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In proposals for quantum computers using arrays of trapped ultracold polar molecules as qubits,
a strong external field with appreciable gradient is imposed in order to prevent quenching of the
dipole moments by rotation and to distinguish among the qubit sites. That field induces the molecu-
lar dipoles to undergo pendular oscillations, which markedly affect the qubit states and the dipole–
dipole interaction. We evaluate entanglement of the pendular qubit states for two linear dipoles,
characterized by pairwise concurrence, as a function of the molecular dipole moment and rotational
constant, strengths of the external field and the dipole–dipole coupling, and ambient temperature. We
also evaluate a key frequency shift, �ω, produced by the dipole–dipole interaction. Under conditions
envisioned for the proposed quantum computers, both the concurrence and �ω become very small
for the ground eigenstate. In principle, such weak entanglement can be sufficient for operation of
logic gates, provided the resolution is high enough to detect the �ω shift unambiguously. In prac-
tice, however, for many candidate polar molecules it appears a challenging task to attain adequate
resolution. Simple approximate formulas fitted to our numerical results are provided from which the
concurrence and �ω shift can be obtained in terms of unitless reduced variables. © 2011 American
Institute of Physics. [doi:10.1063/1.3567486]

I. INTRODUCTION

Since the original proposal by DeMille,1 arrays of ultra-
cold (<1 mK) polar molecules have come to be considered
among the most promising platforms to implement a quan-
tum computer.2–13 His proposal describes a complete scheme
for quantum computing using as qubits the dipole moments
of diatomic molecules, trapped in a one-dimensional optical
lattice, partially oriented in an external electric field, and cou-
pled by the dipole-dipole interaction. The qubit states are in-
dividually addressable because the field has an appreciable
gradient so the Stark effect is different for each location in the
array.

A subsequent proposal has advocated coupling polar
molecules into a quantum circuit using superconducting
wires.14 Such capacitive, electrodynamic coupling to trans-
mission line resonators is analogous to coupling to Rydberg
atoms and Cooper pair boxes.15, 16 The molecular qubits are
entangled via the coupling to the transmission lines rather
than direct dipole–dipole interactions. Again, addressability
of the qubits is achieved via the Stark effect by means of local
gating of an electrostatic field.

Entanglement is a major ingredient in most quantum
computation algorithms. It is among the defining features of
quantum mechanics, with no classical analog.17–19 A pure
state of a pair of quantum systems is said to be entangled if
its wavefunction cannot be factored into a product of wave-
functions of the individual partners. For example, the singlet
state of two spin- 1

2 particles, 1/
√

2(| ↑↓〉 − | ↓↑〉) is entan-
gled. A mixed state is entangled if it cannot be represented as

a)Author to whom correspondence should be addressed. Electronic mail:
dherschbach@yahoo.com.

a mixture of factorizable pure states. The allure of quantum
information processing has recently motivated studies of en-
tanglement for a variety of potential qubit systems.5, 6, 9, 20–23

These include one-dimensional arrays of localized spins, cou-
pled through exchange interactions and subject to an external
magnetic field23 and analogous treatments of trapped electric
dipoles coupled by dipole–dipole interactions.32

However, the previous studies of entanglement of elec-
tric dipoles have not adequately considered how the external
electric field, integral to current designs for quantum comput-
ers using polar molecules, affects both the qubit states and
the dipole–dipole interaction. For the simplest case of a 1�

diatomic molecule, the qubit eigenstates resulting from the
Stark effect are linear combinations of spherical harmonics,
with coefficients that depend markedly on the field strength.
These are appropriately termed pendular states33 or field-
dressed states.34 In such states, the orientation of the dipole
moment has a broad angular range (not solely along or op-
posed to the field direction as are spins in a magnetic field).
Likewise, the dipole–dipole interaction for molecules in pen-
dular states is much different than that for dipoles in the ab-
sence of an external field.

Here, we evaluate entanglement, as measured by pair-
wise concurrence, for the prototype case of two diatomic polar
molecules in pendular states, ultracold and trapped in distinct
optical lattice sites. The molecules are represented as identi-
cal rigid dipoles, undergoing angular oscillations, a fixed dis-
tance apart and subject either to a different or to the same
external electric field. We examine the dependence of the
concurrence on three dimensionless variables. The first gov-
erns the energy and intrinsic angular shape of the qubits (when
the dipole-dipole interaction is switched off). It is με/B, the
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ratio of the Stark energy (magnitude of permanent dipole mo-
ment times electric field strength) to the rotational constant
(proportional to inverse of molecular moment of inertia). The
second variable governs the magnitude of the dipole–dipole
coupling. It is �/B, with � = (μ2/r3), the square of the per-
manent dipole moment divided by the cube of the separation
distance. The third variable, kB T/B, is the ratio of thermal
energy (Boltzmann constant times Kelvin temperature) to the
rotational constant.

