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Constructing appropriate unitary matrix operators for new quantum algorithms and finding the mini-
mum cost gate sequences for the implementation of these unitary operators is of fundamental impor-
tance in the field of quantum information and quantum computation. Evolution of quantum circuits
faces two major challenges: complex and huge search space and the high costs of simulating quantum
circuits on classical computers. Here, we use the group leaders optimization algorithm to decompose
a given unitary matrix into a proper-minimum cost quantum gate sequence. We test the method on
the known decompositions of Toffoli gate, the amplification step of the Grover search algorithm,
the quantum Fourier transform, and the sender part of the quantum teleportation. Using this proce-
dure, we present the circuit designs for the simulation of the unitary propagators of the Hamiltonians
for the hydrogen and the water molecules. The approach is general and can be applied to generate
the sequence of quantum gates for larger molecular systems. © 2011 American Institute of Physics.
[doi:10.1063/1.3575402]

I. INTRODUCTION

Quantum computation promises to solve fundamental,
yet otherwise intractable, problems in many different fields.
To advance the quantum computing field, finding circuit de-
signs to execute algorithms on quantum computers (in the cir-
cuit model of quantum computing) is important. Therefore, it
is of fundamental importance to develop new methods with
which to overcome the difficulty in forming a unitary matrix
describing the algorithm (or the part of the computation), and
the difficulty to decompose this matrix into the known quan-
tum gates.1 Realizing the theoretical problems of quantum
computers requires the overcoming decoherence problem.2

Recently, West et al. demonstrated numerically that high fi-
delity quantum gates are possible in the frame work of quan-
tum dynamic and decoupling.3

It has been shown that the ground and excited state
energies of small molecules can be carried out on a quantum
computer simulator using a recursive phase-estimation
algorithm.4–7 Lanyon et al. reported the application of pho-
tonic quantum computer technology to calculate properties
of the hydrogen molecule in a minimal basis.8 For the
simulation of quantum systems, it is needed to find efficient
quantum circuits.

The problem in the decomposition of a given unitary ma-
trix into a sequence of quantum logic gates can be presented
as an optimization problem. Williams and Gray9 suggested
the use of genetic programming technique to find new circuit
designs for known algorithms and also presented results for
the quantum teleportation. Yabuki, Iba,10 and Peng et al.11

focused on circuit designs for the quantum teleportation by
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using different genetic algorithm techniques. Spector12 ex-
plains the use of genetic programming to explore new quan-
tum algorithms. Stadelhofer13 used the genetic algorithms to
evolve black box quantum algorithms. There are also some
other works14–16 which evolve quantum algorithms or circuits
by using the genetic programming or the genetic algorithms.
Review of these procedures can be found in Ref. 17. The evo-
lution of quantum circuits faces two major challenges: com-
plex and huge search space and the high costs of simulating
quantum circuits on classical computers. In this paper, we
use our recently developed group leaders optimization algo-
rithm (GLOA)18—an evolutionary algorithm—to decompose
the unitary matrices into a set of quantum gates. We show how
our approach can be used to find the circuit representation of
a quantum algorithm or the unitary propagator of a quantum
system, which is essential to perform the simulation. The ap-
proach was tested on the operators of the Grover search algo-
rithm; the sender part of the quantum teleportation; the Toffoli
gate; and the quantum Fourier transform. It was also used to
find the circuit designs for the simulations of the hydrogen
and the water molecules on quantum computers.

This paper is organized as follows: after giving the essen-
tials of the objective function in Sec. II, we give the optimiza-
tion results for quantum algorithms in Sec. III. And in Sec. IV
we explain how the method can be used to design circuits for
the simulation of molecular Hamiltonians and present the cir-
cuit designs and their simulations within the phase estimation
algorithm for the hydrogen and water molecules.

II. THE OVERVIEW OF THE OPTIMIZATION SCHEME

A. The objective

The objective of the optimization process is to find quan-
tum circuits with minimum costs and errors. Thus, there
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are two factors which need to be optimized within the
optimization: the error and the cost of the circuit. The min-
imization of the error to an acceptable level is more important
than the cost in order to get more accurate and reliable results
in the optimization process (The importance of the cost and
the error in the approximated circuit can be adjusted by an ob-
jective function constituting both with some weights); hence,
in the optimization the circuit giving a better approximation
to the solution is always preferred over the other circuit with
a lower cost.

