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40.1 Introduction

Th e special quantum features such as superpositions, interfer-
ence, and entanglement have revolutionized the fi eld of quantum 
information and quantum computation. Quantum teleportation 
primarily relies on quantum entanglement, which essentially 
implies an intriguing property that two quantum correlated 
systems cannot be considered independent even if they are far 
apart. Th e dream of teleportation is to be able to travel by simply 
reappearing at some distant location. We have seen a familiar 
scene from science fi ction movies: Th e heroes shimmer out of 
existence to reappear on the surface of a faraway planet. Th is 
is the dream of teleportation—the ability to travel from place 
to place without having to pass through the tedious interven-
ing miles accompanied by a vehicle or an airplane. Although the 
teleportation of large objects still remains a fantasy, quantum 
teleportation has become a laboratory reality for photons, elec-
trons, and atoms.1–10

By quantum teleportation an unknown quantum state is 
destroyed at a sending place while its perfect replica state appears 
at a remote place via dual quantum and classical channels. 
Quantum teleportation allows for the transmission of quantum 
information to a distant location despite the impossibility of 
measuring or broadcasting the information to be transmitted. 
Th e classical teleportation is like a fax in which one could scan 
an object and send the information so that the object can be 
reconstructed at the destination. In this conventional facsimile 
transmission, the original object is scanned to extract partial 
information about it. Th e scanned information is then sent to 
the receiving station, where it is used to produce an approximate 
copy of the original object. Th e original object remains intact 
aft er the scanning process. By contrast, in quantum teleporta-
tion, the uncertainty principle forbids any scanning process from 

extracting all the information in a quantum state. Th e nonlocal 
property of quantum mechanics enables the striking phenome-
non of quantum teleportation. Bennett and coworkers28 showed 
that a quantum state can be teleported, provided one does not 
know that state, using a celebrated and paradoxical feature of 
quantum mechanics known as the Einstein–Podolsky–Rosen 
(EPR) eff ect.11 Th ey found a way to scan out part of the infor-
mation from an object A, which one wishes to teleport, while 
causing the remaining part of the information to pass to an 
object B, via the EPR eff ect. In this process, two objects B and C 
form an entangled pair; object C is taken to the sending station, 
while object B is taken to the receiving station. At the sending 
station, object C is scanned together with the original object A, 
yielding some information and totally disrupting the state of A 
and C. Th e scanned information is sent to the receiving station, 
where it is used to select one of several treatments to be applied 
to object B, thereby putting B into an exact replica of the former 
state of A.

Quantum teleportation exploits some of the most basic and 
unique features of quantum mechanics: the teleportation of a 
quantum state encompasses the complete transfer of informa-
tion from one particle to another. Th e complete specifi cation 
of a quantum state of a system generally requires an infi nite 
amount of information, even for simple two-level systems 
(qubits). Moreover, the principles of quantum mechanics dic-
tate that any measurement on a system immediately alters its 
state, while yielding at most one bit of information. Th e trans-
fer of a state from one system to another (by performing mea-
surements on the fi rst and operations on the second) might 
therefore appear impossible. However, it was shown that the 
property of entanglement in quantum mechanics, in combi-
nation with classical communication, can be used to teleport 
quantum states.
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Th e application of quantum teleportation has been extended 
beyond the fi eld of quantum communication. On the one hand, 
quantum teleportation can be implemented using a quantum 
circuit that is much simpler than that required for any nontrivial 
quantum computational task: the state of an arbitrary qubit can 
be teleported using as few as two quantum C-NOT gates. Th us, 
quantum teleportation is signifi cantly easier to implement than 
even the simplest quantum computations if we are concerned 
only with the complexity of the required circuitry. On the other 
hand, quantum computing is meaningful even if it takes place 
very quickly and within a small region of space. Th e interest of 
quantum teleportation would be greatly reduced if the actual 
teleportation had to take place immediately aft er the required 
preparation. Quantum teleportation across signifi cant time and 
space has been demonstrated with the technology that allows 
for the effi  cient long-term storage and purifi cation of quantum 
information. Th e quantum teleportation of short distance will 
play a role in transporting quantum information inside quan-
tum computers. People have shown that a variety of quantum 
gates can be created by teleporting qubits through special entan-
gled states.12,13 Th is allows the construction of a quantum com-
puter based on just single qubit operations, Bell’s measurement, 
and the GHZ states. A wide variety of fault-tolerant quantum 
gates have also been constructed. Gottesman and Chuang dem-
onstrated a procedure that performs an inner measurement con-
ditioned on an outer cat state.12,13