We also examine an aspect related to but distinct from
entanglement. The operation of a quantum gate35 such as con-
trolled NOT (CNOT) requires that manipulation of one qubit
(target) depends on the state of another qubit (control). This
is characterized by the shift, �ω, in the frequency for tran-
sition between the target qubit states when the control qubit
state is changed. The shift �ω, which is due to the dipole–
dipole interaction, must be kept smaller than the differences
required to distinguish among addresses of qubit sites. Under
conditions envisaged in the proposed designs1–5, 13 for quan-
tum computing with trapped polar molecules, �/B < 10−4,
and for the ground eigenstate both the entanglement and fre-
quency shift �ω become very small. For CNOT and other
operations, entanglement needs to be large, but can be in-
duced dynamically, so need not be appreciable in the ground
eigenstate. Yet a small �ω shift can only suffice if the reso-
lution is high enough to detect the shift unambiguously. From
estimates of the line widths of transitions between the pen-
dular qubit states, we find it an open question whether ad-
equate resolution can be obtained for typical candidate di-
atomic molecules.

II. ENTANGLEMENT FOR TWO DIPOLES IN
PENDULAR STATES

A. Hamiltonian terms and pendular qubit states

The Hamiltonian for a single trapped linear polar
molecule in an external electric field is

H = p2

2m
+ Vtrap(r) + BJ2 − μ · ε, (1)

where the molecule, with mass m, rotational constant B, and
body-fixed dipole moment μ, has translational kinetic energy
p2/2m, potential energy Vtrap within the trapping field and ro-
tational energy BJ2 as well as interaction energy μ· ε with
the external field ε. In the trapping well, at ultracold temper-
atures, the translational motion of the molecule is quite mod-
est and very nearly harmonic; p2/2m + Vtrap(r) thus is nearly
constant and can be omitted from the Hamiltonian. There re-
mains the rotational kinetic energy and Stark interaction,

HS = BJ2 − μεcosθ, (2)

which represent a spherical pendulum with θ the polar angle
between the molecular axis and the field direction. Figure 1(a)
displays the lowest few pendular eigenenergies36 for a 1� di-
atomic (or linear) molecule, as functions of με/B. These are
labeled with the familiar quantum numbers J̃ , M that specify
the field-free rotational states. However, J̃ wears a tilde to in-
dicate it is no longer a good quantum number since the Stark
interaction mixes the rotational states, whereas M (denoting

FIG. 1. Stark states for a polar diatomic molecule in a 1� electronic state
(Ref. 36), as functions of με/B, with μ the permanent dipole moment, ε

the field strength, B the rotational constant. (a) Eigenenergies, W, and (b)
Matrix elements of orientation cosines; see Eq. (14). States used as qubits
(red curves) are labeled |0〉 and |1〉. In the field-free limit, |0〉 correlates
with the J = 0, MJ = 0 and |1〉 with the J = 1, MJ = 0 rotational states.
Dashed curve (green) in (a) shows energy for transition between qubit states,
�W = W1 − W0 and that in (b) shows C0 − C1, difference between effective
dipole moments, projections of the molecular dipole on the field direction for
pendular states |0〉 and |1〉.

the projection of the J-vector on the field direction) remains
good as long as azimuthal symmetry about ε is maintained. As
proposed by DeMille, the qubit states |0〉 and |1〉 are chosen
as the lowest M = 0 pendular states, with J̃ = 0 and 1, respec-
tively. These are superpositions of Y j,0 spherical harmonics,

|0〉 =
∑

j

a j Y j,0(θ, ϕ), |1〉 =
∑

j

b j Y j,0(θ, ϕ). (3)

Figure 2 plots the coefficients as functions of με/B. Figure 3
displays the angular distributions of the pendular qubit states.
For |0〉 the distribution is unimodal and as με/B increases
the dipole orientation increasingly favors the direction of the
ε-field (at θ = 0o). For |1〉, the distribution is bimodal be-
cause, with M = 0, the dipole is rotating perpendicular to the
J-vector, which is perpendicular to the field direction. For ε

= 0, the dipole orientation is equally probable in the hemi-
spheres toward (θ < 90o) or opposite (θ > 90o) to the field
direction. As με/B increases, the pinwheeling dipole favors

FIG. 2. Coefficients of sums of spherical harmonics for pendular states |0〉
and |1〉, see Eq. (3). Dashed curve for |1〉 indicates the coefficient of Y0,0 is
negative.
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FIG. 3. Angular distributions of the |0〉 and |1〉 pendular states for values of
με/B between 0 and 8.

the opposite hemisphere because there its motion is slowed
because the Stark interaction becomes unfavorable. However,
when με/B becomes large enough, pinwheeling is inhibited
and converted into pendular libration about the field direction,
so the dipole orientation shifts to favor the toward hemisphere.