1. The fidelity error

For the unitary matrix representation of a candidate ap-
proximation circuit, Ua , in the optimization and a given target
unitary matrix Ut , Williams and Gray9 described the quality
of the circuit as follows:

f (Ua, Ut ) =
2n∑

i=1

2n∑
j=1

|Ut(i j) − Ua(i j)|, (1)

where Ut and Ua ∈ U 2n
and f = 0 when Ut = Ua . Since the

global phase differences between two quantum systems are
physically indistinguishable; when Ut and Ua are different
only in terms of their global phases, the value of f should
be zero. However, Eq. (1) is unlikely to produce zero for this
case. Here, instead of Eq. (1), we use the trace fidelity er-
ror which ignores the global phase differences; hence, makes
the optimization easier by diversifying the reachable solutions
for a problem in complex space. The trace fidelity is given
by

F = 1

N

∣∣∣T r
(

UaU †
t

)∣∣∣ , (2)

where N = 2n (n is the number of qubits); the symbol †
represents the complex conjugate transpose of a matrix; and
T r (. . .) is the trace of a matrix. Since the product of two
unitary matrices is another unitary matrix all eigenvalues of
which have absolute value 1, F is always in the range [0, 1]
and is equal to 1 when Ua = Ut . The fidelity error used in the
optimization to measure how similar the unitary operators Ua

and Ut are is defined as19

ε = 1 − F2, (3)

where F is squared to increase the effects of small fidelity
changes in the error.

2. The cost of a circuit

The cost of a circuit describes the level of ease with
which this circuit is implemented; in order to make the imple-
mentation of a circuit easier and the circuit less error-prone,
the cost also needs to be optimized by minimizing the number
of gates in the circuit.

However, defining the cost of a circuit is not an easy task
due to the fact that each quantum computer model may have
a different cost for a given quantum gate. Here, the costs of
a one-qubit gate and a control (two-qubit) gate are defined as
1 and 2, respectively. Since the implementation of a multi-

FIG. 1. The circuit design for the Toffoli gate.

control gate (n-qubit network) requires �(2n) (see Ref. 20),
its cost is defined as 2n where n is the number of qubits on
which the gate is operating. The cost of a circuit is found
by summing up the costs of the gates composing the circuit.
For instance, the cost of the circuit in Fig. 1 is 10. The real
implementation cost of a circuit may be different than this
abstraction; nevertheless, a lower-cost circuit found in the op-
timization likely costs less than a higher-cost circuit in the
implementation.

B. The representation of quantum gates in the
optimization

We use similar representation method to the method of
the Cartesian genetic programming21 in which each function
set and inputs (in our case, gates and qubits) are represented
as integers and genotypes including the inputs and the gates,
which are represented as integer strings. The difference is
since the quantum gates may have an effect on the whole sys-
tem, the gates should be represented in time steps; that means
we cannot give the same inputs to two different gates at the
same time as it is done in classical circuits. In the strings of
the genotypes each four numbers represent a gate, the qubit
on which the gate operates, the control qubit, and the angle
for the rotation gates. The integers for gates are determined
by looking at the indices of the gates in the gate set. For a
given set of gates {V, Z , S, V †} (see Appendix for the matrix
representation of these gates), an example of numeric string
representing the circuit in Fig. 1 is as

1 3 2 0.0; 2 3 1 0.0; 3 2 1 0.0; 4 3 2 0.0; 2 1 3 0.0,

where the each group of four numbers separated by semi-
colons describes the each quantum gate in the circuit: the first
numbers with bold fonts identify the gates ({V = 1, Z = 2,

S = 3, V † = 4}), the last numbers are the values of the angles
between 0 and 2π (for nonrotation gates it is considered 0.),
and the middle integers are the target and the control qubits,
respectively, (the semicolons and the bold fonts do not appear
in the real implementation). For multicontrol gates the qubits
between the control and the target qubits are also considered
as control qubits.

