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ABSTRACT: We present a detailed theoretical study of the transfer of electronic
excitation energy through the Fenna-Matthews-Olson (FMO) pigment-
protein complex, using the newly developed modified scaled hierarchical
approach (Shi, Q.; et al. J. Chem. Phys. 2009, 130, 084105). We show that this
approach is computationally more efficient than the original hierarchical
approach. The modified approach reduces the truncation levels of the auxiliary
density operators and the correlation function. We provide a systematic study of
how the number of auxiliary density operators and the higher-order correlation
functions affect the exciton dynamics. The time scales of the coherent beating are
consistent with experimental observations. Furthermore, our theoretical results
exhibit population beating at physiological temperature. Additionally, the
method does not require a low-temperature correction to obtain the correct
thermal equilibrium at long times.

I. INTRODUCTION

In the initial step of photosynthesis, light is captured by
protein-bound pigments that are part of light-harvesting antenna
complexes. The excitation energy is transferred with a near-unity
quantum yield to reaction centers, where it is converted to
chemical energy. The underlying molecular mechanisms respon-
sible for the near-unity quantum yield are far from being under-
stood. In this regard, an extensively studied and relevant system is
the Fenna-Matthews-Olson (FMO) pigment-protein com-
plex of green-sulfur bacteria, which acts as a mediator of excita-
tion energy between the outer antenna system, i.e., the chloro-
somes, and the reaction center.1

Experimentally, Savikhin et al.2 observed quantum beating in
the FMO complex using the fluorescence anisotropy technique.
More recently, Engel et al.3 employed two-dimensional electro-
nic spectroscopy to observe long-lasting quantum beats that
provides direct evidence for survival of long-lived electronic co-
herence for hundreds of femtoseconds. Aspuru-Guzik et al.4-6

investigated the effects of quantum coherence and the fluctuating
environment, using the Lindblad formalism, on the enhancement
of the photosynthetic electronic energy transfer efficiency from
the perspective of a quantumwalk. In Rebentrost et al.,6 amethod
to quantify the role of quantum coherence was introduced.

Ishizaki et al.7-9 employed the hierarchical equation of motion
(HEOM) approach expansion in order to address the robustness
and the role of the quantum coherence under physiological
conditions. Their results reveal that quantum wave-like motion
persists for several hundred femtoseconds even at physiological
temperature T = 300 K. Very recently, a very large-scale calcula-
tion of energy transfer between chromophore rings of purple
bacteria was carried out using the HEOM approach.10 Mean-
while, Whaley et al.11 and Caruso et al.12 discussed quantum
entanglement in photosynthetic harvesting complexes and clar-
ified the connection between coherence and entanglement. They
showed that the FMO complex exhibits bipartite entanglement
between dimerized chromophores. The subject continues to be
of great interest with a large number of publications discussing
electronic energy transfer in photosynthetic complexes, in parti-
cular, the issue of quantum speed-up in the FMO complex.13-19

In this paper, we present a detailed theoretical study of the
transfer of excitation energy toward the reaction center through
the Fenna-Matthews-Olson (FMO) pigment-protein complex
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using a modified scaled hierarchy equation of motion approach,
which was developed by Shi and co-workers recently.20 This
approach guarantees that the auxiliary density operators decay to
zero at high truncation level. Furthermore, it provides a con-
siderable computational speed-up over the original hierarchical
approach.7 We will show that the scaled hierarchical approach
can reduce the truncation level of both auxiliary density operators
and the correlation functions compared to the classical approach.
The time scales of the coherent beating are consistent with
experimental observations. Furthermore, our results show that
the population beating persists at physiological temperature.

