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Simulated quantum computation of global minima
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(Received 27 February 2009; final version received 11 June 2009)

Finding the optimal solution to a complex optimisation problem is of great importance in practically all fields of
science, technology, technical design and econometrics. We demonstrate that a modified Grover’s quantum
algorithm can be applied to real problems of finding a global minimum using modest numbers of quantum bits.
Calculations of the global minimum of simple test functions and Lennard-Jones clusters have been carried out on
a quantum computer simulator using a modified Grover’s algorithm. The number of function evaluations
N reduced from O(N) in classical simulation to O(N1/2) in quantum simulation. We also show how the Grover’s
quantum algorithm can be combined with the classical Pivot method for global optimisation to treat larger
systems.

Keywords: quantum computation; Grover’s quantum algorithm; Pivot method; clusters; global optimisation

Rational drug design, molecular modelling, quantum
mechanical calculations and mathematical biological
calculations are but a few examples of fields that rely
heavily upon the location of a global minimum in a
multiple-minima problem [1–6]. Several global optimi-
sation methods have been developed over the past
decades. However, the large computational cost of
finding the global minimum for a large number of
variables limited the applications of such algorithms
[7–10]. Quantum algorithms on the other hand are
known to speed up the computation compared to
classical ones [11–14]. For example, the calculation
time for the energy of atoms and molecules scales
exponentially with system size on a classical computer
but polynomially using quantum algorithms [15,16].

Quantum computation is generally regarded as
being more powerful than classical computation. The
evidence for this viewpoint begins with Feynman’s
pioneering observation [17] that the simulation of a
general quantum evolution on a classical computer
appears to require an exponential overhead in compu-
tational resources compared to the physical resources
needed for a direct physical implementation of the
quantum process itself. Subsequent work by Deutsch
[18], Bernstein and Vazirani [19], Simon [20], Grover
[21], Shor [22,23] and others showed how quantum
evolution can be harnessed to carry out some useful

computational tasks more rapidly than by any known

classical means. For some computational tasks (such as

factoring) quantum physics appears to provide an

exponential benefit, but for other tasks (such as NP

complete problems [24]) the quantum benefits appear

to be inherently more restricted, giving at most a

polynomial speedup [25–30].
Grover’s quantum algorithm can find an object in a

unsorted database containing N objects in O(N1/2)

quantum mechanical steps instead of O(N) steps

[31,32]. The steps of Grover’s algorithm can be shown

as following: firstly, the Walsh–Hadamard transforma-

tion was performed and the system was initialised to the

superposition. Before going any further, let’s introduce

some fundamental information of quantum simulation

[33]. Quantum computation and quantum information

are built upon the concept the quantum bit, or qubit

briefly. It is quite similar to a bit in classical

computation. Two possible states for a qubit are the

states j0i and j1i, which is similar to state 0 and 1 for a

classical bit. The difference between bits and qubits is

that a qubit can be in a state other than j0i or j1i. It is

also possible to form a linear combination of states,

called superpositions:

j i ¼ �j0i þ �j1i, ð1Þ
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where � and � are complex numbers and j�j2þ j�j2¼ 1.
Furthermore, one famous qubit gate is the Hadamard
gate, and it is defined as:

H �
1

21=2
1 1

1 �1

� �
: ð2Þ

This gate is also described as being like a ‘square-root
of not’ gate, in that it turns a j0i into (j0iþ j1i)/21/2

(first column of H), ‘halfway’ between j0i and j1i; and
turns j1i into (j0i� j1i)/21/2 (second column of H),
which is also ‘halfway’ between j0i and j1i. In our
simulation, we performed the Hadamard transform on
n qubits initially for all j0i states and obtained an equal
superposition of all computational basis states.
Mathematically it could be expressed by the following
formula:

jsi ¼
On
i¼1

Hj0i, ð3Þ

where jsi means the initial superposition and n means
the number of qubits. Secondly, we generated two
different operators called Ps and Pt. Their mathemat-
ical formations are Pt¼ I� 2jtihtj and Ps¼ 2jsihsj � I,
where jsi is the initial superposition and jti corre-
sponds to the entry matching the search criterion.
In practice, there are no direct universal quantum
algorithms currently to obtain jti besides the ‘black
box function’ or the ‘oracle’ [33,34]. In order to get jti
here, we first did a classical comparison based on a
search criterion and then translated the result into the
quantum state. The detailed procedure is provided in
Appendix 1. The physical meaning of Pt is performing
the selective phase inversion, and that of Ps is
performing the inversion about an average operation,
which increases the amplitude of the state which was
inverted in the previous step. Finally, we applied the
Grover operator, G¼PsPt, O(N1/2) times to the
superposition state. After performing the measurement
to the obtained vector, the one with the max proba-
bility is the marked state [31,32]. Grovers’ search
algorithm has been implemented by using nuclear
magnetic resonance (NMR) techniques for a system
with four states [35] and more recently using quantum
optical methods [36]. An efficient quantum algorithm
for global optimisation based on such Grover’s search
procedure can find applications in a wide range of
fields [37].

In this paper, we will demonstrate that a modified
Grover’s quantum algorithm can be applied to real
problems of finding a global minimum using modest
numbers of quantum bits. We will simulate the revised
quantum search algorithm using a classical computer.
The limitation of a computer resource such as the

memory and speed of a CPU will prohibit a large scale
quantum computer algorithm simulation on a classical
computer. Thus, first we implement the algorithm for
simple test functions and small size Lennard-Jones
clusters. The quantum search circuit is shown in
Figure 1. In this figure, we divided the register into
three groups, where the Hadamard gates are operated
on the initialised registers, then we applied the Grover
iteration to rotate the superposition states into target
states. The measurement result after the iteration is
used to update the threshold value in the Grover
iteration steps. The Grover oracle is replaced by the
adapted threshold to search all the states for which
f(x1, x2, . . .)�Mn�1, where Mn�1 gives the minimum
measurement value. The subscript n denotes the steps
of measurements and Mn denotes the value of the nth
measurement. The iteration number during each search
will be preselected. After each iteration, the result will
be measured and compared with the other measured
results to set up a new threshold value.

We first applied the adapted quantum search
algorithm to test a simple analytical function used in
global optimisation: the Goldstein–Price function (GP)
which is given by [10]

f ðx1,x2Þ ¼
�
1þðx1þx2þ 1Þ2ð19� 14x1þ 3x21� 14x2

þ 6x1x2þ 3x22Þ
��
30þð2x1� 3x2Þ

2
ð18� 32x1

þ 12x21þ 48x2� 36x1x2þ 27x22Þ
�
, ð4Þ

Figure 1. Quantum circuit for searching the global mini-
mum. The Gn�1 is the oracle to rotate the vector toward the
state with f(x1, x2, . . .)�Mn�1, where Mn�1 is the minimum
of all measurement results. The registers will be initialised to
jx1i¼ j0000i and jx2i¼ j0000i for variable x1 and x2. After
using the Hadamard gates to convert the initial state into the
superposition state, the adapted Grover operators will be
applied to rotate the superposition state to the specific state.
The threshold value of Grover’s operator will be updated
based on the measurement result after a certain number of
rotations.

2016 J. Zhu et al.
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where �2� xi� 2. The GP function is an excellent test

function for any global optimisation method, which
has four local minima in the whole region. One global
minima is located at (0, �1) with the function equal to
3, the other three local minima are f(�0.6,�0.4)¼ 30,

f(1.8, 0.2)¼ 84 and f(1.2, 0.8)¼ 840. The potential sur-
face near the global minimum is shown in Figure 2. It is
kind of difficult to visual minima on a scale of 0 to five
million. We added four brown circles to mark all local
minima positions, furthermore, the global minima

f(x1, x2)¼ 3 is shown by the arrow in Figure 2.
We used 10 qubits as the registers (as an example, see
Appendix 1 for detailed calculations using two qubits).
The registers will be divided into two groups to present

the variable x1 and x2. The searching range is
x1,22 [�3.2, 3.0], which covers all local and global
minima. After applying the Hadamard gate, the
registers group will be initialised into the superposition
state, each will be used to cover 25 discrete points in the

searching range, namely, each basis function will be
mapped to the number within the searching domain.
Then, the measurement will be performed to obtain the
first threshold value after the selected number of