Adding a second trapped polar molecule, identical to the
first but distance r12 apart, introduces in addition to its pendu-
lar term the dipole–dipole coupling interaction,

Vd−d = μ1 · μ2 − 3(μ1 · n)(μ2 · n)

|r1 − r2|3 . (4)

Here n denotes a unit vector along r12. In the presence of
an external field, it becomes appropriate to express Vd−d in
terms of angles related to the field direction. As shown in
Appendix A, the result after averaging over azimuthal angles
(that for M = 0 states are uniformly distributed) reduces to

Vd−d = �(1 − 3cos2α)cosθ1cosθ2, (5)

where � = μ2/r3
12, the angle α is between the r12 vector and

the field direction and polar angles θ1 and θ2 are between the
μ1 and μ2 dipoles and the field direction. Until later (Sec. IV),
we consider the external field magnitude and direction to be
the same at the sites of both the polar molecules.

B. Entanglement measured by pairwise concurrence

We will deal with the entanglement of formation, E(ρ),
which characterizes the amount of entanglement needed in
order to prepare a state described by a density matrix, ρ.
(Henceforth, we term E(ρ) just “entanglement,” for short.)
Hughes and Wootters37, 38 have shown that E(ρ) for a gen-
eral state of two qubits can be quantified by the pairwise
concurrence, C(ρ), which ranges between zero and unity.
The relation can be written as

E(ρ) = ξ (C(ρ)), (6)

where ξ is given by

ξ (C) = h

(
1 + √

1 − C2

2

)
, (7)

with h(x) = −x log2x − (1 − x)log2(1 − x). The function
ξ (C) increases monotonically between zero and unity as C

varies from 0 to unity. The concurrence is given by

C(ρ) = max
{

0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4

}
, (8)

where the λi ’s are the eigenvalues, in decreasing order, of the
non-Hermitian matrix ρρ̃, where ρ̃ is the density matrix of the
spin-flipped state, defined as

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy), (9)

with ρ∗ the complex conjugate of ρ and σy a Pauli ma-
trix. The parent density matrix ρ is taken in the basis
formed by combining the pendular qubit states; for a pair
of two-level particles, this comprises the four state vectors
{|00〉, |01〉, |10〉, |11〉}.

In order to evaluate thermal entanglement,
we need a temperature dependent density matrix,
ρ = exp(−βH )/Z (T ), with β = 1/kBT and Z (T ) the
partition function

Z (T ) = tr [exp(−βH )] =
∑

i

gi e
−βEi , (10)

with Ei the i th eigenvalue and gi its degeneracy. Hence the
density matrix can be written as

ρ(T ) = 1

Z

N∑
i

e−βEi |�i 〉〈�i |, (11)

where |�i 〉 is the i th eigenfunction. From the density ma-
trix ρ(T ), we can obtain the reduced density matrix for any
pair of dipoles and thence evaluate the concurrence at any
temperature.

III. CONCURRENCE OF TWO DIPOLES IN PENDULAR
STATES

We illustrate the calculation of pairwise concurrence
for N = 2 dipoles. The Hamiltonian, HS1 + HS2 + Vd−d ,
when set up in a basis of the qubit pendular states,
{|00〉, |01〉, |10〉, |11〉}, takes the form

HS1 + HS2 =

⎛
⎜⎜⎜⎜⎜⎝

W0 + W ′
0 0 0 0

0 W0 + W ′
1 0 0

0 0 W1 + W ′
0 0

0 0 0 W1 + W ′
1

⎞
⎟⎟⎟⎟⎟⎠ ,

(12)

Vd−d =�(1 − 3cos2α)

⎛
⎜⎜⎜⎜⎜⎝

C0C ′
0 C0C ′

X CX C ′
0 CX C ′

X

C0C ′
X C0C ′

1 CX C ′
X CX C ′

1

CX C ′
0 CX C ′

X C1C ′
0 C1C ′

X

CX C ′
X CX C ′

1 C1C ′
X C1C ′

1

⎞
⎟⎟⎟⎟⎟⎠ ,

(13)
where W0 and W1 are the eigenenergies of the pendular qubit
states |0〉 and |1〉 in the absence of the dipole–dipole interac-
tion. Primes attached to quantities for the second dipole in-
dicate that the external field magnitude may differ at its site
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(although as noted above, we postpone evaluating that case
until Sec. IV). In Vd−d , the basis qubit states are linked by
matrix elements containing factors arising from the orienta-
tion cosines in Eq. (5). These are

C0 = 〈0|cosθ |0〉, CX = 〈0|cosθ |1〉, C1 = 〈1|cosθ |1〉,
(14)

C0 and C1 are the expectation values of cosθ in the pen-
dular states |0〉 and |1〉, respectively, so represent for those
states the effective dipole moment projections displayed in
Fig. 1(b). CX corresponds to an exchange interaction or tran-
sition dipole moment between the qubit states. Both the Stark
eigenenergies Wi and the dipole–dipole elements Ck are func-
tions of με/B. As seen in Fig. 1(b), when με/B is increased
C0 becomes increasingly positive, whereas C1 is increasingly
negative until about με/B = 2, then climbs to zero at about
με/B = 4.9 and thereafter is increasingly positive. The range
με/B = 2–4 is recommended for the proposed quantum com-
puter designs;1, 16 within that range, the difference in the ef-
fective dipole moments of the qubits, |C0 − C1|, varies only
modestly.