In quantum systems, interaction in general gives rise to 
entanglement. In this chapter, the entanglement in quantum 
dots system and its application for quantum teleportation will 
be discussed. We do not cover all the work that has been done 
in the fi eld in this chapter. However, we chose a simple model to 
illustrate and introduce the subject. We present a model of quan-
tum teleportation protocol based on one-dimensional quantum 
dots system. Th ree quantum dots with three electrons are used 
to perform teleportation: the unknown qubit is encoded using 
one electron spin on quantum dot A, the other two dots B and 
C are coupled to form a mixed space-spin entangled state. By 
choosing the Hamiltonian for the mixed space-spin entangled 
system, we can fi lter the space (spin) entanglement to obtain 
pure spin (space) entanglement and aft er a Bell measurement, 
the unknown qubit is transferred to quantum dot B. Selecting 
an appropriate Hamiltonian for the quantum gate allows the 
spin-based information to be transformed into the charge-based 
information. Th e possibility of generalizing this model to the 
N-electron system is discussed. Th e Hamiltonian to construct 
the C-NOT gate will also be discussed in detail.

40.2 Entanglement

Ever since the appearance of the famous EPR experiment,11 the 
phenomenon of entanglement,14 which features the essential dif-
ference between classical and quantum physics,15 has received 
wide theoretical and experimental attention.15–22 Generally 
speaking, if two particles are in an entangled state then, even 

if the particles are physically separated by a great distance, they 
behave in some respects as a single entity rather than as two 
separate entities. Th ere is no doubt that entanglement has been 
lying in the heart of the foundation of quantum mechanics.23

Besides quantum computations, entanglement has also been 
the core of many other active research such as quantum tele-
portation,6,24 dense coding,25,26 quantum communication,27 and 
quantum cryptography.28 It is believed that the conceptual puz-
zles posed by entanglement—and discussed more than 50 years 
ago—have now become a physical source to brew completely 
novel ideas that might result in useful applications.

A big challenge faced by all the above-mentioned applica-
tions is to prepare the entangled states, which is much more 
subtle than classically correlated states. To prepare an entangled 
state of good quality is a preliminary condition for any success-
ful experiment. In fact, this is not only a problem involved in 
experiments, but this also poses an obstacle to theories since the 
issue of how to quantify entanglement is still unsettled, which is 
now becoming one of the central topics in quantum information 
theory. Any function that quantifi es entanglement is called an 
entanglement measure. It should tell us how much entanglement 
there is in a given multipartite state. Unfortunately there is cur-
rently no consensus as to the best method to defi ne entanglement 
for all possible multipartite states. Th e theory of entanglement 
is only partially developed23,29–31 and can only be applied in a 
limited number of scenarios, where there is unambiguous way 
to construct suitable measures. Two important scenarios are (1) 
the case of a pure state of a bipartite system, that is, a system 
consisting of only two components and (2) a mixed state of two 
spin-1/2  particles.

When a bipartite quantum system AB described by HA ⊗ HB 
is in a pure state, there is an essentially well-motivated and 
unique measure of entanglement between the subsystems A and 
B given by the von Neumann entropy S. If we denote the partial 
trace of ρ with ρA, ∈ HA ⊗ HB with respect to subsystem B, ρA = 
TrB(ρ), the entropy of entanglement of the state ρ is defi ned as 
the von Neumann entropy of the reduced density operator ρA, 
S(ρ) ≡ −Tr[ρA log2 ρA]. It is possible to prove that for pure states, 
the quantity S does not change if we exchange A and B. So we 
have S(ρ) ≡ −Tr[ρA log2 ρA] ≡ −Tr[ρB log2 ρB]. For any bipartite 
pure state, if the entanglement E(ρ) is said to be good, it is oft en 
required to have the following properties: (1) For separable states 
ρsep, E(ρsep) = 0. (2) Reversible operations performed on the two 
subsystems A and B alone do not change the entanglement of the 
total systems. (3) Th e most general local operations that one can 
apply are non-unitary. (4) Th e last property for a good measure 
of entanglement is that if we take two bipartite systems in the 
total state ρt = ρ1 ⊗ ρ2, we should have E(ρt) = E(ρ1) + E(ρ2). It 
is possible to show that the quantity S has all the above proper-
ties. Clearly, S is not the only mathematical object that meets the 
requirements (1)–(4), but, in fact, it is also accepted as the correct 
and unique measure of entanglement.

Generally, the strict defi nitions of the four most promi-
nent entanglement measures can be summarized as follows33: 
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(1) entanglement of distillation ED; (2) entanglement of cost EC; 
(3) entanglement of formation EF, and fi nally (4) relative entropy 
of entanglement ER. Th e fi rst two measures are also called opera-
tional measures while the second two measures do not admit 
a direct operational interpretation in terms of entanglement 
manipulations. It can be provedthat if E is a measure defi ned on 
mixed states that satisfi es the conditions for a good entanglement 
measure mentioned above, then for all states, ρ ∈ (HA ⊗ HB), 
ED(ρ) ≤ E(ρ) ≤ EC(ρ), and both ED(ρ) and EC(ρ) coincide on 
pure states with the von Neumann reduced entropy as demon-
strated above. For the fermion system, we chose to use Zanardi’s 
measure,34 which is given in Fock space as the von Neumann 
entropy.