II. THEORY

Excitonic energy transfer within photosynthetic proteins, such
as the FMO complex, operates in a demanding parameter regime
where a small perturbative quantity is not available. It is thus a
challenge to find accurate and efficient methods for the simula-
tion of the quantum dynamics. A number of approximate
methods have been developed:16 they include the semiclassical
F€orster theory, standard Redfield theory, modified Redfield
theories, the modified Lindblad formalism, and hierarchical
equations of motion, among others.4,21,22

In this study, we utilize the recent hierarchical Liouville space
propagator method developed by Shi et al.20 to investigate
excitation energy transfer in the FMO complex. The original
method is based on a reformulation of the original hierarchical
quantum master equation and the incorporation of a filtering
algorithm that automatically truncates the hierarchy with a
preselected tolerance. They showed how this method signifi-
cantly reduces the number of auxiliary density operators used to
calculate electron transfer dynamics in a spin-boson model and
the absorption spectra of an excitonic dimer.20

The structure of the FMO complex was first analyzed by
Fenna and Matthews in 1975.23 It consists of a trimer, formed by
three identical monomers. Each monomer contains seven bac-
teriochlorophyll a (BChl a) molecules (or seven “sites’’). Biolo-
gically, the FMO complex acts as a molecular energy wire,
transferring excitation energy from the chlorosome structure,
where light is captured, to the reaction center (RC). There is
substantial evidence that the FMO complex is oriented such that
sites 1 and 6 are close to the baseplate protein and sites 3 and 4
are close to the RC complex and thus define the target region for
the exciton.16,23-25 The detailed structure is shown in Figure 1. It
should be mentioned that the presence of the eighth BChl a
molecule per monomer was proposed by Ben-Shem et al. in
2004.26 This has been verified experimentally recently by Tron-
rud and co-workers.27 It has been suggested that the eighth BChl
a molecule acts as a gateway site from the reaction center to the
27 chromophores in the trimer.27

The total Hamiltonian of the quantum system is given by

H ¼ H S þH B þH SB ð1Þ
where H S, H B, and H SB are the Hamiltonians of the system,
the environment, and the system-environment coupling, re-
spectively. Here, we consider each site as a two-level system of
ground state and excited state. The system Hamiltonian, H S,
which describes the electronic states of the pigments can be
expressed as

H S ¼
XN
j¼ 1

εjjjæÆjj þ
X
j<k

JjkðjjæÆkj þ jkæÆjjÞ ð2Þ

|jæ denotes the state where only the jth site is in its excited state
and all other sites are in their ground state. εj represents the site
energy of the jth site which is defined as the optical transition
energy at the equilibrium configuration of environmental pho-
nons associated with the ground state. N is the number of
pigments or sites. Jjk is the electronic coupling between sites j
and k. The parameters for this Hamiltonian are taken from the
paper of Adolphs and Renger.28 In their work, two independent
methods were used to obtain the site energies of the seven BChl a
molecules of the monomeric subunits of the FMO complex. In
the first method, the site energies are used as parameters that
were optimized by a genetic algorithm in the fit of the optical
spectra. In the second one, the site energies are obtained directly
by electrochromic shift calculations.28

For the Hamiltonian of the environment, H B, a harmonic
oscillator model is applied. Furthermore, it is assumed that the
electronic excitation on each site couples to its own bath
independently:

H B ¼
XN
j¼ 1

H j
B ¼

XN
j¼ 1

XNjB

ξ¼ 1

Pjξ2

2mjξ
þ 1
2
mjξωjξ

2xjξ
2 ð3Þ

whereNjB is the number of different harmonic modes coupled to
the jth site. Here, mjξ, ωjξ, Pjξ, and xjξ are the mass, frequency,
momentum, and position operator of the harmonic bath modes.
The coupling term,H SB, which is responsible for fluctuations in

Figure 1. Sketch of the energy flow in the process of photosynthesis.
The energy is captured by the light-harvesting complex (LHC) and
transferred to the reaction center (RC). The FMO complex is the link
between LHC and RC, and it operates as a “wire” during the energy
transfer process. Using the convention for numbering the BChl a
molecules (sites) of the FMO complex as in ref 23, sites 1 and 6 are
close to the LHC and sites 3 and 4 are close to the RC. In our theoretical
description, the excited states of the BChl a molecules of the FMO
complex are considered as the “system” and all the other relevant degrees
of freedom are referred to as the “environment”.
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the site energies by the phonon dynamics, can be expressed as

H SB ¼
XN
j¼ 1

H j
SB ¼ -

XN
j¼ 1

jjæÆjj 3 Fj ¼ -
XN
j¼ 1

V j 3 Fj ð4Þ

where the bath part is Fj =
P

ξ cjξ 3 xjξ and cjξ represents the
system-environment coupling constant for the jth site and ξth
phonon mode. The projection operator V j = |jæÆj| describes the
system part of the interaction.

