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Finite Element Method for Finite-Size Scaling in Quantum Mechanics

Winton Moy, Marcelo A. Carignano, and Sabre Kais*
Department of Chemistry, Purdue UniVersity, West Lafayette, Indiana 47907

ReceiVed: January 14, 2008; ReVised Manuscript ReceiVed: March 28, 2008

We combined the finite-size scaling method with the finite element method to provide a systematic procedure
for obtaining quantum critical parameters for a quantum system. We present results for the Yukawa potential
solved with the finite element approach. The finite-size scaling approach was then used to find the critical
parameters of the system. The critical values λc, R, and ν were found to be 0.83990345, 2.0002, and 1.002,
respectively, for l ) 0. These results compare well with the theoretically exact values for R and ν and with
the best numerical estimations for λc. The finite element method is general and can be extended to larger
systems.

I. Introduction

Phase transitions are associated with singularities of the free
energy. These singularities occur only in the thermodynamic
limit1,2 where the dimension of the system approaches infinity.
However, calculations are done only on finite systems. A finite-
size scaling (FSS) approach is needed in order to exptrapolate
results from finite systems to the thermodynamic limit.3 FSS is
not only a formal way to understand the asymptotic behavior
of a system when the size tends to infinity but a theory that
also gives us numerical methods4–11 capable of obtaining
accurate results for infinite systems by studying the correspond-
ing small systems.

Recently, we have applied the FSS theory to quantum
systems.12–21 In this approach, the finite size corresponds not
to the spatial dimension but to the number of elements in a
complete basis set used to expand the exact eigenfunction of a
given Hamiltonian. This method is efficient and very accurate
for estimating the critical screening length for one-electron
screened Coulomb potentials,21 the critical nuclear charges for
two-electron atoms12,16 (which was found to be in complete
agreement with previous calculations)22,23 and three-electron
atoms,13 critical conditions for stable dipole-bound anions,24

critical conditions for stable quadrupole-bound anions,25 simple
diatomic molecules,26 three-body Coulomb systems with charges
(Q, q, Q) and masses (M, m, M),27 the criticality of atomic
Shannon information entropy,28 and crossover phenomena and
resonances in quantum systems.29

All of our previous FSS calculations are done based on
expanding the wave function in a Hyllarass-type basis set or,
more generally, in a Slater-type basis set. Recently, we were
able to apply Gaussian-type basis functions to achieve the same
results.30

For this paper, we combine the finite element method (FEM)
with FSS to investigate the critical behavior of a quantum
system. FEM is used to solve the corresponding Schrödinger
equation and provide the needed inputs for the FSS method,
namely, the ground-state energy and average potential energy
as a function of the number of elements used in the solution.
We will show how to use the FEM to perform a FSS analysis
in order to study the criticality of quantum mechanical problems.

The FEM framework was first developed by Hrenikoff and
Courant.31,32 The formal presentation of the finite element
method is attributed to Argyris and Kelsey33 and also Turner,
Clough, Martin, and Topp.34 The use of the FEM was originally
developed as a numerical technique for model problems in
engineering and physics. For an overview of the finite element
method and its development, a treatise of this area is given by
Owen and Hinton.35 The versatility of finite elements has led
to applications for quantum mechanical problems. A comparison
of the finite element method and the spectral method has been
done for a two-dimensional bound state problem.36 Calculations
for atomic systems,37–41 molecules,42 atoms in a strong magnetic
field,38,43 hyperfine structure44 of atoms, and molecules in a time-
dependent external field45,46 are just a few examples of the
versatility of the FEM in quantum mechanical problems today.

In the next two sections, we outline the use of finite elements
to solve for the Yukawa potential and the application of the
finite element method with finite-size scaling. The last section
contains the discussion of our results.

