
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Purdue University Libraries]
On: 15 April 2011
Access details: Access Details: [subscription number 933005664]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Molecular Physics
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713395160

Group leaders optimization algorithm
Anmer Daskina; Sabre Kaisb

a Department of Computer Science, Purdue University, West Lafayaette, IN 47907, USA b Department
of Chemistry and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA

Online publication date: 03 March 2011

To cite this Article Daskin, Anmer and Kais, Sabre(2011) 'Group leaders optimization algorithm', Molecular Physics, 109: 5,
761 — 772
To link to this Article: DOI: 10.1080/00268976.2011.552444
URL: http://dx.doi.org/10.1080/00268976.2011.552444

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713395160
http://dx.doi.org/10.1080/00268976.2011.552444
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Molecular Physics
Vol. 109, No. 5, 10 March 2011, 761–772

RESEARCH ARTICLE

Group leaders optimization algorithm

Anmer Daskina and Sabre Kaisb*

aDepartment of Computer Science, Purdue University, West Lafayaette, IN 47907, USA; bDepartment of Chemistry
and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA

(Received 11 November 2010; final version received 18 December 2010)

We present a new global optimization algorithm in which the influence of the leaders in social groups is used as
an inspiration for the evolutionary technique which is designed into a group architecture. To demonstrate the
efficiency of the method, a standard suite of single and multi-dimensional optimization functions along with the
energies and the geometric structures of Lennard-Jones clusters are given as well as the application of
the algorithm on quantum circuit design problems. We show that as an improvement over previous methods, the
algorithm scales as N2.5 for the Lennard-Jones clusters of N-particles. In addition, an efficient circuit design is
shown for a two-qubit Grover search algorithm which is a quantum algorithm providing quadratic speedup over
the classical counterpart.

Keywords: optimization; quantum circuits; evolutionary algorithms; Lennard-Jones clusters

1. Introduction

Global optimization is one of the most important

computational problems in science and engineering.

Because of the complexity of optimization problems

and the high dimension of the search space, in most

cases, using linear or deterministic methods to solve

them may not be a feasible way [1]. Wille and Vennik

[2] argued that global optimization of a cluster of

identical atoms interacting under two-body central

forces, belong to the class of NP-hard problems. This

means that as yet no polynomial time algorithm

solving this problem is known. Recently, Adib [3]

reexamined the computational complexity of the clus-

ter optimization problem and suggested that the

original NP level of complexity does not apply to

pairwise potentials of physical interest, such as those

that depend on the geometric distance between the

particles. A geometric analogue of the original problem

is formulated and new subproblems that bear more

direct consequences to the numerical study of cluster

optimization were suggested. However, the intractabil-

ity of this subproblem remains unknown, suggesting

the need for good heuristics.
Many optimization methods have been developed

and these can be largely classified into two groups,

deterministic and stochastic. Deterministic methods

include variations on Newton’s method such as

discrete Newton, quasi Newton and truncated

Newton [4,5], tunnelling method [6] and renormaliza-
tion group methods [7]. Stochastic methods include,
simulated annealing [8], quantum annealing [9],
J-walking [10], tabu search [11], genetic algorithms
(GA) [12] and basin-hoping approach [13,14]. More
recent work on probabilistic techniques have been
proposed to solve these optimization problems by
observing nature and modelling social behaviours and
characteristics, including GA, evolutionary algorithms
(EA), such as the particle swarm optimization algo-
rithm (PSO), and the Pivot methods [1,15–20].

Implementation of many of these algorithms on
complex problems requires exhausting computational

time and a growing need for more computer resources

depending upon: the dimension, the solution space and

the type of problem. The key to speed up the optimi-

zation process is reducing the number of computations

in the algorithms while keeping the amount of iterations

low and the success rate of the algorithms high. This

paper introduces a new global optimization algorithm

which reduces the optimization time, and is both simple

and easy to implement. In the following sections, the

inspiration and the implementation of the algorithm

will be explained and test results will be given for some

of the most famous optimization test problems; for the

global optimization of the minimum energy structures

of complex Lennard-Jones clusters; and for the

quantum circuit design of the Grover search algorithm.

*Corresponding author. Email: kais@purdue.edu

ISSN 0026–8976 print/ISSN 1362–3028 online

� 2011 Taylor & Francis

DOI: 10.1080/00268976.2011.552444

http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
u
r
d
u
e
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
2
0
:
1
1
 
1
5
 
A
p
r
i
l
 
2
0
1
1



2. Inspirations and related works

Leaders in social groups affect other members of their
groups by influencing either the number of members or
each member intensively [21]. Therefore, the effect of
group leaders inclines the groups to have uniform

behaviour and characteristics similar to the leader.
These new behaviours and characteristics may improve
or worsen the quality of the members of a group.
A leader represents the properties of its group.
To become a leader for a group requires a person to
have some better abilities than others in the group.