40.3 Quantum Teleportation

Quantum teleportation is an entanglement-assisted teleporta-
tion. It is a technique used to transfer information on a quantum 
level, usually from one particle (or series of particles) to another 
particle (or series of particles) in another location via quantum 
entanglement. Its distinguishing feature is that it can transmit 
the information present in a quantum superposition, which is 
useful for quantum communication and computation.

More precisely, quantum teleportation is a quantum protocol 
by which the information on a qubit A (quantum bit, a two-level 
quantum system) is transmitted exactly (in principle) to another 
qubit B. Th is protocol requires a conventional communication 
channel capable of transmitting two classical bits, and an entan-
gled pair (B, C) of qubits, with C at the origin location with A 
and B at the destination. Th e protocol has three steps: measure A 
and C jointly to yield two classical bits; transmit the two bits to 
the other end of the channel; and use the two bits to select one of 
four ways of recovering B.

Th e two parties are Alice (A) and Bob (B), and a qubit is, in gen-
eral, a superposition of quantum state |0〉 and |1〉. Equivalently, 
a qubit is a unit vector in a two-dimensional Hilbert space. 
Suppose Alice has a qubit in some arbitrary quantum state 
|ψ〉 = α|0〉 + β|1〉. Assume that this quantum state is not known 
to Alice, and she would like to send this state to Bob. A solution 
to this problem was discovered by Bennett et al.28 Th e parts of 
a maximally entangled two-qubit state are distributed to Alice 
and Bob. Th e protocol then involves Alice and Bob interacting 
locally with the qubits in their possession and Alice sending two 
classical bits to Bob. In the end, the qubit in Bob’s possession will 
be transformed into the desired state.

Alice and Bob share a pair of entangled qubits BC. Th at is, 
Alice has one half, C, and Bob has the other half, B. Let A denote 
the qubit Alice wishes to transmit to Bob. Alice applies a unitary 
operation on the qubits AC and measures the result to obtain 
two classical bits. In this process, the two qubits are destroyed. 
Bob’s qubit, B, now contains information about C; however, the 
information is somewhat randomized. More specifi cally, Bob’s 
qubit B is in one of four states uniformly chosen at random, and 
Bob cannot obtain any information about C from his qubit. Alice 

provides her two measured qubits that indicate which of the four 
states Bob possesses. Bob applies a unitary transformation that 
depends on the qubits he obtains from Alice, transforming his 
qubit into an identical copy of the qubit C.

Suppose that the qubit A that Alice wants to teleport to Bob 
can be generally written as |ψ〉A = α|0〉 + β|1〉. Alice and Bob 
share a maximally entangled state beforehand, for instance, one 
of the four Bell states:

 

( )

( )

( )

( )

1 0 0 1 1
2

1 0 0 1 1
2

1 0 1 1 0
2

1 0 1 1 0 .
2

C B C B

C B C B

C B C B

C B C B

+

−

+

−

Φ = ⊗ + ⊗

Φ = ⊗ − ⊗

Ψ = ⊗ + ⊗

Ψ = ⊗ − ⊗  

(40.1)

Alice takes one of the particles in the pair, and Bob keeps the 
other one. Th e subscripts C and B in the entangled state refer 
to Alice’s or Bob’s particle. We will assume that Alice and Bob 
share the entangled state ( )1 0 0 1 1

2
+Φ = ⊗ + ⊗

C B C B . 
So, Alice has two particles (A, the one she wants to teleport, and 
C, one of the entangled pair), and Bob has one particle, B. In the 
total system, the state of these three particles is given by

 ( )1 0 0 1 1
2A C B C B

ψ +
 

(40.2)

where subscripts A and C are used to denote Alice’s system, and 
subscript B is used to denote Bob’s system. Th is three-particle 
state can be rewritten in the Bell basis as

 

( ) ( ) ( )(
( ))

1 0 1 0 1 0 1
2

0 1

+ − +

−

Φ α + β + Φ α − β + Ψ β + α

+ Ψ −β + α  (40.3)

Th e teleportation starts when Alice measures her two qubits in the 
Bell basis. Given the above expression, the results of her measure-
ment is that the three-particle state would collapse to one of the 
following four states (with equal probability of obtaining each)

 

( )
( )
( )
( )

0 1

0 1

0 1

0 1 .

+

−

+

−

Φ α + β

Φ α − β

Ψ β + α

Ψ −β + α  

(40.4)
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Alice’s two particles are now entangled to each other, in one of 
the four Bell states. Th e entanglement originally shared between 
Alice’s and Bob’s qubits is now broken. Bob’s particle takes on 
one of the four superposition states shown above. Bob’s qubit is 
now in a state that resembles the state to be teleported. Th e four 
possible states for Bob’s qubit are unitary images of the state to 
be teleported.