At time t = 0, we assume that the system and the environment
are decoupled, i.e., Ftot(0) = F(0) X FB(0). Additionally, the
environment is in the Boltzmann equilibrium state, FB(0) =
e-βHB/TrB[e

-βHB], where β = 1/kBT. The time evolution of the
system density matrix, F(t), can be calculated by tracing out the
environment degrees of freedom:

FðtÞ ¼ TrB½FtotðtÞ� ¼ TrB½e- iH t=pFtotð0ÞeiH t=p� ð5Þ
The bath is described by its correlation functions, Cj(t), which
are defined as10,29,30 CjðtÞ ¼ TrB½~FjðtÞ~Fjð0ÞFB�, where the
Langevin force, ~FjðtÞ, is given in the interaction picture:
~FjðtÞ ¼ eiH Bt=pFje- iH Bt=p. For the phonon bath, the correla-
tion function can be written as Cj(t) = (1/π)

R
-¥
¥ dω 3 Jj(ω) 3

[e-iωt/1 - e-βpω], where Jj(ω) is the spectral density for the
jth site:

JjðωÞ ¼
X
ξ

cjξ2 3 p
2mjξ 3ωjξ

δðω-ωjξÞ ð6Þ

To proceed, we use the Drude spectral density, which corre-
sponds to an overdamped Brownian oscillator model. Further-
more, we assume that the system-environment coupling is the
same for all sites, Jj(ω) = J(ω)," js. TheDrude spectral density is
defined as

JðωÞ ¼ ηγ
ω

ω2 þ γ2
ð7Þ

We introduced η = 2λ/p, which is dependent on the reorganiza-
tion energy, λ, and the Drude decay constant, γ. Under this
spectral density, the correlation function Cj(t) takes the form

Cjðt > 0Þ ¼
X¥
k¼ 0

ck 3 e
- vkt ð8Þ

with theMatsuraba frequencies v0 = γ and vk = 2kπ/βp for kG 1.
The constants ck are given by

c0 ¼ ηγ

2
cot

βpγ

2

� �
- i

� �

ck ¼ 2ηγ
βp 3

vk
vk2 - γ2

for kG1

Now, we are in the position to write down the HEOM for the
reduced density operator10

d
dt
Fn ¼ - ðiL S þ

XN
j¼ 1

X
k

njkvkÞFn - i
XN
j¼ 1

½V j,
X
k

Fnþ
jk
�

- i
XN
j¼ 1

X
k

njkðckV jFn-
jk
- c

�
kFn-

jk
V jÞ ð9Þ

where n denotes the set of nonnegative integers n � {n1, n2, ... ,
nN} = {{n10, n11, ... , n1K}, ... , {nN0, nN1, ... , nNK}}. njk

( refers to the

change of the number njk to njk( 1 in the global index n. The sum
of njk is called tier N c, N c =

P
j,k njk. In particular, F0 =

F{{0,0,...},...,{0,0,...}} is the system’s reduced density operator (RDO)
and all others are auxiliary density operators (ADOs). Although
the RDO is the most important operator, the ADOs contain
corrections to the system-environment interaction; these arised
from the nonequilibrium treatment of the bath.