Similar ideas to using leaders or/and grouping
solution population have been the inspiration for
optimization algorithms such as Cooperative

Co-evolutionary Genetic Algorithms (CCGA),
Cooperative Co-evolutionary Algorithms (CCEAs)
[22,23], and Parallel Evolutionary Algorithms (PEAs)
[24]. However, instead of trying to fully simulate the
influence of leaders on their peers in social groups by
constructing a population which includes small, inter-
acting groups with their leaders, most of these and

other similar algorithms have attempted the decompo-
sition of big and complex problems into subcompo-
nents or divide the whole population into multiple
subpopulations with a parallel structure. In CCGAs, as
described by Potter and Jong [22], each species – which
are evolved into subcomponents by using a standard
genetic algorithm – represents a subcomponent of the
potential solution, and each representative member of

the species is used to form the complete solution of the
optimization problem. In [25], a general architecture
for the evolving co-adapted subcomponents was
presented in order to apply evolutionary algorithms
to complex problems. Therefore, instead of GA,
the PSO Algorithm has been used for the
subcomponents of Potter’s CCGA structure by van

den Bergh and Engelbrecht [23]. Briefly, the general
framework of cooperative coevolutionary algorithms
has three main steps: problem decomposition,
subcomponent optimization, and subcomponent
adaptation [26].

In PEAs the whole population forms in a distrib-
uted way and consists of a multiple subpopulation.
Single-population master–slaves, multiple populations,
fine-grained and hierarchical combinations are the
main types of PEAs [27]. The proposed algorithm in

this paper differs from the PEAs in that all members of
the population are interacting and there is a mutual
effect between the members of the population in
addition to the leaders’ effect on individuals in their
groups. The sum of all these interactions forms the
evolutionary technique. However, in PEAs, in most
cases, the interaction between subpopulations is made

with the migration of individuals and evolutionary
techniques used for subpopulations can be independent
from each other.

3. Group leaders optimization algorithm

3.1. General idea

Inspired by leaders in social groups and cooperative
coevolutionary algorithms, we have designed a new
global optimization algorithm in which there are
separate groups and leaders for each group. Initially
forming groups does not require members to have some
similar characteristics. Instead, it is based on random
selection. While CCGA and other similar algorithms
decompose the solution space, and each group repre-
sents a solution for a part of the problem, in our
algorithm each group tries to find a global solution by
being under the influence of the group leaders which are
the closest members of the groups to local or global
minima. The leaders are those whose fitness values are
the best in their groups, and a leader can lose its
position after an iteration if another member in the
same group then has a better fitness value.

Since in social networks, leaders have effects on
their peers, thusly the algorithm uses the some portion
of leaders while generating new group members.
Hence, a leader, (in most cases a local optimum)
dominates all other solution candidates (group mem-
bers) surrounding it, and the members of a group come
closer and resemble their leader more in each iteration.
In this way, the algorithm is able to search the solution
space between a leader and its group members thor-
oughly, and so is able to search the area for a local or
a global optimum (or an approximation of it) in a
fast way.

After a certain number of evolutions, it is obvious
that the members may become too similar to their
leaders. To maintain the diversity of the group, for
each group, we transfer some variables from different
groups by choosing them randomly. In addition to
providing diversity, this one-way crossover helps a
group to jump out of local minima and search new
solution spaces.

3.2. Algorithm steps

In this section, algorithm steps are described with their
reasons in sequence and are shown in Figures 1 and 2.

Step 1: Generate p number of population for each group

randomly: The total population for each group is p,
hence, the whole population is n * p where n is the

762 A. Daskin and S. Kais

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
u
r
d
u
e
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
2
0
:
1
1
 
1
5
 
A
p
r
i
l
 
2
0
1
1



number of groups. Creation of the groups and the
members are totally random.

Step 2: Calculate fitness values for all members in all

groups: All solution candidates, group members, are
evaluated in the optimization problem and their fitness
values are assigned.

Step 3: Determine the leaders for each group: Each
group has one leader and the leaders are ones whose
fitness values are the best within their respective
groups. The algorithm steps 1–3 are shown in Figure 1.

Step 4: Mutation and recombination: Create new
member by using the old one, its group leader, and

Figure 2. Step 5 of the algorithm: one way crossover: prth variable of an element, member of the ith group, is replaced by prth
variable of the kth member of the xth group. The same operation is repeated t times for each group (maximum – half of the
number of variables plus one – times for each group). The arrow at the bottom of the figure shows the direction of transfer.

Figure 1. Steps 1–3 of the algorithm; groups consisting of p number of members are created, and their leaders are chosen based
on the fitness values.

Molecular Physics 763

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
u
r
d
u
e
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
2
0
:
1
1
 
1
5
 
A
p
r
i
l
 
2
0
1
1



a random element. If the new member has better fitness
value than the old one, then replace the old one with
the new one. Otherwise, keep the old member. For
numerical problems, the expression simply reads;

new ¼ r1 � oldþ r2 � leaderþ r3 � random: ð1Þ

In Equation (1), r1, r2, and r3 are the rates determining
the portions of old (current) member, leader, and
random while generating the new population.
Although in this paper, r1, r2, and r3 will always sum
to 1, it is not a requirement for the algorithm in
general. For instance, let the current element be 0.9, the
leader 1.8, and the generated random element 1.5, and
suppose r1¼ 0.8, r2¼ 0.19, and r3¼ 0.01. In this case,
the new element is equal to 1.077. Then fitness values
of the old and the new element are checked. If fitness
(1.077) is better than the fitness (0.9), then the old
element is replaced by the new one. Pseudo-code for
this step is as follows:

for i¼ 1 to n do

for j¼ 1 to p do

newij¼ r1 * memberijþ r2 * Liþ r3 * random;
if fitness(newij) better than fitness(memberij)
then

memberij¼ newij;
end if

end for

end for

In the pseudo-code: n is the number of groups, p is the
number of population in each group, r1, r2 and r3
are the rates of the old value for the members of
groups, leaders, and the random part. The expression
in the inner loop is the general formula of recombina-
tion and mutation for numerical optimization
problems.