Grover iterations was applied. The number of itera-
tions before each measurement is important to reduce
the total iteration number. We chose the sequence: 0, 0,
0, 1, 1, 0, 1, 1, 2, 1, 2, 3, 1, 4, 5, 1, 6, 2, 7, 9, 11, 13, 16,
5, . . . , as the iteration number before each measure-

ment, i.e. for step 1 we measure the state without any
Grover iteration, for step 4, we measure the state after
one Grover iteration. This sequence was proposed in
[38] to reduce the Grover iteration numbers for the

adopted Grover search method. During each iteration,

the state function will be rotated towards the threshold

value, which is always the best measurement result at
previous steps. The new obtained value will be
compared with the old threshold value. The threshold

value will be reset to the new value if the old threshold
value is larger than the new measurement result,
otherwise it is unchanged. The iteration will continue

until convergence is reached. The quantum search
yields the same result (high probability) as the classic
method with 16 steps. In Figure 3, we show the

probability distribution of the state function before the
iteration steps. The top left panel is the initial state,
where the state function is the superposition for every

possible state, and the measurement result yields
379,605.8306 after step 1 without any Grover iteration.
In Figure 3, panel (b) is the state function after a total

of two Grover iterations at step 5, where the measure-
ment result yields 4038.3764. As we can see the
probabilities for smaller function values become

larger, meanwhile the eigenfunction corresponding to
larger function values starts decreasing. In panel (c), the
area of high probability reduced a lot compared with

panel (b). It means that the search keeps converging at
step 10. At step 16 with a total of 22 Grover iterations,
we reach the global minimum value 3 at x1¼ 0 and

x2¼�1 as shown in panel (d) of Figure 3.
Let us further illustrate this approach by consider-

ing a real and practical optimisation problem: finding
the global minimum of Lennard-Jones clusters, clusters

of atoms or molecules that interact with each other
through the Lennard-Jones potential. The Lennard-
Jones potential (referred to as the L-J potential or 6–12

potential) is a simple mathematical model that

–3.0
–2.0

–1.0
0 1.0

2.0
3.0

–3.0
–2.0

–1.0
0

1.0

X2

X1

f (0,–1)=3

Figure 2. The potential surface near the global minimum of the GP function (see the text). It is difficult to tell the four minima
points visually on a scale of zero to five million, so they are marked by brown circles. f(0,�1)¼ 3 is the global minimum which is
indicated by the arrow.
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describes the long range attractive van der Waals force

and the short range Pauli repulsion force. The L-J

potential is of the form:

VLJðrÞ ¼ �
21=6�

r

� �12

�
21=6�

r

� �6
" #

, ð5Þ

where � and 21/6� are the pair equilibrium well depth

and separation, respectively. r is the relative distance

between two particles. We will employ reduced units in

our simulation and define �¼ 21/6�¼ 1. The L-J

potential is a relatively good approximation and due

to its simplicity often used to describe the properties of

gases, and to model dispersion and overlap interactions

in molecular models. It is particularly accurate for

noble gas atoms and is a good approximation at long

and short distances for neutral atoms, molecules

and clusters. Lennard-Jones clusters are excellent for
testing the efficiency of global optimisation algorithms
[39]. Homogeneous Lennard-Jones clusters have well-
established minima and regular minimum-energy
structures for very large clusters [40]. However, the
number of local minima apparently grows rapidly and
finding the global minimum in Lennard-Jones clusters
is an NP-hard problem [41]. Several global optimisa-
tion methods have been applied to the energy function
of Lennard-Jones clusters. The total energy for a
Lennard-Jones cluster of M particles is: EM ¼

PM�1
i¼1 �PM

j¼iþ1 VLJðrijÞ, where rij is the distance between the ith
and the jth particles and VLJ(r) is the Lennard-Jones
two-body potential. We start simulating the process of
searching the global minimum for M¼ 3 particles.
A total of nine register qubits (N¼ 29¼ 512 mesh
points) were separated into two groups for presenting

Figure 3. Probability distribution of the state function before the measurement for the GP function. Panel (a) is the initial state
corresponding to the superposition of all possible states, panels (b), (c) and (d) are the distributions of step 5, 10 and 16
respectively.

2018 J. Zhu et al.
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three variable B1, B2, and A1, where B1 is the bond

length between the atom 0 and 1, B2 is the bond length

between atom 0 and 2, and A1 is the bond angle of

atom 0, 1 and 0, 2 as shown in Figure 4. Five qubits

will be used as the first register to cover the space

B1¼B2, and four qubits will be used as the second

register for A1. The searching range for B1,22

[0.0001, 2] and for A12 [0.0001,�]. The quantum

search yields the minimum value �2.9094 at B1¼

1.0323, B2¼ 1.0323 and A1¼ 1.0473 rad¼ 60�.