Th e local measurement done by Alice on the Bell basis gives 
complete knowledge of the state of the three particles; the result 
of her Bell measurement tells her which of the four states the 
system is in. She simply has to send her results to Bob through a 
classical channel. Two classical bits can communicate which of 
the four results she obtained.

Aft er Bob receives the message from Alice, he will know 
which of the four states his particle is in. Using this informa-
tion, he can rotate the target qubit into the correct state |ψ〉 by 
applying the appropriate unitary transformation I, σZ, σX, or iσY. 
Quantum teleportation using pairs of entangled photons6,36–40 
and atoms8,9 have been demonstrated experimentally. Th ere are 
also schemes suggesting the use of electrons to perform quan-
tum teleportation.4,7,41

40.4  Entanglement in the 
One-Dimensional Hubbard Model

Quantum dots system is one of the proposals for building a 
quantum computer.42,43 With dimensions ranging from a mere 
1 nm to as much as 100 nm and consisting of anywhere between 
103 and 106 atoms and electrons, semiconductor quantum dots 
are oft en regarded as artifi cial atoms. Charge carriers in semi-
conductor quantum dot are confi ned in all three dimensions, 
and the confi nement can be achieved through electrical gating 
and/or etching techniques applied to a two-dimensional elec-
tron gas. To describe the quantum dots, a simple approximation 
is to regard each dot as having one valence orbital, the electron 
occupation could be |0 〉, | ↑ 〉, | ↓ 〉 and | ↑↓ 〉, with other electrons 
treated as core electrons.44 Th e valence electron can tunnel from 
a given dot to its nearest neighbor obeying the Pauli principle 
and thereby two dots can be coupled together; this is the electron 
hopping eff ect. Another eff ect needs to be considered is the on-
site electron–electron repulsion. A theoretical description of an 
array of quantum dots can be modeled by the one-dimensional 
Hubbard Hamiltonian:

 
†

,
i j i i

iij

H t c c U n nσ σ ↑ ↓
σ

= − +∑ ∑
 

(40.5)

where
t stands for the electron hopping parameter
U is the Coulomb repulsion parameter for electrons on the 

same site
i and j are the neighboring site numbers

†
ic σ and cjσ are the creation and annihilation operators

Entanglement using Zanardi’s measure can be formulated as the 
von Neumann entropy given by

 ( )2log ,j j jE Tr= − ρ ρ  (40.6)

where the reduced density matrix ρj is given by

 ( )| ,j jTrρ = Ψ Ψ  (40.7)

where
Trj denotes the trace over all but the jth site
|Ψ〉 is the antisymmetric wave function of the fermion 

system

Hence Ej actually describes the entanglement of the jth site with 
the remaining sites.

In the Hubbard model, the electron occupation of each site 
has four possibilities, there are four possible local states at each 
site, |ν〉j = |0〉j, |↑〉j, |↓〉j, |↑↓〉j. Since the Hamiltonian is invariant 
under translation, the local density matrix ρj of the jth site is site 
independent and is given by 45

 0 0j z u u w+ −ρ = + ↑ ↑ + ↓ ↓ + ↑↓ ↑↓  (40.8)

with

 ( )jj jj jw n n Tr n n↓ ↓↑ ↑= = ρ  (40.9)

 ,j ju n w u n w+ −
↑ ↓= − = −  (40.10)

 1 1 j jz u u w n n w+ −
↑ ↓= − − − = − − +  (40.11)

Th e Hubbard Hamiltonian can be rescaled to have only one 
parameter U/t. Th e entanglement of the jth site with the other 
sites is given by 45

 2 2 2 2Log Log Log Log .jE z z u u u u w w+ + − −= − − − −  (40.12)

For the one-dimensional Hubbard model with half-fi lled elec-
trons, we have 1/2↓↑ = =n n , 1/2+ −= = −u u w, and the local 
entanglement is given by

 2 2
1 12 log 2 log
2 2jE w w w w⎛ ⎞ ⎛ ⎞= − − − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠  

(40.13)

For each site the entanglement is the same. Consider the particle–
hole symmetry of the model, we can see that 1

2( ) ( )w U w U− = − , 
so the local entanglement is an even function of U. As shown in 
Figure 40.1, the minimum of the entanglement is 1 as U → ±∞. 
As U → +∞ all the sites are singly occupied the only diff erence 
is the spin of the electrons on each site, which can be referred as 
the spin entanglement. As U → −∞, all the sites are either doubly 
occupied or empty, which is referred as the space entanglement. 
Th e maximum entanglement is 2 at U = 0, which is the sum of 
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the spin and space entanglement of the system. In Figure 40.1, 
we show the entanglement for two sites and two electrons, they 
qualitatively agree with that of the Bethe ansatz solution for an 
array of sites.45