If the dipole–dipole interaction is omitted (� = 0),
the eigenvectors of HS1 + HS2 are simply �1 = |00〉, �2

= 2−1/2(|10〉 − |01〉), �3 = 2−1/2(|10〉 + |01〉), �4 = |11〉,
corresponding to the eigenenergies of Eq. (12). For �1 and
�4, which are obviously nonentangled states, the concurrence
is zero. For �2 and �3, which exemplify fully entangled
states, the concurrence is unity: these are termed Bell states.17

When the dipole–dipole coupling is included, an analyti-
cal solution to obtain eigenstates is only feasible when the ex-
ternal field is switched off. As shown in Appendix B, in that
limit analytical results can be obtained for each step in evalu-
ating the concurrence, both for the four individual eigenstates
and their combination in the thermal concurrence. As seen in
Fig. 1, for με/B = 0, the energy terms in Eq. (12) involve
merely W0 = 0 and W1 = 2B. In the Vd−d matrix of Eq. (13),
the cosine matrix elements C0 and C1 vanish and CX = 3−1/2;
thus, the only nonzero elements occur along the antidiagonal
and (for α = 90o) are just �C2

X . The results for this zero-field
limit prove useful in interpreting those for the general pendu-
lar case.

The limits with � = 0 and/or με/B = 0 motivate setting
up the Hamiltonian of Eqs. (12) and (13), for the (unprimed)
case with the same external field at both dipole sites, using a
basis of Bell states:

|11〉 + |00〉√
2

,
|11〉 − |00〉√

2
,

|10〉 + |01〉√
2

,
|10〉 − |01〉√

2
.

(15)
In this basis, the Hamiltonian becomes

HS1 + HS2 =

⎛
⎜⎜⎜⎜⎜⎝

W+ W− 0 0

W− W+ 0 0

0 0 W+ 0

0 0 0 W+

⎞
⎟⎟⎟⎟⎟⎠ , (16)

Vd−d = �(1 − 3cos2α)

⎛
⎜⎜⎜⎜⎜⎝

Â+ B̂ Ĉ+ 0

B̂ Â− Ĉ− 0

Ĉ+ Ĉ− D̂+ 0

0 0 0 D̂−

⎞
⎟⎟⎟⎟⎟⎠ , (17)

where W± = W1 ± W0, Â± = 1
2 (C2

1 + C2
0 ) ± C2

X , B̂
= 1

2 (C2
1 − C2

0 ), Ĉ± = CX (C1 ± C0), and D̂± = C1C0 ± C2
X .

This makes explicit a consequence of the symmetry between
the (unprimed) sites.39 In the Bell basis, the Hamiltonian
factors, with the state 2−1/2(|10〉 − |01〉) in a 1 × 1 block,
so that state remains maximally entangled regardless of the
value of με/B or �/B.

Figure 4 plots, for με/B = 0, 2, and 4.9, the eigenenergy
and pairwise concurrence vs �/B = 0–6 for the four eigen-
states of the two-dipole system. The eigenstates are numbered
from 1 to 4 in order of increasing energy. For με/B = 0, both
eigenstates 2 and 3 are Bell states, with eigenenergies Ei/B
= 2 − (�/6B) and 2 + (�/6B), respectively; eigenstates 1
and 4 are also entangled (much more weakly) by the dipole–
dipole interaction, with eigenenenergies that shift downward
and upward nonlinearly with increasing �/B, respectively.
For με/B > 0, the concurrences increase with �/B for eigen-
states 1 and 4, and decrease for eigenstate 3. By virtue of the
symmetry imposed factorization noted above, eigenstate 2 re-
tains the same Bell form despite the Stark and dipole–dipole
interactions which affect its energy, and its concurrence is al-
ways unity. For small �/B � 1, eigenstate 3 also becomes
independent of the dipole–dipole interaction and coincides
with eigenstate 2 in both energy and concurrence. For με/B

FIG. 4. Eigenenergies, numbered 1, 2, 3, and 4 in order of increasing energy,
and pairwise concurrences of the eigenstates for two dipoles as a function
of the dipole–dipole coupling constant �/B for three values of the reduced
electric field strength, με/B = 0, 2, and 4.9.
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FIG. 5. Eigenvectors of the four eigenstates for two dipoles as a function of
the dipole–dipole coupling constant �/B = 0 to 6 for με/B = 0 (dashed
curves) and 2 (solid curves).

= 4.9, as seen in Fig. 1(b), the C1 = 〈1|cosθ |1〉 factor that
appears in seven of the matrix elements in Eq. (13) vanishes.
Consequently, the energy of eigenstate 4 then becomes inde-
pendent of the dipole–dipole interaction, although its wave-
function and concurrence do not.