Compared with the classical minimum potential, it is

slightly higher. This is due to the fact that our mesh can

not cover the exact minimum value. Unlike the search

method for GP function, where the number of

iterations is preselected based upon the proposed

sequence, here we increase the number of iterations

after every measurement to study the importance of the

iteration sequence. The number of iterations increases

as 1, 2, 3, 4, . . . . In Figure 4, we show the search results

and the total iteration steps. From the histogram of

total number of iterations for 100 independent

searches, we found that the average number of

iterations is about 21. This indicates that the running

time of the adapted search algorithm (a total of

231 iterations) is still the same as the Grover

search algorithm O(N1/2), which is about 10(29)1/2 in

this example. The configuration corresponding to the

minimum for the LJ cluster is also shown in Figure 4.
In order to expand the adapted quantum search

algorithm to search the global minimum for larger

number of variables and to overcome the limit of using

a large number of qubits in the computation, we

combined the classical pivot search method [9,10] with

the quantum Grover’s search algorithm. The basic

scheme is as following: Step (1): Generate N random

probes, where N is equal to 2number of qubits, then shift it

into superposition of the entire state space. Step (2):

Use the quantum Grover algorithm mentioned before

to do the comparison. Select and keep about the

smallest 15% of the original N random probes as pivot

probes. Step (3): Initialise the quantum computer with

the state associated with these pivot probes, apply a

series of controlled Hadamard gates to produce the

superposition state with points near the selected probes.

xR,i¼ xB,iþDxi, where Dxi is a randomly generated

vector according to a particular distribution such as a

Gaussian distribution [9]. Step (4): Redo Step (2) and

keep going until the criteria of convergence is satisfied.

Using this procedure, it is possible to cover the entire

searching space by a small number of qubits.

Moreover, this small number of qubits is sufficient to

cover each subdomain to yield the desired resolution.
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1.2258
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Figure 4. Final probability distribution of the state function for LJ (N¼ 3). The global minimum located at B1¼ 1.0323,
B2¼ 1.0323 and A1¼ 1.0473 rad¼ 60�. The top panel is the distribution of the total measure step before reaching the global
minimum for 100 search results. The global minimum and corresponding structure are also shown in the figure.
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To illustrate this combined approach, we search the
global minimum for the Shubert test function, which is
given by [10]:

f ðx1, x2Þ ¼
Xi¼5
i¼1

i cos½ðiþ 1Þx1 þ i�

" #

�
Xi¼5
i¼1

i cos½ðiþ 1Þx2 þ i�

" #
ð6Þ

with �10� x1,2� 10, which has 760 local minima, 18 of
which are global with f(x1, x2)¼�186.7309. The sur-
face potential of this function is shown in Figure 5.
Ten qubits were used to do this simulation, each x
was assigned five qubits. Following the same proce-
dure mentioned above, we initially generated 210

random points. Then 15% minimum of these points
were picked up by quantum Grover algorithm as
pivots. After that, we arranged the pivots based on the
weight of the optimised function (exp(�f(x1,x2)/kT )),
where kT is just a fixed parameter and is equal to 50 in
our simulation. We generated the other points accord-
ing to the Gaussian distribution. We ran this simula-
tion for 98 times, the researched minimum values are
between �30.56 and �186.73. Over 80% of the points
are located at �186.73, which is the exact global
minimum for this function. It also covers all 18 global
minima and the average iteration is 1300. The simu-
lation results are shown in Figure 5, where the black
dots are measurement results on the contour of the
surface potential with red dots as global minima. It
seems this method only converges to the global minima
80% of times. However, the advantage is that only 10
qubits are used, which means 25 pivot points for each x
axis, with a total of 210 mesh points. It is a very small
mesh based on a current computer. If we can use 20
qubits (10 for each axis), the number of mesh points
will be much larger. Under this situation, the conver-
gence speed will be much faster.