Depending on the value of r1 an element keeps its
original characteristics, and depending on the value of
r2 it becomes more like its leader during iterations.
Thus, in some cases, choosing the right values for r1, r2
and r3 may play an important role for the algorithm to
get better results during the optimization. However,
choosing these parameters by obeying the property, r3,
r2� 0.5� r1 allows one to perform a thorough search
of a solution space. Hence, this minimizes the effect of
these parameters on the results.

The main benefit of this evolution is that the
algorithm becomes able to search the solution space
surrounding the leaders (which are possibly local or
global minima). Therefore, this allows the population
to converge upon global minima in a very fast way.
The members of the groups are not subjected to a local
minimization; however, an implementation of

Lamarckian concepts of evolution for the local min-
imization [28] gives a more stable and efficient
algorithm.

It is also important to note that Equation (1) looks
similar to the updating equation of PSO [17]. The
difference is that a member is always at its best position
and the best position of a member is not saved in a
parameter as is done in PSO, hence there is no
information about the member’s (or the particle’s)
previous positions (values).

Step 5: Parameter transfer from other groups (One way

crossover): Choose random members starting from the
first group, and then transfer some parameters by
choosing another random member from another
group. If this transfer makes a member have a better
fitness value, then change the member, otherwise keep
the original form. This process is shown in Figure 2 via
pseudo code. This one-way crossover has similarities
with the difference vector of Differential Evolution
[29]. The difference is that the transfer operation is
between the members which are in different groups.
In this step, it is important to determine correct
transfer rate, otherwise all populations may quickly
become similar. In our experiments, transfer operation
rate was taken t times [t is a random number between 1
and half of the number of total parameters (variables)
plus one (1� t� (]parameter/2)þ 1)] for each group
(not for each member). And each time, only one
parameter is transferred.

Step 6: Repeat step 3–step 5 number of given iteration

times: Since each group looks for the solution in mostly
different spaces, Group Leaders Optimization
Algorithm (GLOA) is able to search different solution
spaces simultaneously. We did not place any constraint
for groups to only search in subspaces, so a few groups
may also search the same places. However, this does
not make them redundant as they allow GLOA to find
different local or global minima within the same
subspace. Since each group has a leader and the
leaders direct the other members of the group in order
to search the area between the leader and the members
of the group, it is able to search for a good solution
(around the leader of the group).

In addition to increasing the level of diversity of the
groups, transferring some parameters (crossover)
between groups allows the algorithm to direct the
members of a group to search different spaces.
Therefore, if a group has found some parameters
correctly or very close to correct, then transferring
parameters between groups allows other groups to get
these parameters and find their solutions faster. Since
only parametersare transferred which make the

764 A. Daskin and S. Kais

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
u
r
d
u
e
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
2
0
:
1
1
 
1
5
 
A
p
r
i
l
 
2
0
1
1



member have better fitness value, the spreading of
a member who has a bad fitness value is avoided.
In terms of optimization problems requiring highly
diverse populations, choosing to do crossover and
mutation-recombination steps without comparing
fitness values may be wise and may improve the
effectiveness of the algorithm.

4. Optimization results

The parameters for the algorithm have effects on the
quality of results. As stated in the previous section,
choosing r3, r2 less than and r1 greater than 0.5
makes the algorithm more stable and minimizes the
effects of these parameters. The number of groups
and the population of the groups should be chosen
to be large enough depending on the complexity of
the problem. Therefore, while generating new ele-
ments, the rate of crossover between groups and the
portions of elements, leaders, and random elements
should be carefully adjusted for the type and the
complexity of the optimization problem. For
instance, if one takes crossover rate or the portion
of the leaders too high in relation to the chosen
group and population number, this may cause the
whole population to become uniform very quickly.
Hence, the algorithm may get stuck in a local
solution, and not search the whole solution space.
The algorithm was tested on different types of
optimization problems, one-dimensional and multi-
dimensional optimization test functions, and it was
also used to find the minimum energy structures of
Lennard-Jones clusters.

4.1. Test functions

While testing optimization algorithms on numerical
problems, search domain and the number of iteration
have crucial effects on the performance of the
algorithms. In terms of the implementation, the
number of groups and the population were taken
the same for all numerical problems where the
number of groups is 10, and the population number
in each group is 25. Keeping the number of leaders
the same for all numerical test functions which have
different numbers of local minima shows the capa-
bility of the algorithm to escape from local minima is
not highly related to the number of leaders. While
results are shown in terms of function value and the
number of iterations in graphs for single dimensional
test problems, for multi-dimensional problems, they
are presented in terms of the number of dimensions

(up to 1000) and the minimum function value in each
dimension.

4.1.1. Single dimensional test problems

For the single dimensional test functions, the param-
eters of the algorithm are shown in Table 1. In this
table, r3¼ 0, that means that there is no randomness
while generating new populations. We observed from
our optimization that this makes GLOA converge to a
global minima faster for single dimensional test
problems.