Figure 5 shows, for με/B = 0 and 2, how the contribu-
tions of the basis states to each of the eigenstates vary with
the strength of the dipole–dipole interaction. This illustrates
that for �/B � 1 the eigenstates rapidly approach those for
� = 0. Indeed, we find that for �/B < 0.04 the concurrences
for eigenstates 1 and 4, which rapidly become the same, are
proportional to �/B within better than 1%. Thus,

C12 = K (x)[�/B], (18)

where the proportionality factor K (x) is a function of x
= με/B. At the zero-field limit, K (0) = 1/6. In Appendix C,
we describe a numerical analysis that provided an accurate
approximate formula,

K (x) = A1 + A2

1 + exp[(x − x0)/�x]
. (19)

This is plotted in Fig. 6 and values of the four parameters are
listed in Appendix C.

FIG. 6. The K (x) function of Eq. (18); solid curves show exact result (red)
and fitted function (blue) of Eq. (19) that pertains to pendular qubit basis,
see Eq. (3). For comparison, dashed curve pertains to field-free basis with |0〉
= Y0,0, |1〉 = Y1,0 (cf. Table III, Appendix C).

FIG. 7. Eigenenergies and concurrences for the four eigenstates for two
dipoles as a function of reduced variables, με/B for electric field and �/B
for dipole–dipole coupling.

Figure 7 displays for �/B = 0.1, 1, and 6 the eigenen-
ergies and concurrences vs με/B from 0–8 for the four
eigenstates. As the dipole–dipole interaction increases 60-fold
over this range, its effect on the eigenstate energies is rela-
tively modest, whereas the concurrences change markedly in
response to variations in eigenvector compositions as illus-
trated in Fig. 5.

Figure 8 gives a contour plot of the thermal pairwise con-
currence derived from Eq. (11) as a function of �/B and
kBT/B. It pertains to με/B = 3; we found that normaliz-
ing the thermal concurrence to its value for T = 0 and �/B
= 1 removed most of the variation with με/B from such con-
tour plots. For T = 0, the thermal concurrence coincides with
that for the ground state, eigenvector �1. However, as kBT/B
increases, the thermal concurrence decreases and is always
smaller than the ground-state concurrence. This may seem
odd, because Eq. (11) specifies a shift in population that re-
duces the contribution from the gound state, while bringing in
contributions from the excited states. The eigenstates 2 and 3
then populated have large concurrence, so increasing temper-
ature might be expected to make the net thermal concurrence
become larger than for the ground state, rather than smaller.
The source of this behavior is indicated by the analytic solu-
tion obtained in Appendix B for the zero-field limit,

C12(T) = C12(1)P1 − C12(2)P2 − C12(3)P3 − C12(4)P4,

(20)
where Pi = (1/Z )exp(−Ei/kBT ) with Z (T )
= ∑

i exp(−Ei/kBT ). This shows that the excited states
indeed reduce the thermal concurrence, an effect traceable to
Eq. (8) and which persists even for large με/B.
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FIG. 8. Contour plot of thermal pairwise concurrence for two dipoles,
for με/B = 3. For 0 < �/B < 1, the maximum concurrence C12(max)
= 0.0473, occurs at T = 0, �/B = 1. The plot displays normalized con-
tours. Within each colored band, the variation of C12/C12(max) is 0.1; thus,
the normalized concurrence in the right most band (red) ranges from 0.9 to
1, and in the next band (orange red), from 0.8 to 0.9, etc. A striking feature
is the large region (uncolored) where C12 = 0. There, entanglement does not
occur unless the dipole–dipole coupling exceeds a critical value dependent
on the temperature.

Another striking aspect of Fig. 8 is that the concurrence
vanishes along and outside a particular contour. That contour
defines mutually dependent maximum values of kBT/B and
minimum values of �/B required to obtain nonzero concur-
rence. When �/B � 1, we find that a modified form of Eq.
(18) represents the thermal concurrence,

C12(T) = max{0, K (x)[y − y0(x, z)]}, (21)

Here, x = με/B; y = �/B; and z = kBT/B is the scaled
temperature. Figure 9 gives a contour plot of y0 = �c/B, the
critical dipole–dipole coupling required for nonzero concur-
rence. Some further details are included in Appendix B.