Furthermore, following the same steps, we also
applied this combined method to search for the
optimised structure for LJ clusters. We tried five
atoms and got the exact same results as the classical
method. The detailed procedure for the three-atom
simulation is as following: we first set five qubits for
B1,2 and five qubits for A1. The same previous range,
which is B1,22 [0.0001, 2] and for A12 [0.0001,�].
We first generated 25 random B1,2 and 25 random A1

in the above range. Then we used the combined classical
pivot method and Grover’s search algorithm which was
mentioned in the previous paragraph. After the search,
we got the global minimum structure for the three-atom
cluster (the same structure shown in Figure 4). The
distance between each atom is 0.99889 and the total
potential for this structure is �2.9999, which is almost
the same as the classical result (�3.0). After that, based
on the optimised structure of three atoms, we added
another atom to form the four-atom cluster. We fixed
the original three atoms and set the fourth one free.
We used X, Y and Z to express the coordinates for the
fourth atom and used 10 qubits in the simulation, the
same number as in the previous simulations. We tried
two different ways to perform the simulations: in the
first method, we left the fourth atom totally free in the
X, Y and Z directions and set four qubits for the X axis,
three qubits for the Y axis and three qubits for the
Z axis. In order to save simulation steps, the ranges for
all coordinates are X2 [�0.5, 0.5], Y2 [0.01, 1.01] and
Z2 [0.01, 1.01]. Then we followed the same steps as for
three atoms, generated random points and started the

Figure 5. The surface potential of the Shubert function and
the final quantum search results. The top panel is the surface
potential for the Shubert function with the range
x1,22 (�10, 10). The bottom panel is the contour of the
function with the quantum search results. The black dots
present the measurement results for all search steps.

2020 J. Zhu et al.
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search. After a number of simulations, the result

converged to �5.0, on average, which is not quite
accurate (classical¼�6.0). The second method is

fixing X at 0.0 and arranging five qubits for Y and
Z respectively. The ranges for Y and Z are the same,
between 0.01 and 1.01. The rest of the procedure is the

same as for three atoms. The simulation results giving
the lowest potential for this cluster is �5.9926, which is
quite close to the classical result (�6.0). The probability

distribution for the whole procedure is shown in
Figure 6, as well as the final structure. We stepped

forward to apply this method to simulate the most
optimised structure for a five-atom cluster. The simu-
lation procedure is the same as for the four-atom

cluster. We fixed the previous optimised structure and
added the 5th free atom. We also used the above two
methods, and results show that the second method gave

more accurate results. We obtained the value �9.0952,

which is close to the classical simulation value

(�9.103852). Although we did not get the exact

optimised structures with the current simulations,
however with more qubits one should cover the exact

results.
It is known that N1/2 is the optimal running time for

a quantum search algorithm. The combined search

method does not reduce the total rotation steps, but

does reduce the required number of qubits to do the
simulation. Due to the limited available qubits in a

classical computer, we can only set one atom free with
all other atoms fixed. However, in a quantum compu-

ter, with enough qubits available, we can perform full
optimisation for all atoms. For example, for larger

LJ clusters, if we had larger qubits, we could incorpo-

rate the partial knowledge that we had by starting with
the structure of the smaller (M� k) clusters and adding

k additional particles at random [9,42]. In a previous

Figure 6. Probability distribution of the state function for LJ cluster (N¼ 4). Panels (a), (b) and (c) are the steps during the
searching. The global minimum energy is �5.9926 and the coordinates for the fourth atom are (0.0, 0.28444, 0.81344). Although
there are many bars, they are quite close to each other. Panel (d) is the optimised structure for a five-atom cluster with an energy
of �9.0952. The green atoms are fixed atoms, while the red one is the free atom. The distances between the red and the green ones
are 0.99, 0.99 and 1.00 separately.
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work [9], using the pivot method we have shown that
the computational cost (CPU time) scales as M2.9 with
the number of L-J particles to be minimised. With
various practical improvements, one can reduce the
scale toM2. If we can assign a certain number of qubits
for each particle, then the Grover algorithm will reduce
the search steps to the order of O(M) for this specific
case. In any ‘growing’ problem, such as the minimum
energy configuration of clusters, self-avoiding
walks, protein folding, etc., this systematic approach
to solving the structure of large clusters can be
incorporated. One of the powerful features of this
combined algorithm is that information such as this can
be built into the initialisation of the probes.