Also, as shown in Figure 3, after the algorithm has
gotten stuck in a local minima for some number of
iterations where the minimum function values are not
changing, it is still able to find the global minima at the
end. This exemplifies the ability of the algorithm to
jump out of the local minima and search for the global
minima.

The first test function used in the optimization is
the Beale Function [30] shown in Equation (2). The
global minimum for this function is located at f(x)¼ 0,
where x1¼ 3, x2¼ 0.5. The search domain was taken
to be [�100, 100], �100� (x1, x2)� 100. Figure 3(a)
shows the test result for the Beale Function.

fBealeðx1, x2Þ ¼ ½1:5� x1ð1� x2Þ�
2
þ ½2:25� x1ð1� x22Þ�

2

þ ½2:625� x1ð1� x32Þ�
2: ð2Þ

Secondly, the Easom Function [31] which is shown
in Equation (3) and has a global minimum located at
f(x)¼�1, where x1¼�, x2¼�. The search domain for
this function was taken as [�100, 100], �100�
(x1, x2)� 100, in the implementation, and the result is
presented in Figure 3(b).

fEasomðx1, x2Þ ¼ � cosðx1Þ cosðx2Þ exp �ðx1 � pÞ2
�

� ðx2 � pÞ2
�
: ð3Þ

Another single dimensional test function is
Goldstein–Price’s Function [31], Equation (4). The
global minimum for this function is at f(x)¼ 3, where
x1¼ 0, x2¼�1. The search domain used for this

Table 1. Parameters used for single dimensional test
functions.

Parameters Values

Number of groups 10
Number of population in each group 25
r1 (the portion of element) 0.8
r2 (the portion of leader) 0.2
r3 (the portion of random) 0.0

Molecular Physics 765

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
u
r
d
u
e
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
2
0
:
1
1
 
1
5
 
A
p
r
i
l
 
2
0
1
1



problem is [�100, 100] �100� (x1, x2)� 100, and the

result is shown in Figure3(c).

fGPðx1,x2Þ ¼
�
1þ ðx1þ x2þ 1Þ2ð19� 14x1þ 13x21

� 14x2þ 6x1x2þ 3x22
�
�
�
30þ ð2x1� 3x2Þ

2

� ð18� 32x1þ 12x21þ 48x2

� 36x1x2þ 27x22
�
: ð4Þ

Shubert’s Function [31] is the last single dimen-

sional test function used in the experiments. This

function, Equation (5), has a global minima at

f(x)¼�186.7309 for the search domain [�10, 10],

�10� (x1, x2)� 10. Figure 3(d) shows the result for

this function.

fShubertðx1, x2Þ ¼
X5
i¼1

i cos½ðiþ 1Þx1 þ i �

 !

�
X5
i¼1

½i cosðiþ 1Þx2 þ i �

 !
: ð5Þ

4.1.2. Multi-dimensional test functions

Five multi-dimensional test functions were used as test

cases. Each of these functions has different properties.

The number of groups and populations are taken to be

the same as in single dimensional functions (number of

groups is 10 and number of populations in each group

is 25). The other algorithm parameters and the number

of iterations for these functions are given in Table 2.

0 5 10 15 20 25 30
0

5

10

15

20

25
Beale function

Numer of iterations

F
un

ct
io

n 
va

lu
e

(a)

0 10 20 30 40 50 60 70 80 90 100
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
Easom function

Number of Iterations

F
un

ct
io

n 
va

lu
e

(b)

5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Goldenstein−Price Function

Numer of iterations

F
un

ct
io

n 
va

lu
e

(c)

20 40 60 80 100 120 140
−190

−180

−170

−160

−150

−140

−130
Shubert function

Numer of iterations

F
un

ct
io

n 
va

lu
e

(d)

Figure 3. Results for single dimensional optimization test functions: x-axis represents the number of iterations and y-axis is the
function value which is the result of the best member in the population. (a) The result for the Beale function. (b) The result for the
Easom function. (c) The result for Goldein–Price’s function. (d) The result for the Shubert function.

Table 2. Parameters used for multi-dimensional test
functions.

Test function r1 r2 r3 Domain
Number

of iteration

Griewank 0.8 0.19 0.01 [�600, 600] 1000
Ackley 0.8 0.19 0.01 [�32.768, 32.768] 1000
Rosenbrock 0.8 0.1 0.1 [�100, 100] 2000
Sphere 0.6 0.2 0.2 [�100, 100] 1000
Rastrigin 0.6 0.2 0.2 [�10, 10] 1500

766 A. Daskin and S. Kais

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
u
r
d
u
e
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
2
0
:
1
1
 
1
5
 
A
p
r
i
l
 
2
0
1
1



The number of iterations separately given for
each function in the table were taken to be the same
at all dimensions. The algorithm was implemented
upon each multi-dimensional test function at sam-
ple dimensions, up to 1000. Therefore, for these
optimizations, comparisons of running time
of GLOA with the number of dimensions are
shown in terms of seconds in Figure 4(f) (times in
Figure 4(f) were taken from Matlab which was running
on a laptop computer with 1.83GHz Intel Core
Duo CPU).

