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We present dimensional scaling calculations for the critical parameters needed to bind one and two-elec-
trons to a finite linear dipole field and the stability diagram for the hydrogen–antihydrogen like mole-
cules. We find that calculations at the large-D limit are much simpler that D = 3, yet yield similar
results for the critical parameters and the stability diagrams.
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1. Introduction

The study of stability of bound states for molecular systems as a
function of physical parameters is a subject of great interest in the
fields of molecular physics and quantum chemistry. Experimental
and theoretical search of small stable multiple charged anions is
an active research field [1,2]. Recently, it was demonstrated com-
putationally the existence of dipole-bound dianions of different
molecules [2–4] and the stability of atomic anions induced by
superintense, high-frequency laser fields [5].

Although at the present time we are able to perform accurate
calculations for many body systems, some near threshold proper-
ties and critical behavior of small molecules are still not fully
understood and a subject of current interest [6]. Froelich et al.
[7] have found that when colliding at low speed, hydrogen and
antihydrogen, they have a tendency to recombine into protonium
(proton plus antiproton, Pn) and positronium (electron plus posi-
tron, Ps) before the particles and antiparticles annihilate. Both Pn
and Ps are highly unstable but are slightly longer lived than they
would be in the absence of the other pairing. In this Letter, we
are going to center the discussion on the stability of two attractive
quantum systems: the dipole-bound dianion and the hydrogen–
antihydrogen like quasi-molecules.

In order to study the behavior of atomic and molecular systems
near critical points we frequently need model calculations which
are simple but still capture the main physics of the problem. In this
context, a critical point is defined as the point where a bound state
becomes absorbed or degenerated with the continuum. It has been
shown that in certain cases quantitative and qualitative predic-
tions for D = 3 results can be obtained from D 6¼ 3 calculations.
The most famous example is the renormalization group approach
to critical phenomena [8]. In the case of electronic structure,
dimensional scaling method provides such a model to calculate
ll rights reserved.
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the critical parameters and stability diagrams [9]. In this model
we take the dimensionality D ?1 with the number of electrons
N and the nuclear charges Z fixed [10,11]. One should note that
the large-D limit is a semi-classical approximation to D = 3 but dif-
ferent from the conventional WKB approximation [12]. When we
apply dimensional scaling to electronic structure, the limit
D ?1 reduces to a semi-classical electrostatic problem in which
the electrons are assumed to have fixed positions relative to the
nuclei and to each other in the scaled D-space [13]. This configura-
tion corresponds to the minimum of an effective potential which
includes Coulomb interactions and centrifugal terms originated
from the D-dependent kinetic energy part.

In previous works, we have investigated the stability conditions
for the dipole-bound anion [14], the dipole-bound dianion [15] and
the hydrogen–antihydrogen like quasi-molecules [16] at D = 3
using ab initio and finite size scaling calculations. The main focus
of this work is to perform the large-D limit calculations for the crit-
ical conditions of these systems and compare the obtained results
with the D = 3 calculations.

This Letter is organized as follows. In Section 2 we give a brief
description of the two-particle systems in the large-D limit. As an
important limit case, we discuss in Section 3 the one-electron sys-
tem. In Section 4 we study the two-electron system, comparing the
‘exact’ and the Hartree–Fock approximation at the large-D limit. In
Section 5 we present the stability diagram of the hydrogen–antihy-
drogen quasi-molecule (Z � Z) at the large D-limit followed by a
conclusion section.
2. Two particles in a dipole field at the large D-limit

We consider two particles in the field of a finite dipole. The fi-
nite dipole consists of two Coulomb centers of charges ±Z located
along the z-axis at ±R/2. Two interesting problems can be modeled:
The two-electron case, that describes the attachment of two-elec-
trons to a polar molecule [15,17,18], and the hydrogen–antihydro-
gen like quasi-molecules Z � Z case, the Coulomb centers represent
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Fig. 1. Ground state energy for an electron in a dipole field for D = 3 and D =1, the
exact critical dipole moments are shown by dots. The insert shows the near-
threshold region.
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a nucleus and an anti-nucleus, and the light particles represent an
electron and a positron [16,19–21]. These particles have opposite
charges, thus the two-particle interaction is attractive. This fact
will have important consequences at the large-D limit.

Note that, even with different symmetries, both systems have
the one particle-dipole as one particle limit and both have cylindri-
cal symmetry. Taking this last observation into account we can
write the ground state function in the following form:

W0ð~x1;~x2Þ ¼ W0ðq1; z1;q2; z2; cosðu12ÞÞ; ð1Þ

where u12 is the dihedral angle between the particle positions. We
then scale coordinates by f2 and energy by 1/f2, with f = (D � 1)/2,
and transform the wave function W by

Wð~x1;~x2Þ ¼
1ffiffiffiffiffi
J
p Uð~x1;~x2Þ; ð2Þ

where J ¼ ðq1q2Þ
D�2ðsinðu12ÞÞ

D�3 is the Jacobian in D-dimensional
cylindrical coordinates. The effective D-dimensional Hamiltonian
for the wave function U is given in Ref. [22]. This transformation
has the advantage of making the large-D limit Hamiltonian explic-
itly dependent on all variables that appear in the wave-function
and the kinetic energy term is not a simple sum of the two individ-
ual kinetic energies.