The original proposal by DeMille and kindred
papers on quantum computing with trapped polar
molecules1, 2, 5, 7, 10, 13, 16 discuss for several examples the

FIG. 9. Contour plot displaying y0(x, z) term in Eq. (21) vs x = με/B.
Within each colored band, the range of y0 is 0.001 thus in the lowest col-
ored band (magenta). y0 ranges between 0 and 0.001; in the highest colored
band (red), y0 is between 0.009 and 0.01.

range of experimental conditions deemed suitable and ac-
ceptable. For trap temperatures of the order of a micro-Kelvin
or below, the typical values of kBT/B are a few times
10−6, so indicate that only ground-state entanglement would
be significant. The external field strengths considered are
typically a few kV/cm. The spacing between optical lattice
sites, r = λ/2, is half the optical lattice wavelength. The
optimal choice of λ ranges between 1 and 0.3 μm, depending
on electronic transition frequencies of the molecules to be
trapped.13 From these parameters and molecular data, values
of �/B are small; we find for a dozen potential candidate
molecules values ranging between 4 × 10−6 (for KCs) to
2 × 10−4 (for CsI). A favorite candidate is SrO (μ = 8.9D,
B = 0.33 cm−1, λ = 1 μm), for which �/B ∼ 10−5. In
that regime, the concurrence is simply proportional to
�/B, so can be easily evaluated from Eq. (18) and/or (21)
without use of the rather elaborate prescription outlined
in Eqs. (6)–(14).

IV. FREQUENCY SHIFT FOR TWO COUPLED
DIPOLES IN PENDULAR STATES

In the region �/B < 10−4, the concurrence of the ground
eigenstate is very small, typically <10−5. However, such mea-
ger entanglement in eigenstates can still be adequate for quan-
tum computing, as demonstrated with NMR versions of quan-
tum computers.40 The key aspect is that although entangle-
ment needs to be large for some quantum computing algo-
rithms, it need not be appreciable or even present in the
ground eigenstate of the system; it can be induced dynami-
cally during operation of the computer.41 Here, for the polar
molecule case, we consider this aspect. We also evaluate an
eigenstate property, a small frequency shift distinct from but
related to the pairwise concurrence, that is important for quan-
tum computing.

The need for selective excitation in operation of quantum
logic gates35, 42, 43 is an essential feature. Taking the 2-qubit
CNOT gate as an example, its operation requires that manip-
ulation of one qubit (target) is perceptively affected by the
state of the other qubit (control). In our case, the qubits are
pendular states that can be accessed by microwave transitions,
which offer high spectral resolution. As resolution has a cru-
cial role, we now suppose the external field differs enough at
the two dipole sites (denoted unprimed and primed) to sup-
ply distinct addresses for the sites (cf. Fig. 1(a), green dashed
curve).

Since �/B is so small, we first omit the dipole–dipole
interaction and, as illustrated in Fig. 10, consider transitions
among the pendular eigenstates of Eq. (12). Although in this
limit the ground-state concurrence is zero, as seen in Eq. (18),
it is possible to generate states of large concurrence by use of
resonant pulses.41, 44 Start by applying a pulse resonant with
the transition denoted ω1, between |00〉 and |01〉, which has
energy W ′

1 − W ′
0. Note that ω1 needs to be well-resolved from

the transition ω3, between |00〉 and |10〉, which has energy
W1 − W0. The separation thus comes from the different val-
ues of the external field at the two sites (plus a dipole–dipole
contribution, in higher order). The requisite field strength
difference, ε′ - ε, can be readily determined from another
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FIG. 10. Schematic energy levels for qubit pendular eigenstates of N = 2
dipoles, in absence of dipole–dipole interaction, thus corresponding to Eq.
(12). Qubit basis states shown at left, eigenenergies at right. Pairs of transi-
tions involved in CNOT operation are indicated: ω1 transfers dipole 2 from
|0〉 to |1〉 with dipole 1 remaining in |0〉 then ω2 transfers dipole 1 from |0〉
to |1〉 with dipole 2 remaining in |1〉. Analogously, the same result could be
reached by ω3 followed by ω4. Transition energies (including dipole-dipole
terms to first-order) are given in Eqs. (23)–(26).

approximation formula,

(W1 − W0)/B = A1 + A2

1 + (x/x0)p , (22)

by comparing results for x = με/B and x ′ = μ′ε′/B; the ac-
curate fit obtained (better than 1% except near x = 0) is dis-
played in Fig. 11 and the four parameters in Eq. (22) are given
in Appendix C. The amplitude and duration of the ω1 pulse
can be adjusted to make it a π/2 pulse, which will put the
system in the state 2−1/2(|00〉 + |01〉).

Next, to complete the CNOT gate, apply a pulse resonant
with the transition ω2 between |01〉 and |11〉. This needs to
be well-resolved from transition ω3 between |00〉 and |10〉.
However, in our initial approximation both ω2 and ω3 have
the same transition energy, W1 − W0. Hence, weak as it is,
the dipole-dipole interaction is seen to have an essential role:

FIG. 11. Comparison of exact results (blue curves) with fitted approxima-
tion functions (dashed red curves) for properties governing transitions among
qubit states, Eqs. (23)–(26): pendular energy difference, (W1 − W0)/B, co-
sine expectation values, C0 and C1 and their difference, C0 − C1; cf. Eqs.
(22), (28), and (29).

to introduce a frequency shift, �ω = ω3 − ω2, adequate for
unambiguous resolution. If that is fulfilled, the amplitude and
duration of the ω2 pulse can be adjusted to make it a π pulse.
Thereby, the system will be put in the state 2−1/2(|00〉 + |11〉).
This result of a CNOT gate is to first approximation a Bell
state (aside from small corrections of order �/B), so its con-
currence will be near unity. It is not an eigenstate, so will
evolve with time but in principle would remain nearly fully
entangled until degraded by other interactions.