Here, we assume that both F0 and V j have the order of 1.
When the tier of Fn at tier N c (N c =

P
j,k njk), the amplitude of

Fn is proportional to |c0
P

jnj0c1
P

jnj1...cK
P

jnjK| following the standard
approach (eq 9),31,32 which indicates the amplitude of Fn is related to
both ck and njk. njk is decided by the truncation level, while ck is related
to the correlation function. The correlation function is derived from
the system-environment correlation. In other words, the amplitude
of Fn is dependent on the system-environment coupling. Under the
intermediate-to-strong system-environment coupling, the amplitude
of Fn cannot be guaranteed to be small even at high truncation level. It
goes to the opposite direction as we expected, since we always expect
more accurate results at high truncation level. Fortunately, Shi and co-
workers developed a new approach in which one is able to rescale the
original ADOs which can be used for overcoming this issue.20 They
scaled the original operator as

~FnðtÞ ¼ ð
Y
k, j

njk!jckjnjkÞ- 1=2FnðtÞ ð10Þ

After the scaling, j~Fnj has the order ofΠk,j(|ck|
njk/njk!)

1/2. It can
make sure that j~Fnj decays to zero at higher hierarchical
truncation level.

Since the number of contributing terms to the correlation
function, eq 8, and ADOs is infinite, the computation of eq 9 is;
in general;impossible. In order to overcome this problem, a
truncation scheme for both the correlation function and ADOs is
applied. We set the truncation level for the correlation function
(Matsuraba frequency and constant ck) at levelK, while the cutoff
for the tier of ADOs is N c. With the Ishizaki-Tanimura
truncating scheme,31,32 eq 9 for the scaled density operator
becomes

d
dt

~Fn ¼ - ðiL S þ
XN
j¼ 1

XK
k¼ 0

njkvkÞ~Fn

- i
XN
j¼ 1

X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnjk þ 1Þjckj

q
½V j, ~Fnþ

jk
�

-
XN
j¼ 1

X¥
m¼Kþ 1

cjm
vjm

� ½V j, ½V j, ~Fn��

- i
XN
j¼ 1

XK
k¼ 0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
njk=jckj

q
ðckV j~Fn-

jk
- c

�
k~Fn-

jk
V jÞ ð11Þ

We use eq 11 to simulate the exciton dynamics of the FMO
complex.

III. RESULTS AND DISCUSSION

For the numerical analysis, we used the same Hamiltonian
as in refs 7 and 28, the same reorganization energy, λj = λ =
35 cm-1, and the Drude decay constant, γj

-1 = γ-1 = 50 fs, of
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refs 7 and 33. As we mentioned before, sites 1 and 6 are both
connected to the LHC. It is possible that site 1, site 6, or both sites
are excited. For this reason, three different initial conditions are
employed, |1æ (site 1 is excited), |6æ (site 6 is excited), and 1/(2)1/
2(|1æ þ |6æ) (the superposition of excited sites 1 and 6).
Calibration. We compare the scaled approach to the original

HEOM approach and investigate the critical choice of the
truncation levels of ADOs (N c) and the correlation functions
(K). The original HEOM approach is given in eq 9. In Figure 2,
we depict the population of sites 1, 2, and 3 for differentNc in the
scaled approach and for Nc = 4 in the original approach at
temperatures T = 77 K and T = 300 K, setting K = 0. One obtains
a large difference between the two approaches at T = 77 K; see
the dotted lines in the figure. Under the original HEOMmethod,
the population of site 2 goes below 0 after 750 fs, which is
unphysical. However, the population of each site under the scaled
HEOMapproach behaves reasonably even atN c = 1. This shows
that the scaled HEOM approach can result in better simulation
results at less computational costs. The difference between the
two approaches originates from the truncation level of the
correlation function, which is due to the coupling between the
system and the environment.
For the scaled approach itself, the difference between different

truncation levels (N c) is modest at both temperatures. It can be
seen that there is only minimal difference among threeN c values
at T = 77 K. Beyond 1500 fs, the difference of the population
evolution for site 3 becomes larger between the case of N c = 1
and N c = 2 and 4. The population evolution of all the sites is
exactly the same for N c = 2 and 4. As a result, N c g 2 is the
sufficient truncation level for the ADOs at T = 77 K. At room
temperature, T = 300 K, the variation at the dynamics of the
populations as a function ofN c is more apparent. The population
evolution of all sites forN c = 1 is not as smooth as in the other two
situations. For the cases ofN c = 2 and 4, there is a slight difference
in the population beatings which occur between 200 and 300 fs.
Although this is not a substantial difference, we believeN c = 4 is a
good compromise between efficiency and accuracy.
For the truncation level of the correlation function (K), the

simulation for the seven sites is computationally unwieldy.