The length of a numeric string is the maximum number of
gates a circuit can include. The required maximum number of
gates can be very large: Suppose U acts on a 2n-dimensional
Hilbert subspace. Then U may be written as a product of at
most 2n−1(2n − 1) two-level unitary systems.1 For five-qubits,
there may be 496 two-level unitary matrices required to form
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FIG. 2. The flow chart of the group leaders optimization algorithm.

a given U . In our optimization cases, the maximum number
of gates (maxgates) is limited to 20 gates.

C. The group leaders optimization algorithm

The group leaders optimization algorithm described in
more detail in Ref. 18 is a simple and effective global op-
timization algorithm that models the influence of leaders in
social groups as an optimization tool. The general structure
of the algorithm is made up by dividing the population into
several disjunct groups each of which has its leader (the best
member of the group) and members. The algorithm which
is different from the earlier evolutionary algorithms and the
pivot method algorithm22–24 consists of two parts. In the first
part, the member itselfthe group leader with possible random
part-and a new-created random solution are used to form a
new member. This mutation is defined as

new member = r1 portion of old member

∪ r2 portion of leader

∪ r3 portion of random,

(4)

where r1, r2, and r3 determine the rates of the old mem-
ber, the group leader, and the new-created random solution
into the new formed member and they sum to 1. In our case,

they are set as r1 = 0.8 and r2 = r3 = 0.1. The mutation for
the values of the all angles in a numerical string is done ac-
cording to the arithmetic expression: anglenew = r1 × angleold
+ r2 × angleleader + r3 × anglerandom , where angleold, the
current value of an angle, is mutated: anglenew, the new value
of the angle, is formed by combining a random value and the
corresponding leader of the group of the angle and the cur-
rent value of the angle with the coefficients r1, r2, and r3. The
mutation for the rest of the elements in the string means the
replacement of its elements by the corresponding elements of
the leader and a newly generated random string with the rates
r2 and r3.

In addition to the mutation, in each iteration for each
group of the population one-way-crossover (also called the
parameter transfer) is done between a chosen random member
from the group and a random member from a different random
group. This operation is mainly replacing some random part
of a member with the equivalent part of a random member
from a different group. The amount of the transfer operation
for each group is defined by a parameter called transfer rate,
here, which is defined as 4×maxgates

2 − 1, where the numerator
is the number of variables forming a numeric string in the op-
timization.

1. The replacement criteria

If a new formed (or mutated) member gives less error-
prone solution to the problem than the corresponding old
member, or they have the same error values but the cost of
the new member is less than the old member, then the new
member survives and replaces the old member; otherwise, the
old member remains for the next iteration and the new one
formed is discarded.

The flow chart of the algorithm for our optimization
problem is drawn in Fig. 2. For more information about the
algorithm, the reader is referred to Ref. 18.

D. Parameters in the optimization

The parameters for the algorithm and maxgates are defined
in subsections II B and II C, the rest of the parameters used in
the optimization are defined as follows: The default gate set
consists of the rotation gates (Rx , Ry, Rz, Rzz); X, Y, Z which
are the Pauli operators σx , σy, and σz , respectively; the square
root of X gate (V ); the complex conjugate of V gate (V †),
S gate, T gate, and H (Hadamard) gate; and the controlled
versions of these gates. For the matrix representation of these
gates, please see Appendix. The angle values for the rotation
gates are taken as in the range [0, 2π ].

The test cases are divided into two categories: the known
quantum algorithms and the unitary propagators of the molec-
ular Hamiltonians. In the case of quantum algorithms the
number of iterations is limited to 6000 iterations for the four-
qubit quantum Fourier transform and 2000 for the rest while
in the case of molecular Hamiltonians it is limited to 15 000.
For both cases, the parameters of the algorithm: the number of
group is set to 25 and the number of population in each group
is set to 15; so the total initial population is 375. Sections III
and IV give and discuss the results.
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FIG. 3. The evolution of the fidelity error for quantum algorithms.

III. CIRCUIT DESIGNS FOR THE QUANTUM
ALGORITHMS

The circuit designs for the cases of the known algorithms
are not only important to find different circuit designs which
may ease the implementation difficulties in different quan-
tum computer models but also to test the correctness, the
efficiency, and the reliability of the optimization method on
known results before using it to find the circuit representa-
tions of the more complex cases and the cases where the char-
acteristics of the solutions are unknown. Hence, we use the
optimization method to measure the ability of the method by
finding circuit designs for the Toffoli gate, the Grover search
algorithm, the quantum Fourier transform, and the quantum
teleportation. The more details about these algorithms can be
found in Ref. 1. The resulting circuit designs with the descrip-
tions of the problems are given in subsections III A–III D. For
each case, the evolution of the minimum fidelity error with
respect to the number of iterations is plotted in Fig. 3.