II. The Finite Element Method

The FEM is a numerical technique that gives approximate
solutions to differential equations. In the case of quantum
mechanics, the differential equation is formulated as a boundary
value problem. For our purposes, we are interested in solving
the time-independent Shrödinger equation with finite elements

HΨ ) EΨ (1)

The procedure for FEM to solve for differential equations can
be found in many textbooks in engineering.47,48 For more
specific applications of finite elements to quantum mechanics,
Ram-Mohan’s book49 gives an excellent introduction to this area.
The general procedure for solving differential equations with
FEM is given in the following steps: (1) discretization of the
domain space into a finite number of n subdomains, for example,
line segments for a one-dimensional problem; (2) for any nth
element, we isolate it and specify its properties such as length,
area, or volume; (3) the behavior of the solution within the nth
element is approximated with shape functions; the contribution
for the nth element is represented as a local matrix; (4) the
individual local matrices are assembled together to form the
global matrices H and S, which results in a generalized real-
symmetric eigenvalue problem
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H|ψ 〉 ) ES|ψ〉 (2)

and (5) The generalized real-symmetric eigenvalue problem is
solved with standard numerical analysis algorithms.

A didactic presentation of FEM applied to the hydrogen atom
was published by Ram-Mohan.38 Here, we outline the FEM
applied to the short-range Yukawa potential

[- p2

2m
∇ 2 + l(l+ 1)

r2
- e2e-r⁄λ

r ] ψ(r) ) Eψ(r) (3)

where λ is the screening length and l is the angular quantum
number. Using the Bohr radius a0 as a unit length and rescaling
the energy by the Rydberg unit R0 ) p2/2ma0

2 ) e2/2a0, the
equation reads

[- d2

dr2
- 2

r
d
dr

+ l(l+ 1)

r2
- 2λe-r

r ] ψ(r) ) εψ(r) (4)

with ε ) Eλ2/R0 used to represent the reduced energy. Equation
4 will be solved using FEM.

In order to apply the FEM, eq 4 needs to be expressed as a
variational problem. This is achieved by multiplying with ψ/
(complex conjugate wave function) and integrating over the
radial coordinate r from 0 to ∞. After an integration by parts,
we obtain

∫0

∞
[r2ψ/′(r)ψ ′ (r) + (l(l+ 1) - 2λre-r)ψ/(r)ψ(r)]dr

) ε∫0

∞
r2ψ/(r)ψ(r)dr

(5)

Equation 4 can be obtained as an extremus of eq 5 with respect
to a variation on ψ/(r).

At this point, the standard approach to study bounded states
is to introduce a cutoff rc for the radial coordinate. For rc

sufficiently large, the error introduced by the cutoff is negligible.
However, for our purpose of understanding the localization-
delocalization critical condition, the use of a distance cutoff leads
to inaccurate results. To overcome this problem, we define
region A as the interval [0, rc] and region B as the infinite
interval [rc,∞). Region A is divided into N elements of equal
length dh. Region B will be treated as a single infinite element
(see below). Element n in region A is defined as the segment
[rn-1, rn], with rn ) ndh. Within element n, the radial coordinate
is mapped to a local coordinate x ∈ [-1, 1].

The wave function ψn(x) in the nth element is expressed in
terms of local shape functions, which, for our calculations, are
Hermite interpolation polynomials with two nodes (left and right
border of the elements) and three degrees of freedom. This
choice ensures the continuity of the wave function and its first
two derivatives. Then, in the nth element, the wave function is

ψn(x) ) ∑
R)1

2

[φR(x)ψn
R + φ

¯

R(x)ψn′
R + φc R(x)ψn″

R] (6)

with R indicating the nodal index of the element; R ) 1 for the
left and R ) 2 for the right border of the element. The functions
φR(x), φjR(x), and φcR(x) are the (fifth-degree) Hermite interpola-
tion polynomials, which are described in ref 50. Then, ψn

R, ψn
′R,

and ψn
′′R are the undetermined values of the wave function and

its first and second derivative on the nodal points.
Using the local wave function, eq 6, we evaluate the integrals

in eq 5 for the nth element. The resulting equation is then
represented by a local 6 × 6 matrix. For the left-hand side of
eq 5, the matrix representation reads