Therefore, we truncated the system to test the correlation
truncation level using a three-site model (sites 1, 2, and 3) with
three different values ofK, beingK = 0, 1, and 2. The results show
that truncation levelK = 0 is enough for bothT = 77 and 300 K. A
similar result was also found in ref 20, where nonzero K was
shown to be significant in the dynamics only at rather long time
scales. In the following computations, we chose N c = 4 for both
temperatures as our reference. At this point, we would like to
emphasize the numerical efficiency of the scaled HEOM ap-
proach. The original HEOM approach requires a truncation level
as high as N c = 12 to get converged results.7 However, we only
requireN c = 2 for T = 77 K andN c = 4 for T = 300 K, which is a
significant resource reduction. On a standard desktop computer,
a simulation of the time evolution for 2.5 ps takes about 7 min for
the case of N c = 2 and about 1.5 h for the case of N c = 4.
Coherent Beatings at Cryogenic andRoomTemperatures.

Now, we investigate the cryogenic temperature T = 77 K in more
detail. This is the temperature of the first experiment by Engel
et al.3 which shows coherent phase evolution of the FMO complex
from time t = 0 to roughly t = 660 fs. The results are presented in
Figure 3. In the left panel, we show the results of simulation for
the system Hamiltonian only. In the right panel, one can observe
that the quantum beating between certain sites clearly persists in
the short time dynamics of the full FMO complex. For the
simulated initial conditions, the population beatings can last for
hundreds of femtoseconds; this time scale is in agreement
with the experimental observation.3 The population beating for
all three different initial conditions can last around 650 fs. In
Figure 3a, the initial state is localized at site 1. The system exhibits
coherent beatings between the strongly coupled sites 1 and 2,
accompanied by relatively slow relaxation to sites 3 and 4. The
change of population of all other sites is weak. In Figure 3b, where
the initial state is localized at site 6, the population relaxes faster.
For t e 400 fs, there is population beating between the strongly
coupled sites 6 and 5, accompanied by relaxation to the inter-
mediate sites 4, 5, and 7. From these sites, the population is fed
into the low-energy sites 3 and 4. The population of site 6 almost
vanishes at t = 800 fs, while for the previous initial condition,
Figure 3a, the population of site 1 is roughly 0.5 at that time.

Figure 2. The population evolution of sites 1, 2, and 3 under different cutoffs for the tier of auxiliary density operator (N c) and different HEOM
approaches. The solid lines represent the population evolution at three different truncation levelsN c = 1, 2, and 4 of the scaled HEOM approach. The
short dotted lines show the time evolution ofN c = 4 at the original HEOM approach. Site 1 is initially excited, and the reorganization energy and Drude
decay constant are λj = λ = 35 cm

-1 and γj
-1 = γ-1 = 50 fs, respectively. The dynamics are shown at cryogenic temperature T = 77 K (upper panel) and

at physiological temperature T = 300 K (lower panel).
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The exciton migration pathways and time scales are in accor-
dance with previous work.7,13,28 Finally, Figure 3c represents the
superposition of sites 1 and 6. The time evolution of this case is
the combination of the single site excited cases. That is, the
population evolution on site 1 follows the pathway of initially
single site 1 excited, while the pathways for the population on site
6 are the same as the single site 6 excited case.
In order to investigate the excitation transfer beyond the initial