A. The Toffoli gate

The Toffoli gate has two controls, the first and the sec-
ond, qubits and one target, the third, qubit (see Appendix for
the matrix representation). The circuit diagram for the uni-
tary matrix of this gate shown in Fig. 1 which has the same
length as the known circuit designs (see Ref. 25). The algo-
rithm reaches the exact solution in 500 iterations as shown in
Fig. 3.

B. The amplification part of the Grover search
algorithm

Grover’s algorithm searches an unstructured N-element
list in O(

√
N ) time compared to its classical counterpart

which is O(N ). The unitary operator for the amplification part
of the Grover search algorithm (GSA) is constructed as26

Di j =
{ 2

N , if i �= j

−1 + 2
N , if i = j

. (5)

FIG. 4. The circuit design for the two-qubit quantum Fourier transform.

The algorithm reaches the explicit circuit diagram for the op-
erator D for two- qubits shown in Fig. 5 after 100 iterations,
which is shown in Fig. 3.

C. The quantum Fourier transform

The quantum Fourier transform (QFT) is one of the key
ingredients of the quantum factoring algorithm and many
other quantum algorithms. The unitary operator of the QFT
is constructed as1

1√
2n

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 w w2 · · · 1
1 w2 w4 · · · wβ

1 w3 w6 · · · w2β

...
...

...
. . .

...
1 wβ w2β · · · wβ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

where β = 2n − 1 and w = e2π i/2n
.

In our optimization, we use the two-, three-, and four-
qubit quantum Fourier transforms for which the circuit de-
signs are found as in Figs. 4, 6, and 7, respectively. The ap-
proximated circuit for the three-qubit case consists of eight
gates: five control and three single gates, while the circuit
design for the same case in Ref. 1 consists of six control
gates and requires swap operations at the end of the circuit. In
Fig. 7, 13 control and four single gates form the approximated
circuit for the four-qubit QFT in which there is only one more
control gate in comparison to the general circuit design of the
QFT given in Ref. 1 (the swap gates are also included in the
comparison). While the result for the two-qubit case is exact,
for the three-and the four-qubit cases small fidelity errors exist
as shown in Fig. 3 because of the approximation of the angle
values for the two rotation gates in the circuit.

D. The quantum teleportation

Suppose Alice who has the first qubit wants to send in-
formation to Bob who has the second qubit. Quantum tele-
portation is a protocol which allows Alice to communicate an
unknown quantum state of a qubit by using two classical bits
in a way that Bob is able to reproduce the exact original state
from these two classical bits.1, 27 Here, only the sender part of

FIG. 5. The circuit design for the two-qubit amplification part of the Grover
search algorithm.
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FIG. 6. The circuit design for the three-qubit quantum Fourier transform.

the quantum teleportation is used in the optimization since the
unitary operator of the receiver part of the algorithm is simi-
lar to the sender part. The matrix representation of the sender
part of the algorithm is given in Appendix. Figure 8 shows
the resulting circuit design for this matrix which is found in
300 iterations (see Fig. 3). The circuit design in Fig. 8 consists
of four gates and has the same length as that of the most well
known and efficient circuit designs given in Refs. 9 and 28.

IV. CIRCUIT DESIGNS FOR THE SIMULATION
OF MOLECULAR HAMILTONIANS

Finding the low cost circuit representations of complex
exponentials of the molecular Hamiltonians are important
to be able to perform simulations on quantum computers.
Here, after explaining the electronic Hamiltonian in the sec-
ond quantized form and how to map the fermionic quantum
operators to the standard quantum operators, we show how
to use the optimization method to find quantum circuits for
the molecular Hamiltonians and the simulation results for the
water and the hydrogen molecules within the phase estimation
algorithm.