40.5  Quantum Teleportation 
in Quantum Dots

Gittings and Fisher46 showed that the entanglement in this sys-
tem can be used in quantum teleportation. However, in their 
scheme both the charge and spin of the system are used to con-
struct the unitary transformation. Here, we describe a diff erent 
scheme to perform quantum teleportation. For two half-fi lled 
coupled quantum dots, under the conservation of the total num-
ber of electrons N = 2 and the total electron spin S = 0, a quantum 
entanglement of 2, two ebits (if each of the entangled particles is 
used to encode a qubit, the entangled joint states is called an ebit 
or entangled bit. Ebits are “shared resources” that require both 
particles) can be produced according to Zanardi’s measure. Let 
us describe the teleportation scheme using three sites, A, B, and 
C. Suppose the qubit |Ψ〉 = α|↑〉 + β|↓〉 will be teleported from 
site A (Alice), to site B (Bob), where the two sites B and C are in 
an entangled state:

 ( ) ( )† † † †1 1 0 .
2 2CB C BC Bc c c c↓ ↓↑ ↑Ψ = + +

 
(40.14)

A spin-up electron and a spin-down electron are in a delocalized 
state on sites C and B. In the occupation number basis |nC↑ nC↓ 
nB↑ nB↓〉, the state of the system can be written as

 

( ) ( )
( )

† † † †1 1 10
22 2

0011 1100 1001 0110 .

CB C BC Bc c c c↓ ↓↑ ↑Ψ = + +

× + + +  (40.15)

From the state described by Equation 40.10, we can see that in 
the basis of |nC↑ nC↓〉, there are four possible states: |00〉, |11〉, |10〉, 
|01〉. Corresponding to each of the states on site C, the states on 
site B are |11〉, |00〉, |01〉, |10〉 in the occupation number basis 
|nB↑nB↓〉. Under the restriction of the conservation of total num-
ber of electrons and total spin of the system, two ebits can be 
obtained, one is in the spatial degree of freedom, and the other 
is in the spin degree of freedom. In the basis of |nC↑ nC↓ nB↑ nB↓〉, 
the two ebits are

 ( ) ( )0 1
1 11100 0011 , 1001 0110
2 2

β = + β = +  (40.16)

Th ese two ebits can be used in quantum teleportation. Th e 
C-NOT operation in the occupation number basis |nA↑ nA↓ 
nC↑ nC↓〉 is given by

 1000 1011 , 1010 1001 , 01 01C C C Cn n n n↑ ↓ ↑ ↓↔ ↔ ↔  
(40.17)

For the ebit β0, in the quantum teleportation process, in basis 
|nA↑ nA↓〉 |nC↑ nC↓ nB↑ nB↓〉, as shown in Figure 40.2, we have the 
initial state in the quantum dots:

 ( ) ( )0
110 01 1100 0011 1001 0110
2

Ψ = α + β + + +  
(40.18)

Alice performs the C-NOT operation on the two qubits she 
holds, using the source qubit as a control qubit and the half EPR 
qubit as target qubit:

 ( ) ( )1
1 110 0000 1111 01 1100 0011
2 2

Ψ = α + + β +
 

(40.19)

–50 –40 –30 –20 –10 0 10 20 30 40 50
U/t

1

1.2

1.4

1.6

1.8

2
E v

FIGURE 40.1 Local entanglement given by the von Neumann entropy 
Ev versus U/t for two sites two electrons.

H M1

M2

U

A

C

B
|Ψ0

|β

|Ψ1 |Ψ2

FIGURE 40.2 Quantum circuit for teleporting a qubit. Th e two top 
lines represent Alice’s system, while the bottom line is Bob’s system. 
β is an entangled pair of qubits Alice and Bob share. H represents a 
Hadamard transformation, M1 and M2 represent the measurement on 
the two top lines. U represents a unitary operation that Bob performs to 
rotate his qubit to the state Alice teleport. |Ψ0〉 is the initial state for the 
whole system, |Ψ1〉 is the state aft er Alice performs the C-NOT opera-
tion, and |Ψ2〉 is the state aft er Alice performs the Hadamard opera-
tion on the initial qubit she holds. Th e outcome is the teleported state 
that Bob will get aft er performing a unitary operation according to the 
result of the measurement Alice made.
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she performs the Hadamard operation on the initial qubit:

 

( ) ( )

( ) ( )

2
110 01 0000 1111
2

110 01 1100 0011
2

Ψ = α + +

+ β − +  (40.20)

Aft er these operations, Alice does the measurement M1 and 
M2 on the two qubits she holds, the following results will be 
obtained:

 

1 2

1011 11 00
1000 00 11
0111 11 00
0100 00 11

B BM M n n↑ ↓

α + β
α + β
α − β
α − β  

(40.21)

Th en aft er performing a unitary transformation using double-
electron occupation and zero-electron occupation as basis, the 
source qubit can be obtained on site B. For this system, the 
Hamiltonian to perform the C-NOT operation is given by

 

( )
( )

( )( )

( )( )