( ψn
1

ψn
1′

ψn
1′′

ψn
2

ψn
2′

ψn
2′′

)T(H11
n H12

n H13
n H14

n H15
n H16

n

H21
n H22

n H23
n H24

n H25
n H26

n

H31
n H32

n H33
n H34

n H35
n H36

n

H41
n H42

n H43
n H44

n H45
n H46

n

H51
n H52

n H53
n H54

n H55
n H56

n

H61
n H62

n H63
n H64

n H65
n H66

n

) ( ψn
1

ψn
1′

ψn
1′′

ψn
2

ψn
2′

ψn
2′′

)
The right-hand side of eq 5 can be expressed in a similar matrix
form. The matrix elements Hij

n are only function of n, dh, and λ
These N local matrices are then assembled in such a way

that it ensures the continuity of the wave function and its first
and its second derivative across elements.50 The complete
problem is now represented by a (3N + 3) × (3N + 3) matrix
equation. In a simplified notation

〈ψi|Hij|ψj 〉 ) ε〈ψi|Uij|ψj〉 (7)

The quantity |ψi〉 is the nodal representation of the wave function
ψ(r) and its first two derivatives.

So far, we have not included the contribution from region B.
The approximation used for this single infinite element is based
on the assumption that the potential energy is negligible, and then,
it is assumed to be zero. The simplest wave function consistent
with this assumption is an exponentially decaying wave function
ψB(r) ) ψ(rc)e-r. This minimal treatment of the infinite element
is sufficient to accurately determine the critical parameters of the
Yukawa potential. Direct evaluation of eq 5 using ψB(r) leads to
a simple correction to the (4,4) element of the local matrices
corresponding to the Nth element of region A.

Equation 7 is the discrete equivalent of eq 5. Performing
a variation on the nodal values ψi, we obtain a generalized
eigenvalue problem representing the initial Schrödinger
equation

Hij|ψj 〉 ) εUij|ψj〉 (8)

Solution of eq 8 is achieved using standard numerical packages.
The importance of using the infinite element in order to

incorporate region B is exemplified in Figure 1. For large λ
(compared with the critical value), the inclusion of region B
has no effect since the solution is a localized, short-range wave
function. At small λ, the solution using the cutoff is necessarily
localized, with a small negative ground-state eigenvalue. The
use of the infinite element allows the delocalization of the wave
function, which, in turn, results in a positive eigenvalue for
sufficiently small λ.

III. FSS with FEM

The finite-size scaling method (FSS) is a systematic way
to extract the critical behavior of an infinite system from
analysis on finite systems. To apply the FSS method to
quantum problems that exhibit a critical behavior depending
on a parameter λ, we separate the Hamiltonian in the form

H ) H0 + Vλ (9)

where we have isolated the λ-dependent part in the second term,
Vλ. We are interested in how the system changes as the value
of λ changes. For the Yukawa potential, there is a critical point
λc that indicates where the bound state becomes degenerate with
the continuum. Then, for any λ > λc, the system has a bound
state with energy Eλ, which becomes zero for λ ) λc. For λ <
λc, the solution is delocalized.
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As in statistical mechanics, there are critical exponents related
to the asymptotic behavior of different properties near the critical
point. For our study, we define the exponent R for the energy as

Eλ ≈ (λ - λc)
R (10)

In previous studies of quantum criticality,15,16 the wave
function is expanded, to order N, in a complete basis set. The
order of the expansion is analogous to the system size of the
standard FSS method used in statistical mechanics. Thus,
increasing the order of the expansion corresponds to an increase
in the finite size. It is worth noting at this point that the larger
expansions contain the terms included in the smaller expansions.

For the purpose of implementing FSS based on a solution of
the Schrödinger equation obtained with FEM, the finite size will
now correspond to the number of elements used to construct
the global matrix. The solution region is discretized into N
elements of length dh. We have, in principle, two ways to
increase the number of elements N for the subsequent solutions
needed to implement the FSS scheme. The first involves a
constant solution region with a finer discretization (smaller dh)
while increasing N. The second involves a constant element size
(dh) and a larger solution region as N is increased. Both methods
were tested, but only the second one produced consistent results.
As in the basis set case, the inclusion of the smaller system
solutions into the larger solution region is essential for the
implementation of FSS.