Fermion model of quantum computation is defined
through the spinless fermionic annihilation (a j ) and creation
(a†

j ) operators for each qubit j ( j = 1, . . . , n), where the
algebra of 2n elements obey the fermionic anticommutation
rules:29

{ai , a j } = 0,
{
ai , a†

j

} = δi j , (7)

where {A, B} = AB + B A defines the anticommutator.
Using the Jordan–Wigner transformation,30 the fermion
operators are mapped to the standard quantum computation
operators through the Pauli spin operators:

a j →
(

j−1∏
k=1

−σ k
z

)
σ

j
− = (−1) j−1 σ 1

z σ 2
z ....σ j−1

z σ
j

−

a†
j →

(
j−1∏
k=1

−σ k
z

)
σ

j
+ = (−1) j−1 σ 1

z σ 2
z ....σ j−1

z σ
j

+.

(8)

Once the electronic Hamiltonian is defined in second quan-
tized form, the state space can be mapped to qubits. The
molecular electronic Hamiltonian, in the Born–Oppenheimer
approximation, is described in the second quantization form
as8, 31, 32

H =
∑

pq

h pqa†
paq + 1

2

∑
pqrs

h pqrsa†
pa†

qasar , (9)

where the matrix elements h pq and h pqrs are the set of one-
and two-electron integrals. Let the set of single-particle spa-
tial functions constitute the molecular orbitals {ϕ(r)}M

k=1 and
the set of spin orbitals {χ (x)}2M

p=1 be defined with χp = ϕiσi

and the set of space-spin coordinates x = (r, ω) where σi is a
spin function. The one-electron integral is defined as31

h pq =
∫

dxχ∗
p(x)

(
−1

2
�2 −

∑
α

Zα

rαx

)
χq (x)

= 〈ϕp | H (1) | ϕq〉δσpσq (10)

and the two electron integral is

h pqrs =
∫

dx1dx2
χ∗

p(x1)χ∗
q (x2)χs(x1)χr (x2)

r12

= 〈ϕp | 〈ϕq | H (2) | ϕr 〉 | ϕs〉δσpσq δσr σs ,

(11)

where rαx is the distance between the αth nucleus and
the electron, r12 is the distance between electrons, �2 is
the Laplacian of the electron spatial coordinates, and χp(x)
is a selected single-particle basis: χp = ϕpσp, χq = ϕqσq ,
χr = ϕrσr , and χs = ϕsσs . For detailed description of quan-
tum computation for molecular energy simulations, see
Whitfield et al.31

A. Phase estimation algorithm

Quantum computing provides an efficient method, the
phase estimation algorithm (PEA),4, 33, 34 to estimate the en-
ergy eigenvalues of a molecular Hamiltonian:35 Suppose we
have the unitary operator U = e−iHt/¯ for a Hamiltonian H

FIG. 7. The circuit design for the four-qubit quantum Fourier transform.
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FIG. 8. The circuit design for the sender part of the quantum teleportation.

with energy eigenstates |ψ j 〉 corresponding energy eigenval-
ues E j , i.e., H|ψ j 〉 = E j |ψ j 〉. Since E j is an eigenvalue of H;
if t and ¯ are set to 1, then e−i E j is the eigenvalue of the uni-
tary operator U . Therefore, N × N unitary transformation U
has an orthonormal basis of eigenvectors |ϕ1〉, |ϕ2〉, . . . , |ϕN 〉
with eigenvalues λ j = e2π iφ j . The iterative PEA depicted in
Fig. 9 can be used to estimate the value of the phase φ j which
also allows us to determine the corresponding eigenvalue E j

of the Hamiltonian H. The phase φ j is obtained from the mea-
surement results described as a binary expansion:

φ j = (0.φ1φ2 . . . φm)binary

= φ12−1 + φ22−2 . . . φm−12−m+1 + φm2−m . (12)

To find the circuit equivalence of U 2k
in Fig. 9 the an-

gle values of the rotation gates in the circuit represented by
U are multiplied by 2k in each kth iteration of the algorithm
since Rx (θ )2k = Rx (2kθ ), Ry(θ )2k = Ry(2kθ ), and Rz(θ )2k

= Rz(2kθ ).