Multi-dimensional test functions that were used in

test cases are as follows:
Rosenbrock’s Banana Function [22,30–32]:

fnðxÞ ¼
Xn�1
i¼1

½100ðxi � xiþ1Þ
2
þ ðxi � 1Þ2�: ð6Þ

The function value at fn(x)¼ 0 is minimum for

x¼ (1, . . . , 1). The optimization results of the algorithm

for this function is shown in Figure 4(a) in which it is

seen that the function values even at 1000 dimensions

0 200 400 600 800 1000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of dimension

F
un

ct
io

n 
va

lu
e

Rosenbrock function(a)

0 200 400 600 800 1000
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2
Griewangk function

Number of dimension

F
un

ct
io

n 
va

lu
e

(b)

0 200 400 600 800 1000
0

0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

Number of dimension

F
un

ct
io

n 
va

lu
e

Ackley function(c)

0 200 400 600 800 1000
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2
Sphere function

Number of dimension

F
un

ct
io

n 
va

lu
e

(d)

0 200 400 600 800 1000
0

0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

Number of dimension

F
un

ct
io

n 
va

lu
e

Rastrigin function(e)

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000
Running Time of The Algorithm

Number of dimension

T
im

e 
(s

ec
on

ds
)

Griewangk
Ackley
Rastrigin
Rosenbrock
Sphere

(f)

Figure 4. Results for multi-dimensional optimization test functions: for (a)–(e), the x-axis is the number of dimension, and the
y-axis is the function value which is the result of the best member in the population. For (f), the x-axis is the number of
dimension, and the y-axis is the running time of the algorithm. (a) This shows the result for Rosenbrock function; (b) is the result
for Griewank function; (c) is the result for Ackley function; (d) is the result for Sphere function; (e) is the result for Rastrigin
function; and (f) shows the CPU running time of the algorithm with respect to the dimension of the problems.

Molecular Physics 767

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
u
r
d
u
e
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
2
0
:
1
1
 
1
5
 
A
p
r
i
l
 
2
0
1
1



are always less than 1. That means the error (�) is also
less than 1, �� 1, for all dimensions. Since all multi-
dimensional functions were tested for up to 1000
dimensions; for the following functions we will only
give the function descriptions and the error terms.

Griewank’s Function [22,32]:

fnðxÞ ¼ 1þ
Xn
i¼1

x2i
4000

�
Yn
i¼1

cos
xi
i1=2

� �
: ð7Þ

This function is minimum at fn(x)¼ 0, where
x¼ (0, 0, . . .). The results are shown in Figure 4(b),
and �� 0.1 for all dimensions.

Ackley’s Function [22]:

fnðxÞ ¼ 20þ e� 20 exp �0:2
1

n

Xn
i¼1

x2i

 !1=2
0
@

1
A

� exp
Xn
i¼1

cosð2pxiÞ

 !
: ð8Þ

At fn(x)¼ 0, where x¼ (0, 0, . . .), the function value
is minimum. The results are shown in Figure 4(c), and
�� 0.05 for all dimensions.

Sphere Function [32]:

fnðxÞ ¼
Xn
i¼1

x2i : ð9Þ

The minimum of the function is located at fn(x)¼ 0,
where x¼ (0, 0, . . .). The results are shown in
Figure 4(d), and �� 0.1 for all dimensions.

Rastrigin Function [22,23]:

fnðxÞ ¼ 10nþ
Xn
i¼1

x2i � 10 cos 2pxið Þ
� �

: ð10Þ

At fn(x)¼ 0, where x¼ (0, 0, . . .), the function value

is minimum. The results are shown in Figure 4(e), and
�� 0.05 for all dimensions.

4.2. Lennard-Jones clusters

The Lennard-Jones (LJ) potential describes the inter-
action of a pair of neutral particles. The total potential
of interactions between N-particles is defined in

Equation (11), and the pair potential is shown in
Figure 5(a). Finding the minimum energy structure
of interaction between pairs can be described as an
optimization problem. The problem is to place the
particles in 3D space such that their total interaction

energy is at minimum.

Global optimization of LJ clusters is one of the
most intensely studied molecular conformation prob-
lems since it is simple and accurate enough to describe
real physical interacting systems. Moreover, the sim-
ulation results of LJ clusters can be directly compared
with the laboratory results [11]. Because the number of
local minima in the surface of an LJ cluster grows
exponentially with N [33,34], the solution of the
problem is very complex and difficult [2]. For instance,
for the cluster of 13 particles, there are about 1500
local minima [35]. Thus, finding the minimum energy
structure of LJ clusters is still an open and attractive
research area and a good benchmark problem for the
optimization algorithms [32].

The interaction potential is given by:

E ¼ 4�
XN
i5j

�

rij

� 	12

�
�

rij

� 	6
" #

, ð11Þ

where rij is the distance between two particles. For
simplicity we will take �¼ 1 and �¼ 1 [14].

In the implementation, the solution of one cluster
was used as initial guess for a larger cluster, this
significantly shortened the optimization time (refer to
Figure 5(b)). Here, the sum of algorithm parameters r1
and r2 is taken to be 1, while r3 is set sufficiently small
to locate the values of particles with high precision.
Table 3 gives the values of the parameters used in the
optimization. In addition, as the crossover between
groups is done, the transferred elements are mutated.
This mutation rate is determined also by the param-
eter r3. This mutation does not change the transferred
value dramatically; however, it helps the algorithm to
decrease the number of iterations needed for small
mutations.