Therefore, the effective Hamiltonian can not be written as a sum
of two individual Hamiltonians, not even for the non-interacting
case. We will return to this important point later. After this trans-
formation, the effective scaled Hamiltonian takes the form [13,22]

H1 ¼
1

2 sin2ðu12Þ
1
q2

1

þ 1
q2

2

� �
þ V1ðk1;q1; z1Þ þ V2ðk1;q2; z2Þ

þ k2Wðr12Þ ð3Þ

where Vi is the one-particle dipole potential, W is the Coulomb
repulsion (attraction) between electrons (between electron and
positron), k1 = ZR is the dipole moment and k2 = R.

At the large-D limit, particles are localized and the ground state
energy is given by

E0ðk1; k2Þ ¼ min
fq1 ;z1 ;q2 ;z2 ;u12g

H1ðk1; k2; q1; z1;q2; z2;u12Þ ð4Þ

Thus, the problem of evaluate the ground state energy is reduced to
finding the global minimum of the effective Hamiltonian H1.

3. One-electron dipole

In this section, we study the near-threshold behavior of one-
electron in the presence of a finite dipole. Clearly, this is a simple
system and it was studied at D = 3 by many authors. Analytical
and numerical calculations showed that within the Born–Oppen-
heimer approximation, molecules with dipole moments greater
than lc = 1.625D (0.63931 a.u.) can bind an extra electron to form
dipole-bound anions [14,18,23–28]. For the one-electron dipole,
the scaled Hamiltonian at the large D-limit is given by [29]

H ¼ 1
2q2 � k1

1

j~r � k̂=2j
� 1

j~r þ k̂=2j

 !
: ð5Þ

In this case, is straightforward to show that Eq. (4) is analytically
solvable. The critical value of k1 = ZR = l, the minimum dipole mo-
ment that can bind an electron, is given by

kc
1 ¼

3
ffiffiffi
3
p

4
¼ 1:2990381 . . . : ð6Þ

As we mentioned before, the critical value for D = 3 is
lð3Þc ¼ 0:63931 . . . [25]. The large D-limit fails to give a good value
for the critical dipole moment. For D = 3 the energy of the one-elec-
tron dipole decays exponentially to zero for k1 ! kc

1 [30], and the
electron becomes highly delocalized. This fact implies that a semi-
classical limit such as the large-D, where the electron is localized,
cannot give good results. Moreover, it is straightforward to show
that the ground state energy at the large-D limit goes quadratically
to zero at the critical point instead of exponentially at D = 3. How-
ever, away from the threshold region, the large-D limit results are in
excellent agreement with accurate ground state variational calcula-
tions [14] at D = 3 as shown in Fig. 1.

4. Two-electron dipole

The possibility of binding two-electrons to a finite dipole has at-
tracted the attention of many authors in the last two decades
[4,18,15]. Recently, we present finite-size scaling calculations of
the critical parameters for binding two-electrons to a finite linear
dipole field. This approach gives very accurate results for the crit-
ical parameters by using a systematic expansion in a finite basis
set. A complete ground state stability diagram for the dipole-bound
dianion is obtained using accurate variational and finite size scal-
ing calculations [15]. When finite size scaling calculations are em-
ployed in order to study the two-electron dipole, one is faced with
the complexity of the matrix element calculations and the high
computational cost for increasing the size of the basis set. How-
ever, the large-D limit provides a simple and fast alternative to ob-
tain the stability diagram for such a non-trivial problem. In the
large D-limit, the Hamiltonian for two-electrons in a dipole field
is given by

H ¼ 1

2 sin2 u12

1
q2

1

þ 1
q2

2

� �

� k1
1

j~r1 � k̂=2j
� 1

j~r1 þ k̂=2j
þ 1

j~r2 � k̂=2j
� 1

j~r2 þ k̂=2j

 !
þ k2

r12
;

ð7Þ

where r12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

1 þ q2
2 � 2q1q2 cosu12 þ ðz1 � z2Þ2

q
. This Hamilto-

nian can be further simplified by using the Hartree–Fock (HF) approx-
imation [31,32] as it was done at D = 3. Many atomic and molecular
systems were solved using the Hartree–Fock approximation at the
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large-D limit [33–36]. If we consider Hartree–Fock approximation to
the energy, then its large-D limit will be given by the minimum of Eq.
(7), in which the variable /12 is fixed at 90� [32]. Recently, Svidzinsky,
Scully and Herschbach (SSH) [36] transform the wave function in the
form