beating region, we extended the simulation to a longer time
(∼2500 fs). The results are shown in Figure 5. To check whether
the entire system converges to the thermal equilibrium, we ob-
tained all eigenvalues of the system Hamiltonian and calculated
the probability of each eigenstate under temperature T based on
the Boltzmann distribution. Subsequently, we transformed the
population from the eigenstate representation to site representa-
tion and obtained the population of each site at thermal
equilibrium. At T = 77 K, the population of site 3 is 0.69 and
that of site 4 is 0.22. The population of all other sites is smaller
than 0.03. For the case of having the initial excitation start in site
6, the thermal equilibrium reached the end of 2 ps, while for the
case of the other two initial conditions, they are still on their way
to the thermal equilibrium at the end of 2.5 ps. Our simulation
shows that the system reaches thermal equilibrium at ∼7 ps for
the case in which site 1 was initially excited and the time for the
initial superposition of sites 1 and 6 is around 6 ps.
A recent experiment studied the excitation dynamics of the FMO

complex at room temperature.34 To investigate quantum coherence
effects under physiological conditions, we simulate the dynamics at
the temperature T = 300 K. We chose three different values for γ-1

in our calculation: 50, 100, and 166 fs.7,9 Following the same pro-
cedure as before, we consider three different initial conditions with
the reorganization energy λ = 35 cm-1. We choose the truncation
level at N c = 4. The calculation results are shown in Figure 6.
The main difference between the case of 300 K and that of

77 K is the time scale of the persistence of population beating.
The coherent beating lasts only 400 fs at room temperature,
whereas it lasts much longer at T = 77 K. It is also found that the

smaller γ is, the longer the population beating can last. When
γ-1 = 166 fs, the population beating time can last almost 700 fs.
The main pathways for all cases are the same as the pathways at
low temperature. Furthermore, the time evolution of the population
for each site also converges to thermal equilibrium. However, the
entire system reaches thermal equilibrium considerably sooner at
room temperature. For example, the system initialized at site 6 reaches
equilibrium at 1.5 ps when T = 300 K, compared to 2 ps at 77 K.
Behavior of the Auxiliary Density Operators. In order to

further investigate the effects of the ADOs and their role in the

Figure 3. Population evolution of each site at cryogenic temperature T
= 77 K. The left panel shows the dynamics for the system alone, and the
right includes the effects of the environment. The reorganization energy
is λj = λ = 35 cm-1, while the value of the Drude decay constant is
γj

-1 = γ-1 = 50 fs. The initial conditions are site 1 excited (a), site 6
excited (b), and the superposition of sites 1 and 6 (c).

Figure 4. Population evolution of the RDO and ADOs for the case of
initial excitation at sites 1 and 6, respectively. The first panel shows the
time evolution of the ADO Æ1|Fn000000|1æ elements with n= 0, 1, 2, 3, and
4. The second panel shows the time evolution of the Æ6|F00000m0|6æ
elements with levels of truncation m = 0, 1, 2, 3, and 4.

Figure 5. Long time dynamics of the population at each site for T = 77
K, where parts a, b, and c correspond to different initial conditions as
noted before. All other parameters are the same as those in Figure 3.
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modified HEOM scheme, we examine the magnitude of their
population elements and find that the majority of them are close
to 0. However, there are some nonzero ADO elements during the
time evolution. We plot their time dependence in Figure 4. For
the case where site 1 is initially excited, the simulation shows that
the most important ADO elements are Æ1|Fn000000|1æ, with n = 1,
2, 3, and 4. For the site 6 initially excited case, the important
ADOs are Æ6|F00000m0|6æ, withm = 1, 2, 3, and 4. From the image
(Figure 4), it can be found that the amplitude of the ADOs
decays rather quickly as the level of truncation increases. Con-
versely, the ADO populations are related to the amplitude of the
site population in the RDO. When the population goes up, the
corresponding population in ADOs also increases. For odd
truncation levels (F1000000, F3000000, F0000010, and F0000030), the
ADOs yield negative population. The results are indicative of the
fact that the scaled HEOM approach reduces the amplitude of
ADOs as the truncation level increases. Interestingly, there are no
negative population elements of the density matrix when the
truncation level of the correlation function is K = 0 at cryogenic
temperature. This is in contrast to the original hierarchical
approach,7 in which some populations become negative.
Energy Transfer Pathways. We briefly comment on the