If now the dipole–dipole terms from Eq. (13) are included
to first order, we obtain

ω1=〈01|Ĥ |01〉 − 〈00|Ĥ |00〉 = W ′
1 − W ′

0 + �αC0(C ′
1−C ′

0),
(23)

ω2=〈11|Ĥ |11〉 − 〈01|Ĥ |01〉 = W1 − W0 + �αC ′
1(C1−C0),

(24)

ω3=〈10|Ĥ |10〉 − 〈00|Ĥ |00〉 = W1 − W0 + �αC ′
0(C1−C0),

(25)

ω4=〈11|Ĥ |11〉 − 〈10|Ĥ |10〉 = W ′
1 − W ′

0 + �αC1(C ′
1−C ′

0),
(26)

where �α = �(1 − 3cos2α). Thus, the key frequency shift is
given by

�ω=ω3 − ω2 = ω4 − ω1 = �α(C1 − C0)(C ′
1−C ′

0). (27)

For given �α , the frequency shift �ω depends only on x and
x ′, which determine at the respective sites the difference in
the effective dipole moment projections C0 and C1 along the
external electric field, specified in Eq. (14). To provide a con-
venient means to evaluate Eqs. (23)–(27), we again fitted our
numerical results to obtain accurate approximation formulas,

C0(x) = A1 + A2

1 + (x/x0)p , (28)

C1(x) = A0 + A1

1 + exp[(x − x1)/�x1]

+ A2

1 + exp[−(x − x2)/�x2]
. (29)

These functions are plotted in Fig. 11, together with C0 − C1,
and the fitted parameters are given in Appendix C.

Since for small �/B, both the concurrence and �ω are
proportional to �/B, the frequency shift provides an equiv-
alent measure of entanglement. When the ε-fields differ at
the two sites, Eq. (18) still provides a very accurate approxi-
mation for C12(x, x ′), merely by replacing the proportionality
factor by the geometric mean, [K (x)K (x ′)]1/2. The concur-
rence (which involves CX , the exchange interaction term) is
in principle different from �ω but both have about the same
magnitude. The frequency shift is much more relevant for
quantum computing, because �ω is directly involved in the
CNOT gate.

Also, important in addition to the pulse shapes, which
affect the population transfers, are the durations of the res-
onant pulses required to resolve ω1 and ω2 from ω3, these
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TABLE I. Illustrative CNOT Gate Implementationa.

με/B x = 1 x ′ = 1.01 x ′ = 1.10 x = 3 x ′ = 3.03 x ′ = 3.30

(W1 − W0)/B 2.2709 2.2759 2.3218 3.5614 3.5831 3.7789
C0 0.30165 0.30404 0.32487 0.57922 0.58149 0.60051
C1 −0.16467 −0.16573 −0.17461 −0.16362 −0.16150 −0.14115
C0 − C1 0.46632 0.46977 0.49948 0.74284 0.74298 0.74165

(ω1 − ω3)/B 4.99E-3 5.09E-2 2.17E-2 2.17E-1
�ω/B 2.19E-6 2.33E-6 5.52E-6 5.51E-6
C12 1.20E-6 1.17E-6 3.57E-7 3.34E-7

aFor �α/B = 10−5, x = με/B and x ′ = με′/B. As the quantities in the lowest three rows are functions of both x and x ′, their values are listed in the
x ′ columns. There E-n denotes a factor of 10−n .

must satisfy τ31 
 1/|ω3 − ω1| and τ32 
 1/|ω3 − ω2|. For
τ31, the lower bound usually can be made very low, permit-
ting a short pulse duration. This holds because �ε as well as
dipole-dipole terms contribute to |ω3 − ω1|, which thus can
be made large by choice of the ε-field gradient, regardless of
whether �α is extremely small. In contrast, for τ32 the sep-
aration �ω = |ω3 − ω2| depends only on the dipole-dipole
interaction. The smaller �ω is, the longer the ω2 pulse du-
ration has to be in order to complete the CNOT operation.
Although larger �ω allows a shorter pulse duration, �ω must
not be so large that it becomes comparable to or larger than
the addressing shift produced by �ε, thereby thwarting cor-
rect identification of the qubits.

Table I provides specific numbers pertaining to the SrO
example. From Sec. III, we take �α/B = 10−5. As represen-
tative ε-field values, we use x = 1 and 3 for site 1 and take x ′

higher by 1% or 10% for site 2. From Eqs. (23)–(26), the tran-
sition frequencies ω1 = ω4 and ω2 = ω3 (in units of B) to 5 or
6 significant figures. The frequency difference that must be re-
solvable for the first step of the CNOT operation, ω1 − ω3, is
approximately just ��W = (W ′

1 − W ′
0) − (W1 − W0). From

Fig. 11, this is seen to grow about linearly with both x and
x ′ − x . The values in Table I (third row from bottom) range
from >10−3 to >10−1 (in units of B). To accommodate more
dipole qubits, it may be desired to make much smaller the

FIG. 12. Frequency shift �ω/B (left panels) and ground-state concurrence
C12 (right panels) as functions of α, the orientation angle of the electric field.
Curves are shown for �/B = 0.2 to 1.0 with με/B = 1 or 3.