The wave function inside of the nth element is described by
eq 6. The numerical solution of the generalized eigenvalue
problem (see above) gives the set of nodal values for the wave
function and its first two derivatives. These nodal points are
interpolated with the Hermite interpolation polynomials (see eq
6) to produce a continuum solution inside of each element. Then,
the average value of any operator, calculated with N finite
elements, can be expressed as a sum of all of the contributions
from the individual elements (the angular factors are irrelevant
for our purpose of FSS)

〈O〉N ) ∑
n)1

N ∫rn

rn+1 r2ψn
/(r)Oψn(r)dr

+ ∫rc

∞r2ψB
/ (r)OψB(r)dr

(11)

If the mean value of a λ-dependent operator 〈O〉λ is not
analytical at λ ) λc, then we define a critical exponent µO with
the following relation

〈O〉λ ≈ (λ - λc)
µO for λ f λc

+ (12)

where λ f λc
+ represents taking the limit of λ approaching the

critical point from larger values of λ. By using FEM, the

singularities in the mean values will occur only by using an
infinite number of elements and, therefore, a truly infinite
solution range. Following the same approach as FSS in statistical
mechanics, we assume the existence of a scaling function that
relates the mean value of any operator calculated with N
elements to its limiting value

〈O〉λ
(N) ∼ 〈 O〉λFO(N|λ - λc|

ν) (13)

with the scaling function FO being particular for different
operators but all having the same unique scaling exponent ν.

To obtain the critical parameters, we define the following
function

∆O(λ;N, N′) )
ln(〈O〉λ

N/〈O〉λ
N′

ln(N′ /N)
(14)

At the critical point, the expectation value is related to N as a
power law, 〈O〉 ∼ NµO/ν, and eq 14 become independet of N.
For the energy operator O ) H, and using the customary R
Greek letter for the corresponding exponent µO, we have

∆H(λc;N, N′) ) R
ν

(15)

In order to obtain the critical exponent R from numerical
calculations, it is convenient to define a new function15

ΓR(λ, N, N′) )
∆H(λ;N, N′)

∆H(λ;N, N′) - ∆∂Vλ

∂λ

(λ;N, N′)
(16)

which, at the critical point, is independent of N and N′ and takes
the value of R. Namely, for λ ) λc and any values of N and N′,
we have

ΓR(λc, N, N′) ) R (17)

and using eq 15

ν ) R
∆H(λc;N, N′) (18)

Using three finite elements solutions obtained with a different
number of elements (N, N′, and N′′ ), we calculate two Γ curves
using eq 16. The intersection of the two curves define λc

(N), R(N).
Then, ν(N) is readily calculated from eq 18. The citical values
are then obtained from the succesion of values as a function of
1/N by performing an extrapolation for 1/N f 0.

IV. Results and Discussion

For previous studies of the Yukawa potential, parity effects
were observed depending on the basis set used.16

However, in this case with the finite element method, there
were no observed parity effects. The finite-size scaling equations
are valid only as asymptotic expressions, but unique values of
λc, R, and ν can be obtained as a succession of values as a
function of N. The lengths of the elements are set to dh ) 1.0
for both l ) 0 and 1. This choice was done based on the stability
of the numerical solutions.

In Figure 2, we show the behavior of the ground-state energy
as a function of λ for l ) 0. We see that as the number of
elements increases, the ground-state energy becomes positive
at a λ value closer to λc. However, an exact solution would
require an infinite number of elements. Therefore, the FSS
method is necessary in order to determine critical parameters.
In Figure 3, the function Γ is plotted for different values of N.
As mentioned before, these curves are independent of N at the

Figure 1. Ground-state energy calculated using a distance cutoff rc

(solid, black line) and including the infinite element for r > rc (dashed,
red line). The calculations were performed using N ) 200 finite
elements.
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critical point. Namely, the intersection of the curves indicates
the critical point (λc, R).