C-NOT

† †

† † † †

10 10 11 00 00 11

01 01 11 11 00 00

1 1
2

1 1 ,
2

AA CC CC

AA CC CC

A
Z CCCC

A
Z C CC CC CC C

H

c c c c

c c c c c c c c

↓↑↓↑

↓ ↓↑ ↑↓ ↓↑ ↑

= +

+ +

= σ + +

+ − σ +  (40.22)

where A
Zσ  is the Pauli matrix. We can see that by using this 

Hamiltonian, the spin entanglement of the system is fi ltered, 
the space entanglement is used in the teleportation process. 
An important result is that the original state we want to 
 teleport is in a superposition state of spin-up and spin-down 
electrons. However, aft er the teleportation process, the state 
we obtained on site B is a superposition state of double-elec-
tron  occupation and zero-electron occupation. Th e infor-
mation based on spin has been transformed to information 
based on charge, but the information content is not changed. 
It is well known that a diffi  cult task in quantum information 
 processing and spintronics is the measurement of a single 
electron spin,47 in the scheme above, we changed the quantum 
information from spin based to charge based, thus makes the 
measurement fairly easier. Th is is also important in quantum 
computation based on electron spin since the readout can be 
easily measured.

Th e Hamiltonian for the C-NOT operation can be realized 
by constructing pulse sequences using the tools of geometric 
algebra. Th e tools of geometric algebra provide a useful means 
of constructing pulse sequences for quantum logic operations.48 

Th is method is based on the use of primitive idempotents. Th e 
primitive idempotents, E±, satisfy the following properties:

 21, ( ) , 0.E E E E E E+ − ± ± + −+ = = =  (40.23)

Th ese idempotents can help simplify exponential operations as 
follows:

 , (if [ , ] 0).A E Ae e E E A E±⋅
± ±= + =∓  (40.24)

For spin-1
2  particles, the idempotents of interest are

 ( ) ( ),
Z Z Z

1 11 , 1 ,
2 2

i j ji i iE E± ±= ± σ = ± σ σ  (40.25)

where σ’s are the Pauli matrices. AE+  is thus the density matrix for 
the A spin in the up state and BE−  is the density matrix for the B 
spin in the down state. Such operators have been useful in other 
NMR quantum computing experiments.49

 1 0
0 0

0 0
E+

⎛ ⎞
= ⎜ ⎟⎝ ⎠

 (40.26)

 0 0
1 1

0 1
E−

⎛ ⎞
= ⎜ ⎟⎝ ⎠

 (40.27)

 
0 0 0 1

1 0 , 0 1
1 0 0 0x xE E+ −

⎛ ⎞ ⎛ ⎞
σ = σ =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (40.28)

Using the defi nitions of E+, E−, and σx, the Hamiltonian for 
C-NOT gate can be rewritten in a simpler form. In this part, we 
transform the state representation from Fock space to the stan-
dard quantum computing representation: |10〉 = | ↑〉 = |0〉, |01〉 = 
| ↓〉 = |1〉. In the entangled pair, we defi ne |11〉C = | ↑↓〉 = |0〉 and 
|00〉C = |0〉 = |1〉. Th en the Hamiltonian can be written as

 ( ) ( )C-NOT
A C C C C A C C A C A

X X XH E E E E E E E E+ − + − − + + −= σ + σ + + = σ +  
(40.29)

Th e physical interpretation of the above equation is an instruc-
tion to perform the σX operation on site C if site A is spin up and 
to perform the identity operation if the state on site A is spin 
down.

Th e expression of the problem in terms of idempotents also 
makes the generation of the pulse sequence quite straightfor-
ward. Th e propagator for the C-NOT can be factorized into ele-
ments that can be physically applied. Th is is accomplished by 
fi rst rewriting the propagator as

 C-NOT ( )( )A A C A A C
X XH E E E i i E− + − += + σ = + − σ  (40.30)

which can be factorized into

 ( )( )C-NOT
A A C A A

XH E iE E iE− + − += − σ +  (40.31)
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Using the fact that the idempotents can be expressed as expo-
nentials, the above expression becomes

 /2 /2
C-NOT

A C A
XiE iEH e e+ +− σ π π= ⋅  (40.32)

Th is expression can be expressed as

 /4 /4/4/4
C-NOT

A A CC
XX Z Zi iiiH e e e e− σ π σ σ π− σ ππ= ⋅ ⋅ ⋅  (40.33)

Th is is an exact expression for the propagator, and is also the 
pulse sequence for its implementation. Note here the basis for 

C
Xσ  is diff erent from the basis for A

Xσ , the basis for the former is 
double and zero occupation of site C, and the basis for the lat-
ter is spin-up and spin-down states, so in the operation C

Xσ  will 
transform between state |11〉 and |00〉 in Fock space.