B. Simulation of the hydrogen molecule

The key challenge of exact quantum chemistry calcu-
lations is the exponential growth of our description of the
wave function with the number of atoms. Consider a simple
molecule such as methanol. Using only the 6-31G** basis for
the valence electrons, there are 50 orbitals. The 18 valence
electrons can be distributed in these orbitals in any way that
satisfies the Pauli exclusion principle. This leads to about 1017

possible configurations making an exact or full configuration
interaction (FCI) calculation impossible. Recently, a quantum
algorithm for the solution of the FCI problem in polynomial
time was proposed by Aspuru-Guzik et al.5 This algorithm
employed the Hartree–Fock wave function as a reference for
further treatment of the correlation effects by the FCI Hamil-
tonian on the quantum computer. Using an optical quantum
computer, Lanyon et al.8 presented an experimental realiza-

FIG. 9. The iterative phase estimation algorithm for the kth iteration.4, 33, 34

In the circuit |ϕ j 〉 is an eigenvalue of U , and the angle wk of
the Rz gate depends on the previous measured bits defined as wk

= −2π (0.0φkφk−1...φm )binary, where m is the number of digits determining
the accuracy of the phase φ j . Note that wk is zero at the first iteration of the
algorithm.

tion of quantum simulation of the energy spectrum of the hy-
drogen molecule. The key limitation in it is the representation
of the simulated system’s propagator.

One spatial function is needed per atom denoted ϕH1

and ϕH2 to describe the hydrogen molecule in minimal basis
which is the minimum number of spatial functions required
to describe the system. The molecular spatial orbitals are de-
fined by symmetry: ϕg = ϕH1 + ϕH2 and ϕu = ϕH1 − ϕH2;
which correspond to four spin–orbitals: |χ1〉 = |ϕg〉|α〉,
|χ2〉 = |ϕg〉|β〉, |χ3〉 = |ϕu〉|α〉, and |χ4〉 = |ϕu〉|β〉. The
STO-3G basis is used to evaluate the spatial integrals of
the Hamiltonian which is defined as H = H (1) + H (2), where
since h pqrs = h pqsr , H (1) and H (2) are simplified as8, 31, 36

H (1) = h11a†
1a1 + h22a†

2a2 + h33a†
3a3 + h44a†

4a4, (13)

and

H (2) = h1221a†
1a†

2a2a1 + h3443a†
3a†

4a4a3 + h1441a†
1a†

4a4a1

+ h2332a†
2a†

3a3a2 + (h1331 − h1313)a†
1a†

3a3a1

+ (h2442 − h2424)a†
2a†

4a4a2 + (h1423)(a†
1a†

4a2a3

+ a†
3a†

2a4a1) + (h1243)(a†
1a†

2a4a3 + a†
3a†

4a2a1). (14)

Using the findings in Ref. 31 for the spatial integral values
evaluated for atomic distance 1.401 a.u. in Eqs. (13) and (14),
the Hamiltonian matrix found as a matrix of order 16 (see
the Appendix for the Hamiltonian matrix), so four qubits are
required to implement the unitary propagator of this Hamilto-
nian which is found from e−iHt (see Ref. 37).

The decomposed circuit design for the unitary propaga-
tor of the hydrogen molecule is shown in Fig. 10. The circuit
in Fig. 10 does not include the approximation error coming
from the Trotter–Suzuki decomposition; however, it has some
small errors which can be gauged from Fig. 11(a) showing
the evolution of the error through the iterations of the op-
timization. Therefore, the evolution of the cost is given in
Fig. 11(b).

The global phase with e1.5i is added to the beginning
of the circuit in Fig. 10 which allows the phase estima-
tion algorithm to generate more accurate results. This global
phase is estimated as phase = esign(I m(p))acos(Re(p))i , where
p = T r (UaUH2 )/16 and Ua is the matrix representation of
the found circuit. The circuit including the global phase is
also simulated within the phase estimation algorithm (for
each value the IPEA is run 20 times). The phase and en-
ergy eigenvalues computed from the simulation are given
in Table I with the exact eigenvalues of the Hamiltonian
matrix.