For each of the values of N, we actually solve the problem
three times (N, N + 1, and N + 2) in order to obtain two Γ
curves. The crossing of these two curves defines the pseud-
ocritical parameters λc

(N) and R(N). The exponent ν(N) is easily
obtained from eq 18. In Figure 4, we observe the behavior of
the pseudocritical parameters as a function of 1/N. The three
curves monotonically converge to limiting values. Then, by
applying the Bulirsch-Stoer algorithm,51 we are able to obtain
the values of λc, R, and ν, which are displayed in Figure 4 as
a solid circle and summarized in Table 1. The critical parameters
λc and R are displayed as dashed lines in Figure 3, showing the
consistency of our results.

The ground-state energy for l ) 1 as a function of λ and a
different number of finite elements is displayed in Figure 5.
Three main features should be noticed. First, for λ > λc, the
effect of increasing the number of elements is negligible.
Second, all of the curves become positives for λ very near the
critical point, indicating that the number of elements needed to
obtain a good estimation of the critical parameters is smaller
than that in the case corresponding to l ) 0. Third, the curves
show a very abrupt transition for λ that is slightly smaller than
that for λc. This transition is very pronounced and is noticeable
even with a smaller number of elements. This behavior is
indicative of a first-order transition, characterized by R ) 1. In
Figure 6, we show the behavior of the pseudocritical parameters
as a function of 1/N. As in the case of l ) 0, the three curves
converge monotonicaly to well-defined values and allow for the
application of the Bulirsch-Stoer algorithm to extract the critical
parameters, which are shown in Table 1.

We have conventiently summarized our results for the critical
parameters for both l ) 0 and 1 in Table 1. For reference, we
include the corresponding values obtained using expansion on the
Slater-type basis set, as well as the known exact ciritical exponents.

To check the correctness of our finite-size scaling assump-
tions, we performed a data collapse calculation of the Yukawa
potential as done before in previous studies.52 In Figure 7, we
plot the results corresponding to l ) 0 (top panel) and 1 (bottom
panel), which have been calculated with the critical parameters
summarized in Table 1. We see that the curves do indeed
collapse into one, which gives strong support for the results of
combining the FEM with FSS.

Figure 2. Behavior of the ground-state energy as a function of λ for
N ) 200, 300, 400, 500, 700, and 900. The vertical line shows our
best estimation for λc.

Figure 3. Plot of Γ as a function of λ using N from 100 to 400 in
steps of 25. The crossing of the dashed lines indicates the critical values
λc and R.

Figure 4. Pseudocritical parameterrs as a function of the inverse of
the number of elements. The red dots at 1/N ) 0 are the result of the
extrapolation using the Bulirsch-Stoer algorithm.

TABLE 1: Results for Critical Parameters

this work ref 15 exact

l ) 0
λc 0.839 903 45(5) 0.839 903 9(1)
R 2.000 2(2) 2.000 00(2) 2
ν 1.002(2) 0.999 9(2) 1

l ) 1
λc 4.540 983 18(5) 4.540 980(3)
R 0.999 9(6) 0.999 9(3) 1
ν 0.500 2(2) 0.501(1) 0.5

Figure 5. Behavior of the ground-state energy as a function of λ for
l ) 1 with the number of elements from N ) 100 to 200. The vertical
dashed line indicates λc.
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In conclusion, we have performed a finite-size scaling analysis
of the short-ranged Yukawa potential with the finite element
method. We were able to study the different behavior of the
critical parameters for our system. The critical parameters
obtained were in excellent agreement with previous reference
values. The data collapse results strongly support the assump-
tions made for the finite-size scaling ansatz with finite elements.
This new approach with FSS is simple and easily combined
with FEM to produce accurate results.
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Figure 6. Pseudocritical parameters as a function of the inverse of
the number of elements for l ) 1. The red dots at 1/N ) 0 are the
extrapolated critical values.

Figure 7. Data collapse for the ground-state energy corresponding to
l ) 0 (top panel) and 1 (bottom panel).
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