Wð~x1;~x2Þ ¼ ðq1q2Þ
D�2Uð~x1;~x2Þ; ð8Þ

this gives the following large-D limit Hamiltonian

HSSH ¼ 1
2

1
q2

1

þ 1
q2

2

� �

� k1
1

j~r1 � k̂=2j
� 1

j~r1 þ k̂=2j
þ 1

j~r2 � k̂=2j
� 1

j~r2 þ k̂=2j

 !
þ k2

r12
:

ð9Þ

Note that the difference between these two Hamiltonians is that the
factor sin�2u12 in the kinetic energy of Hamiltonian Eq. (7) is absent
in the SSH version. As a consequence of this, the total kinetic energy
is the sum of the two individual kinetic energies. In Fig. 2, we show
the results for the ionization energy for the two-electron dipole at
D = 3 and at the large-D limit. As shown in Fig. 2, for k2 = 1 the exact
ionization energy at the large-D limit is larger than the D = 3 energy
while the SSH energy gives a lower value. In our case, the values ob-
tained for the coordinates (q1,z1;q2,z2) are almost the same in both
cases, but the dihedral angle u12 goes from values close to p/2 for
the exact solution to values close to p for SSH. On the other hand,
the constraint /12 = p/2 follows from the fact that in HF approxima-
tion the expectation value of ð~q1;~q2Þ is zero. Because of this
constraint, HF approximation always overestimates the energy as
seen in Fig. 2.

In Fig. 3 we compare the ground state stability diagram of the
two-electron dipole obtained at the large-D limit with the exact
finite size scaling calculations [15]. As seen in Fig. 3, the large-D
limit calculations, both SSH and exact, give very good approxima-
tions to the exact stability diagram, with three distinct regions:
zero-electron, one-electron and two-electron binding to a dipole
field.
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Fig. 2. Ionization energies for the two-electron dipole for D = 3 and showing the
exact large-D limit, large-D limit HF and large-D limit SSH energies for k2 = 1.
5. Hydrogen–antihydrogen like quasi-molecule

The behavior and properties of antimatter have been the subject
of research for many decades [37,38]. In this section we are inter-
ested in the study of the hydrogen–antihydrogen like quasi-mole-
cules at the large-D limit. In this case the positive and negative
Coulomb centers represent a nucleus and an anti-nucleus respec-
tively. There exist two important differences between this system
and the two-electron dipole studied in Section 4, the particle–anti-
particle symmetry in the lepton-hadron terms, and the attractive
character of the interleptonic potential. The Hamiltonian of the
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hydrogen–antihydrogen like quasi-molecule, at the large-D limit
takes the form

H ¼ 1

2 sin2 u12

1
q2

1

þ 1
q2

2

� �

� k1
1

j~r1 � k̂=2j
� 1

j~r1 þ k̂=2j
� 1

j~r2 � k̂=2j
þ 1

j~r2 þ k̂=2j

 !
� k2

r12
:

ð10Þ

Here, the interparticle potential and the factor sin�2u12 in the ki-
netic energy is essential to obtain a stable solution at this limit.
Thus, the SSH approximation at the large-D limit does not apply
since the attraction between leptons always gives a minimum with
energy equal to �1. For the exact large-D limit Hamiltonian, the ki-
netic energy does not diverge, given a solution which is in good
agreement with the D = 3 calculations except in the threshold re-
gion. This can be observed for k2 = 1 in Fig. 4. In Fig. 5 we compare
the large-D limit stability diagram with the exact calculations [16]
for one-electron, one-positron, atom–antiatom systems. Again, the
simple large-D limit gives a good prediction for the stability of dif-
ferent regions as one varies the parameters k1 and k2.

6. Conclusions

We present dimensional scaling calculations for the ground
state energy and critical parameters for binding one and two-elec-
trons to a finite dipole and the stability diagram for hydrogen–anti-
hydrogen like molecules. For the two-electron dipole and the
hydrogen–antihydrogen like molecules cases presented in this
work it is clear that the large-D limit provides a rather good
description of the problem. It is easy to implement, merely mini-
mizing an effective potential at the scaled large-D limit. The results
can be improved systematically by including higher order terms in
the 1/D-expansion.

Recently, we have shown that dimensional scaling, combined
with the high-frequency Floquet theory, provides useful means
to evaluate the stability of gas phase atomic anions in a superin-
tense laser field [5]. At the large-dimension limit in a suitably
scaled space, electrons become localized along the polarization
direction of the laser field. We find that calculations at large-D
are much simpler than D = 3, yet yield similar results for the field
strengths needed to bind an extra one or two-electrons to H and
He atoms. The problems discussed in this Letter can be related to
stability in external field. Once again, the simple large-D analysis
provides a simple alternative way to analyze stability of different
systems.
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