exciton transfer pathways. The pathways are determined by the
system Hamiltonian rather than by the system-environment
coupling or the environment.7,28 From Figures 3, 5, 6, and 7, we
find that the frequency of the site population oscillations is
independent of the temperature and bath relaxation rate. For
example, in the pathway site 1h 2f 3 and 4, the main beatings
between sites 1 and 2 are caused by several features. The energy

barrier between sites 1 and 2 (Δε12 =-120 cm-1) is smaller than
that between sites 1 and 6 (Δε16 = -220 cm-1), and the
coupling of sites 1 and 2 is stronger. The population oscillation
between sites 3 and 4 is due to the similar site energies and the
strong coupling between them. In the real biological system, the
RC is close to sites 3 and 4. When the exciton transfers to these
sites, it moves to the RC directly and cannot return to the system.
Other pathways start from site 6, i.e., site 6h 7f 3 and 4, site
6h 5f 3 and 4, and site 6f 3 and 4. Although the population
distribution is the same for all pathways at long times, the
excitation transfer time is shorter for an initial excitation at site
6.28 For the pathway of site 1, the site energy of site 2 is bigger
than that of site 1. It is hard for the excitation to move from site 1
to site 2, and that is why the wave-like evolution lasts for a longer
time. However, in the population pathway that starts from site 6,
the excitation flows from the higher- to lower-energy sites all the
time. This reduces the transfer time, and the system reaches
thermal equilibrium faster. Comparing the two different tem-
peratures in terms of the excitation transfer pathways, we note
that the influence of the thermal bath is much stronger at room
temperature than at low temperature. The bath at 300 K helps
the system transfer the excitationmore efficiently by reducing the
quantum beating, thus speeding up the overall transfer times to
the reaction center.

IV. CONCLUSION

In summary, we have examined the full dynamics of the
transfer of excitation energy toward the reaction center through

Figure 6. Population of all FMO sites at T = 300 K. The initial state is
the superposition of sites 1 and 6. The reorganization energy remains 35
cm-1. Three different values of phonon relaxation time are tested, which
are γ-1 = 50 fs (a), γ-1 = 100 fs (b), and γ-1 = 166 fs (c).

Figure 7. Long time evolution of the population of each site atT = 300 K,
where parts a, b, and c correspond to site 1 initially excited, site 6 excited,
and the superposition of sites 1 and 6. The reorganization energy is λj = λ =
35 cm-1, and the Drude decay constant is γj

-1 = γ-1 = 166 fs.
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the Fenna-Matthews-Olson (FMO) pigment-protein com-
plex, employing the modified scaled hierarchical approach
recently developed by Shi et al.20 The scaled HEOM approach
not only reduces the cutoff for the tier of auxiliary density
operators but also decreases the truncation level of the correla-
tion function, which makes it more efficient compared to the
original HEOM approach. We have shown that a tier cutoff of
Nc = 4 and a correlation function cutoff of K = 0 optimizes the
simulation efficiency and accuracy for the parameter regime of
the FMO complex. Furthermore, our theoretical results show
that the population beating can last as long as 650 fs under
cryogenic temperature (77 K). When the temperature is 300 K,
the beating time can vary from 400 to 700 fs, depending on the
environment parameters. Our simulation result is in accord
with the conclusion of Ishizaki et al.7 The improved computa-
tional performance of our scaled HEOM approach will be
especially useful in theoretical studies of transport measures,
such as efficiency, transfer time, and other properties, like
entanglement. Moreover, this efficient approach also provides
us with the potential to couple other effects into our current
system. Under the current model, only the thermal effect is
fully considered; however, many other effects exist in the real
biological system, such as dipole-dipole interaction, the
different phonon environment for each site, and slow struc-
ture changes of the FMO complex. It will be our future task to
build a model with these features and examine the time
evolution of entanglement and related quantum information
measures.35-39
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