The algorithm was run to locate the minimum
energy structure for the clusters of 5–42, 38, 55, 65, and
75 particles. This running choice helped us to observe
the growth of the computation time with respect to the
number of particles. The optimization process was
terminated if either the absolute error, which was
defined as the absolute difference between the known
lowest (reported in [36]) and the found energy level was
less than 0.001, or the maximum number of iterations
(3000) was reached. The algorithm has been able to find
the lowest known energy structure with the absolute
errors all of which are less than 0.1. The clusters of 38
and 75 particles are known to be difficult cases for
optimization algorithms. For these cases the first
encounter times of the algorithm from 100 random
starting points (the previous structure is not used as an
starting point) are shown in Figure 5(c) and (d)
respectively for 38 and 75 particles. The computational
time of the algorithm with respect to the cluster size

768 A. Daskin and S. Kais

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
u
r
d
u
e
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
2
0
:
1
1
 
1
5
 
A
p
r
i
l
 
2
0
1
1



is given in Figure 5(b). Thus, the scaling of the
algorithm with respect to the number of particles is
N2.5, which is an improvement over the previously
reported scalings: N4.7 for the genetic algorithm and
N2.9 for the pivot methods [16,37]. However, in terms of
first encounter time, we see that GLOA in this present

format is not as successful as the global optimization
by basin-hoping for LJ clusters [14].

4.3. Quantum circuit design

In the field of quantum computation, finding quantum
circuit designs by decomposing a given unitary matrix
into a proper-minimum cost quantum gate sequence
for the implementation of quantum algorithms and the
simulation of molecular systems are of fundamental
importance. Evolution of quantum circuits faces two
major challenges: complex and huge search space and
the high costs of simulating quantum circuits on
classical computers. The optimization task involves
not only finding the right sequence of gates, but the
minimization of the cost of the sequence as well. In the
circuit model of quantum computing, each computa-
tion or algorithm can be defined as a unitary matrix.
Thus, the problem becomes the decomposition of given
unitary matrices into a sequence of unitary operators

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−1

0

1

2

3

4

5

6

Interatomic distance

In
te

ra
ct

io
n 

en
er

gy

Lennard Jones Pair Potential(a)

10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of particles

T
im

e 
(in

 s
ec

on
ds

)

Computation Time vs. Number of Particles(b)

0 10 20 30 40 50 60 70 80 90 100

3800

4000

4200

4400

4600

4800

5000

First Encounter Time for 100 Random
Starting Points for 38 Particles

Runs

C
P

U
 T

im
e 

(in
 s

ec
on

ds
)

(c)

0 10 20 30 40 50 60 70 80 90 100
1

1.1

1.2

1.3

1.4

1.5

1.6

µ104

Runs

C
P

U
 T

im
e 

(in
 s

ec
on

ds
)

First Encounter Time for 100 Random
Starting Points for 75 Particles

(d)

Figure 5. In (a), Lennard-Jones pair potential is shown for two particles which is the minimum at atomic distance 1. In (b),
the dots are the measured CPU time for a cluster of different numbers of particles; the solid line which grows with the order
of O(n2.5) is the fitted curve for the measured data (n is the number of particles). Parts (c) and (d) show the first encounter time
of the algorithm for 100 random starting points for the clusters of 38 and 75 particles.

Table 3. Parameters of the algorithm for the global optimi-
zation of LJ clusters.

Parameters Values

Number of group 15
Number of population in each group 30
The domain of r1 [0.85, 0.95]
The domain of r2 [0.15, 0.05]
The domain of r3 [0.001, 0.0001]
Initial generated population domain [�2, 2]
Maximum number of iteration 3000

Molecular Physics 769

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
u
r
d
u
e
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
2
0
:
1
1
 
1
5
 
A
p
r
i
l
 
2
0
1
1



which are describing the defined quantum gates. For

this optimization problem, the objective function to be

minimized is defined as follows:

y ¼ 1� �Cþ
�

Cost

� 	








, ð12Þ

where C is a value to determine the correctness of the

circuit; Cost is the implementation cost of the found

circuit design; and � and � are weights to adjust the

importance of the correctness and the cost of the

circuit in the objective function. The correctness (C) is

defined as

Tr UgU
y

f

� �
N














,

where Ug and Uf are the given and the found unitary

matrices of order N, relatively; Tr(. . .) is the trace of a

matrix; and N is the 2n (n number of the qubits). When

Ug¼Uf, because all the diagonal elements of the

product of Ug and Uf become ones, the correctness

value is one (C is always in the range of one and zero).