C. Simulation of the water molecule

The excited states of molecular systems are difficult to
resolve by employing the Hartree–Fock wave function as an
initial trial state. The main reason for this difficulty is due
to the fact that contributions from several configuration state
functions (CSF) must be considered if one is seeking a rea-
sonable overlap of the trial state with the exact wave func-
tion. Wang et al.6 developed a quantum algorithm to obtain
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FIG. 10. The circuit design for the unitary propagator of the Hamiltonian of hydrogen molecule. The unitary propagator is found by using the spatial integral
values in Ref. 31 and the definitions for the annihilation and creation operators in Eq. (8) into Eq. (13) and Eq. (14).

the energy spectrum of molecular systems based on the multi-
configurational self-consistent field (MCSCF) wave function.
By using a MCSCF wave function as the initial guess, the
excited states are accessible. They demonstrate that such an
algorithm can be used to obtain the energy spectrum of the
water molecule. The geometry used in the calculation is near
the equilibrium geometry (OH distance R = 1.8435 a0 and
the angle HOH = 110.57). With a complete active space type

FIG. 11. The evolutions of the cost and the error in the optimization for the
exponentials of the Hamiltonians of the water and the hydrogen molecules.

MCSCF method for the excited-state simulation, the CI space
is composed of 18 CSFs, so five-qubits are required to repre-
sent the wave function.

After finding the molecular Hamiltonian H as a matrix of
order 18, we deploy the same idea as in Ref. 38 and define the
unitary operator as

ÛH2 O = eiτ (Emax−H)t (15)

where τ is defined as

τ = 2π

Emax − Emin
. (16)

Emax and Emin are the expected maximum and minimum en-
ergies. The choice of Emax and Emin must cover all the eigen-
values of the Hamiltonian to obtain the correct results. The
final energy E j is found from the expression

E j = Emax − 2πφ j

τ
, (17)

where φ j is the corresponding phase of the E j . Since the
eigenvalues of the Hamiltonian of the water molecule are
between −80 ± ε and −84 ± ε (ε ≤ 0.1) taking Emax = 0
and Emin = −200 gives the following:

Û = e
−i2π H

200 t . (18)

TABLE I. The found and the corresponding exact eigenvalues of the
Hamiltonian of the hydrogen molecule.

Phase Found energies Exact energies

0.0139 −0.0872 0.0000
0.0314 −0.1971 0.2064
0.0404 −0.2536 − 0.2339
0.0433 −0.2720 − 0.3613
0.0685 −0.4304 − 0.3613
0.0982 −0.6171 − 0.4759
0.1204 −0.7564 − 0.4759
0.1676 −1.0531 − 0.8836
0.1753 −1.1015 − 1.1607
0.1765 −1.1089 − 1.1607
0.1862 −1.1698 − 1.2462
0.2127 −1.3362 − 1.2462
0.2136 −1.3422 − 1.2462
0.2257 −1.4179 − 1.2525
0.2313 −1.4534 − 1.2525
0.2894 −1.8182 − 1.8511
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FIG. 12. The circuit design for the unitary propagator of the water molecule.

Figure 12 shows the circuit diagram for this unitary oper-
ator. The cost of the circuit is 44 [see Fig. 11(b)] deter-
mined by summing up the cost of each gates in the circuit.
The evolution of the fidelity error with respect to the num-
ber of iterations is plotted in Fig. 11(a). Since we take Emax

as zero, this deployment does not require any extra quantum
gate for the implementation within the phase estimation algo-
rithm. The simulation of this circuit within the iterative PEA
results the phase and energy eigenvalues given in Table II:
the left two columns are the computed phases and the corre-
sponding energies, respectively, while the rightmost column
of the matrix is the eigenvalues of the Hamiltonian of the wa-
ter molecule (for each value of the phase, the IPEA is run
20 times).

V. CONCLUSION

To be able to simulate Hamiltonians of atomic and
molecular systems and also apply quantum algorithms to
solve different kinds of problems on quantum computers, it

TABLE II. The found and the exact energy eigenvalues of the water
molecule.