We have used an adapted quantum search algo-
rithm to search the global minima for test functions
and LJ clusters. Our quantum computer simulations
on the classical computer yield the same global
minimum values as the classical search method with
high probability. We also show how to combine the
classical Pivot method with the adapted quantum
search algorithm to search for the global minimum in
larger domains. Recently, Jordan [43] proposed a fast
quantum algorithm for estimating numerical gradients
with one query. One can use this method to search the
potential gradient with zero value. This will rotate the
entire space towards the state function which corre-
sponds to all minima. The measurement will yield one
of the minima instead of any point in the search
domain. Combining this with our search method will
greatly reduce the number of rotations needed for
finding the global minimum. With further improve-
ments in the quantum search algorithms, we expect to
see solutions of previously intractable global optimisa-
tion problems in many different fields.

In summary, the manuscript contains novel results
and a proof-of-principle about the use of quantum
computers for the simulation of a global minimum.
First, the paper provides fundamental insight into the
quantum simulation of global optimisation problems,
and second we implemented some simple applications.
We also demonstrated for the first time that a modified
Grover’s quantum algorithm can be applied to real
problems of finding a global minimum using a modest
number of qubits. If a quantum computer that would
allow for these calculations to be carried out were
available now, we believe that the development of
algorithms for optimisation is of great importance in
many practical fields and further motivates the con-
struction of these devices.

Experimentally, the Grover’s algorithm has been
demonstrated by nuclear magnetic resonance (NMR)
[44–48] and quantum optics [36] for a small number of
qubits. Although it is easy to obtain the Grover’s

oracle by classic computers, it is very hard to realise
this oracle in a quantum circuit. There are no efficient
universal methods to design this oracle until now.
Recently there have been a few attempts to solve this
problem directly. Ju et al. [49] implemented Grover’s
oracle function by Boolean logic in a quantum circuit.
However, they used N (2number of qubits) Boolean logic to
represent the oracle, which makes the circuit design
inefficient. On the other hand, Xu et al. [50] success-
fully used the adiabatic search algorithm to realise
Grover’s algorithm without oracle by encoding the
database to quantum format and forming the problem
Hamiltonian form target value. Further research is still
needed to overcome the Grover’s oracle.
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Appendix

This Appendix shows how the modified Grover’s algorithm
is used for the simulation of the global minimum of the GP
function. In the text, we used a total of 10 qubits for the
optimisation. Here, as an example we provide results for only
two qubits. One qubit is used to represent the x1 axis and the
other for the x2 axis. The search range was x1,22 [�3.2, 3.0]
and discretised into 21¼ 2 points on each axis.

Step (1): Perform the Walsh–Hadamard transformation to
place the system into a superposition with equal probabilities
for all states. The obtained vector is also our original source
jsi. The formula for this step is jsi ¼

N2
i¼1 Hj0i. Thus, we

obtain the vector jsi¼ (0.5 .5, 0.5 0.5)T.
Step (2): Generate the Ps operator, Ps¼ 2jsihsj � I, where
jsi is the vector we obtain in Step 1. Ps increases the
amplitude of the selected state and takes the form

Ps ¼
1

2

�1 1 1 1

1 �1 1 1

1 1 �1 1

1 1 1 �1

0
BBB@

1
CCCA: ð7Þ

Step (3): Obtain the entry matching the search criterion jti
(can also be called the target source). There is no direct way to
obtain the target source from the pure quantum method, so a
‘black box’ type is used in the current simulation. Thus, it was
obtained by an indirect mapping. We calculated values of the
GP function at all mesh points and picked the lowest one by
classical comparison. Then we marked the corresponding
part of x1,2 as 1 and the rest as zeros. This was followed by
applying the Kronecker tensor product to obtain the target
source jti, which is a similar vector to jsi. For this example,
the point (�3.2, �3.2) has the lowest value. The correspond-
ing target source is jti ¼ ð1 0ÞT

N
ð1 0ÞT ¼ ð1 0 0 0ÞT.

Step (4): Generate the Pt operator, where Pt¼ I� 2jtihtj.
This operator reverses the selected state and takes the form

Pt ¼

�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA: ð8Þ

Step (5): Apply the Grover operator, G¼PsPt, O(N1/2)
times to the superposition state (jsi). The new G operator has
the effect of both Ps and Pt, which reverses the selected state
first and then increases its amplitude. For this example, it
takes the form

Gjsi ¼ PsPtjsi ¼ Ps

�0:5

0:5

0:5

0:5

0
BBB@

1
CCCA ¼

1

0

0

0

0
BBB@

1
CCCA: ð9Þ

For this simple example, we obtained the correct answer in
one step.
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