For another ebit β1, in the quantum teleportation process, in 
basis |nA↑ nA↓〉 |nC↑ nC↓ nB↑ nB↓〉, we have

 ( ) ( )0
110 01 1100 0011 1001 0110
2

Ψ = α + β + + +  
(40.34)

 
( ) ( )1

1 110 0101 1010 01 1001 0110
2 2

Ψ = α + + β +
 

(40.35)

 

( ) ( )

( ) ( )

2
110 01 0101 1010
2

110 01 1001 0110
2

Ψ = α + +

+ β − +

 

(40.36)

When Alice does the measurement M1 and M2, the following 
results will be obtained:

 

1 2

1001 01 10
1010 10 01
0101 01 10
0110 10 01

B BM M n n↑ ↓

α + β
α + β
α − β
α − β  

(40.37)

For this system, the Hamiltonian to perform the C-NOT opera-
tion is

 

( )
( )

( )( )

( )( )

C-NOT

† †

† † † †

10 10 10 01 01 10

01 01 01 01 10 10

1 1
2

1 1
2

AA CC CC

AA CC CC

A
Z C CCC

A
Z C CC CC CC C

H

c c c c

c c c c c c c c

↓ ↑↓↑

↓ ↓↑ ↑↓ ↓↑ ↑

= +

+ +

= σ + +

+ − σ +  
(40.38)

Th en aft er doing a unitary transformation using the electron 
spin up and spin down as basis, the source qubit can be recov-
ered on site B. By using this Hamiltonian for the C-NOT opera-
tion the space entanglement of the system is fi ltered, the spin 
entanglement is used in the process.

Using the geometric techniques of idempotents, the 
Hamiltonian for the C-NOT gate can be written in a sim-
pler form. Here we transform the representation of the qubit 
state from Fock space to standard quantum computing state: 
|10〉 = |↑〉 = |0〉, |01〉 = |↓〉 = |1〉. In the entangled pair, we defi ne 
|10〉C = |↑〉 = |0〉 and |01〉C = |↓〉 = |1〉. Th en the Hamiltonian can 
be rewritten as

 ( ) ( )C-NOT
A C C C C A C C A A C

X X XH E E E E E E E E+ − + − − + − += σ + σ + + = + σ  
(40.39)

Th e physical interpretation of the above equation is an instruc-
tion to perform the σX operation of site C if site A is spin up and 
to do the identity operation if the site A is spin down.

Th e propagator for the C-NOT operation can be constructed 
as follows, fi rst rewriting the propagator as

 C-NOT ( )( )A A C A A C
X XH E E E i i E− + − += + σ = + − σ  (40.40)

which can be factorized into

 ( )( )C-NOT
A A C A A

XH E iE E iE− + − += − σ +  (40.41)

Using the fact that the idempotents can be expressed as expo-
nentials, the above expression becomes

 /2 /2
C-NOT

A C A
XiE iEH e e+ +− σ π π= ⋅  (40.42)

Th is expression can be expressed as

 /4 /4/4/4
C-NOT

A A CC
XX Z Zi iiiH e e e e− σ π σ σ π− σ ππ= ⋅ ⋅ ⋅  (40.43)

Th is is an exact expression for the propagator and is also a pulse 
sequence for its implementation. Note here the basis for C

Xσ  is the 
same as for A

Xσ , the electron spin-up and spin-down states.
For U ≠ 0, the state of the two-electron two-sites system can 

be described as follows:

 

1 2 1 2

2 2 2 2
1 2 1 2

1100 0011 1001 0110 ;

1,

a a b b

a a b b

Ψ = + + +

+ + + =  (40.44)

where a1 = a2, b1 = b2 because of the symmetry in the entangled 
pairs, such that the state can be written as

 2 2
0 1; 1.a b a bΨ = β + β + =  (40.45)

From the above analysis, we can see that in the case of using β0 
or β1 as ebits, the unitary transformation is performed in the 
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occupation number basis of |nB↑ nB↓〉, using basis |11〉, |00〉 or 
|10〉, |01〉. We can select the basis separately, either charge or spin. 
We can also choose the Hamiltonian (one is related to the spin 
entanglement and the other is related to space entanglement) for 
the C-NOT operation, when the Hamiltonian for one ebit is cho-
sen, the ebit corresponding to the other Hamiltonian is fi ltered.

If U > 0, the contribution of the spin entanglement to the total 
entanglement is greater than that of the space entanglement. 
Th e probability of getting the ebit |β1〉 increases as U becomes 
larger. If U < 0, the contribution of the space entanglement to 
the total entanglement becomes greater than that of the spin 
entanglement, the probability of getting the ebit |β0〉 increases as 
U becomes more negative. In the limit of U goes to ±∞, only spin 
entanglement or space entanglement will exist. Th is might be 
related to the spin charge separation in the Hubbard model.50 In 
a previous study,51 we showed that the maximum entanglement 
can be reached at U > 0 by introducing asymmetric electron 
hopping impurity to the system. Th is is very convenient in the 
quantum information processing. We can control the parameter 
U/t to increase the probability of getting either ebit.