The cost of a circuit is defined as arbitrarily by

considering the common implementation costs of

quantum gates in different quantum computer models:

the number of control qubits and the distance between

the target and the control qubits of a gate in the circuits

which involve many qubits. Hence, the cost of a control

gate is determined by multiplying the distance (number

of qubits) between the target and the control qubits of

the gate by two, and the cost of a single gate is taken

as one. The cost of a circuit is found by summing up

the cost value of each quantum gate in the circuit.
In the optimization, � and � are considered as

0.9 and 0.1 which are the best choice among different

alternatives to reduce the number of iterations and

increase the correctness. Themembers in the population

of the group structured algorithm are taken as genomes

which represent a circuit as a numeric string describing

gates and their target-control qubits and angles. The

order of the gates in a genome represents their order in

the circuit with respect to the string: the string, 2 3 2 0.3 3

2 1 0.5, represents two quantum gates with the integers

2 and 3 related to their target and control qubits, and

their angle values: 3 2 0.3 and 2 1 0.5, respectively.
As a test case, we use the Grover search algorithm

[38] which is one of the advances quantum computing

has brought on classical computing. It reduces the

computational time of a brute force search from O(N)

to O(N1/2). The algorithm can be described in four

steps [39,40]:

(1) Start with an n-qubit initial state j000. . .0i.

(2) Put this initial state into the superposition by
applying Hadamard (H) gates to the each
qubit.

(3) b(�/4)N1/2
c times:

. Apply the first operator Uf which is
defined as:

Uf ¼ I� jaihaj, ð13Þ

where a is the element that is being searched,
and I is the identity. The act ofUf is to mark
the element x if and only if x¼ a; the
function, f(x), is equal to 1 for x¼ a.

. Apply the second operator (the inversion
about the average operator or diffusion
operator) U ? which is defined as:

U ? ¼ 2j ih j � I: ð14Þ

U ? amplifies the amplitude of the state
marked by the first operator and reduces the
amplitudes of the rest. Thus, the probability
of seeing the marked element at the end of
measurement gets higher. The matrix D rep-
resenting this operator is found as follows:

Dij ¼

N

2
, if i 6¼ j

�1þ
N

2
, if i ¼ j

8><
>:

9>=
>;: ð15Þ

(4) Measure the result.

The exact circuit design in Figure 6 for the second
part (inversion about the average) of the Grover search
algorithm (matrix elements of which are �0.5 in
diagonal and 0.5 in the rest) is found with the objective
function value 0.08 by applying the algorithm with the
parameters given in Table 4.

5. Conclusions

In this paper we have presented the GLOA. The
algorithm is quite efficient, very flexible, rarely gets
trapped in local minima, does not require computa-
tionally expensive derivatives, and is quite easy

Figure 6. Quantum circuit design for the inversion about the
average part of the Grover search algorithm.

770 A. Daskin and S. Kais

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
u
r
d
u
e
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
2
0
:
1
1
 
1
5
 
A
p
r
i
l
 
2
0
1
1



to implement. Flexibility is further enhanced by the
ability to incorporate any previous knowledge of the
potential under investigation into the optimization. As
a specific example, we used smaller (LJ) clusters as the
starting point for the larger ones. Reducing the
computational cost to scale approximately as N2.5 is
very promising to treat larger complex systems.

Recently, in a promising new direction, we dem-
onstrate that a modified Grovers quantum algorithm
can be applied to real problems of finding a global
minimum using modest numbers of quantum bits [40].
Calculations of the global minimum of simple test
functions and (LJ) clusters have been carried out on a
quantum computer simulator using a modified
Grovers algorithm. The number of function evalua-
tions N reduced from O(N) in classical simulation to
O(N1/2) in quantum simulation. We also show how the
Grovers quantum algorithm can be combined with the
classical Pivot method for global optimization to treat
larger systems. We are currently investigating combin-
ing this new algorithm, the Group Leaders
Optimization Algorithm, with the Grover’s quantum
algorithm for global optimization of complex systems.
The algorithm defined here also allows us to design
quantum circuits for further quantum algorithms and
the simulations of molecular Hamiltonians such as the
Hamiltonians of H2O and H2.

Therefore, because of the parallel group structure
of the algorithm, it can be easily adapted to a parallel
processing environment to improve the efficiency of
the algorithm for hard problems. In that case, each of
the groups can be run on a different machine and the
parameter transfer between groups can be done
through either a shared memory or a message-passing
interface.

Acknowledgements

We would like to thank the Army Research Office (ARO)
and the NSF Center for Quantum Information and
Computation for Chemistry, award number CHE-1037992,
for financial support of this project.

References

[1] T. Weise, Global Optimization Algorithms – Theory and

Application (Thomas Weise, University of Kassel,

Germany, 2007), 5http://www.it-weise.de/projects/

book.pdf4
[2] L.T. Wille and J. Vennik, J. Phys. A: Math. Gen. 18 (8),

L419 (1985).
[3] A.B. Adib, J. Phys. A: Math. Gen. 38 (40), 8487 (2005).
[4] J.E. Dennis and R.B. Schnabel, Numerical Methods for

Unconstrained Optimization and Nonlinear Equations

(Classics in Applied Mathematics) (Society for

Industrial Mathematics, Philadelphia, PA, 1996).

[5] J.C. Gilbert and C. Lemaréchal, Math. Program. 45 (3),

407 (1989).

[6] A.V. Levy and A. Montalvo, SIAM J. Sci. Stat.

Comput. 6 (1), 15 (1985).

[7] D. Shalloway, J. Global Optim. 2, 281 (1992).
[8] S. Kirkpatrick, J. Stat. Phys. 34, 975 (1984).
[9] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson and

J.D. Doll, Chem. Phys. Lett. 219 (5–6), 343 (1994).
[10] D.D. Frantz, D.L. Freeman and J.D. Doll, J. Chem.