Phase Found energy Exact energy

0.4200 −84.0019 −84.0021
0.4200 −84.0019 −83.4492
0.4200 −84.0019 −83.0273
0.4200 −84.0019 −82.9374
0.4200 −84.0019 −82.7719
0.4200 −84.0019 −82.6496
0.4200 −84.0019 −82.5252
0.4200 −84.0019 −82.4467
0.4144 −82.8884 −82.3966
0.4144 −82.8884 −82.2957
0.4144 −82.8884 −82.0644
0.4144 −82.8884 −81.9872
0.4144 −82.8884 −81.8593
0.4144 −82.8884 −81.6527
0.4144 −82.8884 −81.4592
0.4144 −82.8884 −81.0119
0.4122 −82.4423 −80.9065
0.4122 −82.4423 −80.6703

is necessary to find implementable quantum circuit designs
including the minimum cost and number of quantum gate se-
quences. Since deterministic-efficient quantum circuit design
methodology is an open problem, we applied stochastic evo-
lutionary optimization algorithm, GLOA, to search a quan-
tum circuit design for the given unitary matrix representing
a quantum algorithm or the unitary propagator of a molecu-
lar Hamiltonian. In this paper, in addition to explaining the
ways of the implementation and design of the optimization
problem, we give circuit designs for the Grover search algo-
rithm, the Toffoli gate, the quantum Fourier transform, and
the quantum teleportation. Moreover, we find the circuit de-
signs for the simulations of the water molecule and the hydro-
gen molecule by decomposing the unitary matrix operators
found by following the fermionic model of quantum compu-
tation and then simulate them within the phase estimation al-
gorithm. In the case of the hydrogen molecule we found that
the number of gates needed to simulate the unitary operator is
14 quantum gates (excluding the global phase) with the cost
of 20. For the water molecule the cost of the number of opera-
tions is found to be 44 from the definition of the cost. The ap-
proach is general and can be applied to generate the sequence
of quantum gates for larger molecular systems. Research is
underway to generate the quantum circuit design for the sim-
ulation of the molecular Hamiltonian of CH2.38
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APPENDIX

The matrix representation of quantum gates and algo-
rithms used in the optimization as follows:1, 20, 27

X , Y , and Z gates which are the Pauli operators σx , σy ,
and σz and Hadamard gate:

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
,

Z =
(

1 0
0 −1

)
, H = 1√

2

(
1 1
1 −1

)
.

(A1)
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S gate and T, π
8 , gate are

S =
(

1 0
0 i

)
, T =

⎛
⎝ 1 0

0 exp

(
i
π

4

)⎞
⎠ . (A2)

Square root of NOT (X) gate and its complex conjugate
are

V = 1

2

(
1 + i 1 − i
1 − i 1 + i

)
, V † = 1

2

(
1 − i 1 + i
1 + i 1 − i

)
. (A3)

Rotation gates are

Rx (θ ) =

⎛
⎜⎜⎜⎝

cos

(
θ

2

)
i sin

(
θ

2

)

i sin

(
θ

2

)
cos

(
θ

2

)
⎞
⎟⎟⎟⎠ ,

Ry(θ ) =

⎛
⎜⎜⎜⎝

cos

(
θ

2

)
sin

(
θ

2

)

− sin

(
θ

2

)
cos

(
θ

2

)
⎞
⎟⎟⎟⎠ ,

Rz(θ ) =
(

1 0

0 exp(iθ )

)
,

Rzz(θ ) =
(

exp(iθ ) 0

0 exp(iθ )

)
.

(A4)

The matrix representation of the Toffoli gate is as fol-
lows: ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A5)

The matrix representation of the sender part of the quantum
teleportation is as follows:10, 40

1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1 0 0 1 0 1

0 1 0 −1 1 0 1 0

0 1 0 1 1 0 −1 0

1 0 −1 0 0 1 0 1

−1 0 −1 0 0 1 0 1

0 −1 0 1 1 0 1 0

0 −1 0 −1 1 0 −1 0

−1 0 −1 0 0 1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The Hamiltonian of the hydrogen molecule which is
found by using the spatial integral values in Ref. 31 is as fol-
lows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.2064 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1.1607 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1.1607 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1.8305 0 0 0 0 0 0 0 0 0.1813 0 0 0

0 0 0 0 −0.3613 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −1.2462 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1.0649 0 0 −0.1813 0 0 0 0 0 0

0 0 0 0 0 0 0 −1.2525 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −0.3613 0 0 0 0 0 0 0

0 0 0 0 0 0 −0.1813 0 0 −1.0649 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1.2462 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1.2525 0 0 0 0

0 0 0 0.1813 0 0 0 0 0 0 0 0 −0.2545 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −0.4759 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.4759 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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