40.6 Summary

We have proposed two schemes for the teleportation of a single 
qubit in quantum dots system modeled by the one-dimensional 
Hubbard Hamiltonian; two ebits are contained in the system 
and can be used in the teleportation process. Now we analyze 
the theoretical fi delity of these two teleportation schemes. Th e 
fi delity of teleportation is defi ned as the projection of the tele-
ported state |ψ′〉 on site C to the initial state |ψ〉 = α|0〉 + β|1〉 on 
site A, |〈ψ|ψ′〉|2. If Alice can distinguish all four possible mea-
surement outcomes, the teleportation process can, in principle, 
be completed with a 100% success rate and is deterministic. 
If Alice, on the other hand, is only able to perform a partial 
measurement on her two particles, the success probability is 
less than 100% and the teleportation is probabilistic. In the fi rst 
scheme, when the space entangled ebit is used, Alice does the 
measurement in charge basis. She can only distinguish on site 
C, whether it is doubly charged or has no charge. As a result, 
she can only distinguish two measurement results; thus the 
fi delity of this scheme is 50%. In the second scheme, by using 
the spin entanglement, Alice does the measurement in spin 
basis, all four measurement results can be distinguished, thus 
the fi delity is 100%.

We discussed implementing quantum teleportation in three-
electron system. For more electrons and in the limit of U → +∞, 
there is no double occupation, the system is reduced to the 
Heisenberg model, in the magnetic fi eld. Th e neighboring spins 
will favor the antiparallel confi guration for the ground state. If 
the spin at one end is fl ipped, then the spins on the whole chain 
will be fl ipped accordingly due to the spin–spin correlation, 
such that the spins at the two ends of the chain are entangled, a 
spin entanglement; this can be used for quantum teleportation 
and the information can be transferred through the chain. For 
U ≠ +∞, for the N-sites N-electron system with S = 0, the fi rst 

N − 1 sites entangled with the Nth site in the same way as that of 
the two-electron two-sites system: if the Nth site has 2 electrons, 
then the fi rst N − 1 sites will have N − 2 electrons; if the Nth site 
has 0 electrons, then the fi rst N − 1 sites will have N electrons; 
if the Nth site has 1 spin-up electron, then the total spin of the 
fi rst N − 1 sites will be 1 spin down; if the Nth site has the 1 spin-
down electron, then the total spin of the fi rst N − 1 sites will be 
1 spin up. So the same procedure discussed above can be used 
for quantum teleportation, but the new system with N-electrons 
is much more complicated than the previous three electron sys-
tem. Moreover, Alice needs to control the fi rst N − 1 sites and the 
source qubit. Th is situation is diff erent from the spin chain. Th e 
correlation cannot be transferred from one end to the other.

We have studied the entanglement of an array of quantum 
dots modeled by the one-dimensional Hubbard Hamiltonian 
and its application in quantum teleportation. Th e entanglement 
in this system is a mixture of space and spin entanglement. Th e 
application of such an entanglement in quantum teleportation 
process has been discussed. By applying diff erent Hamiltonian 
for the C-NOT operation, we can separate the ebit based on space 
entanglement or spin entanglement and apply it in quantum 
teleportation process. It turns out that if we use the ebit of the 
space entanglement, we can transform the spin-based quantum 
information to the charge-based quantum information making 
the measurement fairly easy.

Effi  cient long-distance quantum teleportation is crucial for 
quantum communication and quantum networking schemes. 
Ursin52 et al. have performed a high-fi delity teleportation of pho-
tons over a distance of 600 m across the River Danube in Vienna, 
with the optimal effi  ciency that can be achieved using linear 
optics. Another exciting experiment in quantum communica-
tion has also been performed by Ursin et al.53,54 One photon is 
measured locally at the Canary Island of La Palma, whereas the 
other is sent over an optical free-space link to Tenerife, where 
the Optical Ground Station of the European Space Agency acts 
as the receiver. Th is exceeds previous free-space experiments by 
more than an order of magnitude in distance, and is an essen-
tial step toward future satellite-based quantum communication. 
Recently, decoy-state quantum cryptography over a distance of 
144 km between two Canary Islands was demonstrated success-
fully. Such experiments also open up the possibility of quantum 
communication on a large scale using satellites.

Th e teleportation of single qubits is insuffi  cient for a large-
scale realization of quantum communication and quantum 
computation. Many scientists have developed and exploited 
teleportation of two-qubit composite system using a six-photon 
interferometer.55 In this experiment, a six-photon interferome-
ter has been exploited to teleport an arbitrary polarization state 
of two photons. Th e observed teleportation fi delities for diff er-
ent initial states are all well beyond the state estimation limit 
of 0.40. Not only does a six-photon interferometer provide an 
important step toward the teleportation of a complex system, 
but it will also enable future experimental investigations on a 
number of fundamental quantum communication and compu-
tation protocols.
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