Phys. 93 (4), 2769 (1990).
[11] D. Cvijovicacute and J. Klinowski, Science 267 (5198),

664 (1995).
[12] D.E. Goldberg, Genetic Algorithms in Search,

Optimization and Machine Learning (Addison-Wesley

Longman, Boston, MA, 1989).
[13] D.J. Wales and H.A. Scheraga, Science 285 (5432), 1368

(1999).
[14] D. Wales and J. Doye, J. Phys. Chem. A 101, 5111

(1997).
[15] T. Bäck, Evolutionary Algorithms in Theory and

Practice: Evolution Strategies, Evolutionary

Programming, Genetic Algorithms (Oxford University

Press, Oxford, 1996).
[16] P. Serra, A.F. Stanton and S. Kais, Phys. Rev. E 55 (1),

1162 (1997).
[17] J. Kennedy and R. Eberhart, in Proceedings of the IEEE

International Conference on Neural Networks, Vol. 4,

August, 1995, pp. 1942–1948, 5http://dx.doi.org/

10.1109/ICNN.1995.4889684
[18] A.F. Stanton, R.E. Bleil and S. Kais, J. Comput. Chem.

18 (4), 594 (1997).

[19] P. Serra, A. Stanton, S. Kais and R. Bleil, J. Chem.

Phys. 106 (17), 7170 (1997).

[20] P. Nigra and S. Kais, Chem. Phys. Lett. 305 (5–6), 433

(1999).

[21] B. Weinberg, in 2008–09 Mershon Center Research

Projects (Institutions that Manage Violent Conflict)

(Mershon Center for International Security Studies,

OH, USA) 5http://hdl.handle.net/1811/362194
[22] M.A. Potter and K.A.D. Jong, A Cooperative

Coevolutionary Approach to Function Optimization, in

Series Lecture Notes in Computer Science (Springer-

Verlag, London, 1994), Vol. 866, pp. 249–257.

[23] F. van den Bergh and A.P. Engelbrecht, IEEE Trans.

Evol. Comput. 8 (3), 225 (2004).

Table 4. Parameters of the algorithm for find-
ing quantum circuits.

Parameters Values

Number of group 15
Population in each group 25
r1 0.8
r2 0.1
r3 0.1
Number of iteration 1000

Molecular Physics 771

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
u
r
d
u
e
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
2
0
:
1
1
 
1
5
 
A
p
r
i
l
 
2
0
1
1



[24] E. Cantu-Paz, Efficient and Accurate Parallel Genetic
Algorithms (Kluwer Academic Publishers, Norwell,

MA, 2000).
[25] M.A. Potter and K.A. De Jong, Evol. Comput. 8 (1),

1 (2000).
[26] Z. Yang, K. Tang and X. Yao, Inf. Sci. (N. Y.) 178 (15),

2985 (2008).
[27] G. Winter, D. Geiner and B. Galvan, Parallel

Evolutionary Computation (CEANI (Evolutionary

Computation and Applications) Division of the
Institute of Intelligent Systems and Numerical
Applications in Engineering (IUSIANI) (University of

Las Palmas de Gran Canaria, Spain , 2005).
[28] G.W. Turner, E. Tedesco, K.D.M. Harris,

R.L. Johnston and B.M. Kariuki, Chem. Phys. Lett.
321 (3-4), 183 (2000).

[29] R. Storn and K. Price, J. Global Optim. 11, 341 (1997).
[30] J.J. Moré, B.S. Garbow and K.E. Hillstrom, ACM

Trans. Math. Software 7 (1), 17 (1981).

[31] R. Chelouah and P. Siarry, Eur. J. Oper. Res. 148 (2),
335 (2003).

[32] P.J. Angeline, in EP ’98: Proceedings of the

7th International Conference on Evolutionary

Programming VII (Springer-Verlag, London, 1998),
pp. 601–610.

[33] F.H. Stillinger and T.A. Weber, Science 225 (4666), 983
(1984).

[34] D.J. Wales and J.P.K. Doye, J. Chem. Phys. 119, 12409
(2003).

[35] J.P.K. Doye, M. Miller and D. Wales, J. Chem. Phys.
111, 8417 (1999).

[36] D.J. Wales, J.P.K. Doye, A. Dullweber, M.P. Hodges,

F.Y. Naumkin, F. Calvo, J. Hernández-Rojas and
T.F. Middleton, The Cambridge Cluster Database
5http://www-wales.ch.cam.ac.uk/CCD.html4 (2010).

[37] S.K. Gregurick, M.H. Alexander and B. Hartke,
J. Chem. Phys. 104 (7), 2684 (1996).

[38] L.K. Grover, STOC ’96: Proceedings of the
Twenty-eighth Annual ACM Symposium on Theory of

Computing (ACM, New York, 1996), pp. 212–219,
Philadelphia, PA.

[39] M.A. Nielsen and I.L. Chuang, Quantum Computation

and Quantum Information, 1st ed (Cambridge University
Press, Cambridge, 2000).

[40] J. Zhu, Z. Huang and S. Kais, Mol. Phys. 107, 2015

(2009).

772 A. Daskin and S. Kais

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
u
r
d
u
e
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
2
0
:
1
1
 
1
5
 
A
p
r
i
l
 
2
0
1
1


