian-type functions produce
acceptable results. With that in mind, we can move
on to larger systems of interest. For example, many
molecular systems with an excess electron are known to
have localization and delocalization of the electron as a
parameter changes, such as the torsion angle. By
analysing the behaviour of the system as the ring
torsion angle varies, we may be able to predict the
critical angle of localization and delocalization.
Electronic structure calculations for large molecular
systems are done everyday using standard ab initio
packages. We have shown for helium that FSS
calculations can be done using such software packages.
The accuracy afforded from a Slater-type basis
function is definitely preferred over Gaussian-type
basis functions, however the former, while more
accurate, requires large amounts of disk space for the
calculation of integrals. With the use of Gaussian-type
basis functions, it is now possible to study critical
phenomena in larger systems of interest.
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