ε-field differences between sites, steps with �x = 0.01%
were proposed by DeMille.1 That might encounter engineer-
ing limitations, but in principle the proportionally smaller
ω1 − ω3 difference could still be readily resolved. For the sec-
ond step of the CONT operation the crucial frequency shift,
�ω = ω2 − ω3 varies only modestly with x and practically
not at all with x ′ − x . The values of �ω/B in Table I (sec-
ond row from bottom) range between 2 and 6 × 10−6; in fre-
quency units, this range is 20 to 60 kHz. Smaller still are the
corresponding values of the concurrence (bottom row), also
insensitive to x ′ − x but, in accord with Fig. 6, varying more
rapidly with x .

Figure 12 exhibits for both the �ω shift and concurrence
the variation with α, the angle between the direction of the
electric field and the axis between the dipoles. This depen-
dence enters via the factor (1 − 3cos2α) in the dipole–dipole
interaction, Eq. (5), which emerges directly in the �ω shift,
Eq. (27), and by a more complex route propagates into the
concurrence, via Eq. (13). Tilting the field direction to make
α = 54.73◦, the “magic angle,” provides a simple means to
shut off the entanglement. That is a useful option, awkward to
attain in other ways.7, 13

V. CONCLUSIONS AND PROSPECTS

In this study, our chief aim has been to examine entan-
glement of polar molecules by the dipole–dipole interaction
and subject to an external electric field, for the prototype case
of two diatomic or linear 1∑ molecules. This required use of
qubits that are pendular states comprised of sums of spheri-
cal harmonics. We focused on the pairwise concurrence and
its dependence on three unitless reduced variables, involv-
ing the dipole moments, field strength, rotational constant,
dipole–dipole coupling, and temperature. We have consid-
ered a wide range of the parameters, to map general features
of the concurrence. However, for conditions envisioned for
proposed quantum computers, the dipole–dipole coupling is
weak (�/B typically of order 10−4 to 10−6) and the con-
currence becomes very small (<10−5). For that weak cou-
pling realm, we found the �ω frequency shift provides an
equivalent measure of entanglement, directly related to ob-
servable properties and hence preferable to the concurrence.
We also obtained for both the �ω shift and concurrence in the
weak realm simple explicit formulas in terms of the reduced
variables.
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For quantum computing, a crucial issue is whether �ω

is large enough to enable the ω2 transition to be reliably dis-
tinguished from ω3 (and, equivalently, ω1 from ω4). For typ-
ical candidate polar molecules, this requires resolving tran-
sitions separated by only tens of kHz. That would not be
feasible in conventional molecular spectroscopy. Under or-
dinary gas phase conditions, transitions between molecular
rotational or pendular states have line widths of the order
of a few 100 kHz.45 For ultracold molecules trapped in an
optical lattice, line widths may be much narrower. Colli-
sional broadening is eliminated and at micro-Kelvin temper-
atures Doppler broadening is also quenched (as trap con-
ditions are in the Lamb–Dicke regime). It is encouraging
that for ultracold atoms extremely narrow line widths have
been attained by exploiting “magic” optical trapping condi-
tions that are expected to be at least in part applicable to
molecules.46 At present, however, no data have been reported
on line widths for rotational transitions of ultracold molecules
trapped in an optical lattice and subject to an external elec-
tric field. In view of the small size of �ω, it is important to
obtain such data to assess the resolution attainable, since mo-
tion within the traps, coupling to lattice fields, and inhomo-
geneity of the external field may introduce appreciable line
broadening.

We have sought to glean pertinent evidence from elec-
tric resonance spectroscopy of molecular beams, as the beams
are collision free and transitions are observed in an exter-
nal electric field (“Rabi C-field”). For BaO, both �M = 0,
J = 0 → 1 transitions in the microwave region47 and
�J = 0, |M | = 0 → 1 transitions in the radiofrequency
region48 have been observed, in fields ranging from ∼200 −
500 V/cm. For the radiofrequency transitions, line widths
were only about 2 kHz, consistent with just the dwell time
in the C-field. But for the microwave transitions the widths
are much larger, 45 kHz; this is attributed both to the higher
frequency of the transitions and to experimental conditions
that render more significant Doppler broadening and nonuni-
formity of the field, especially in the entrance and exit fringe
regions.49 The Doppler and dwell time contributions are not
relevant to inferring what might be expected for trapped BaO
(or SrO). Broadening by inhomogeneity of the external field
is relevant but depends very much on experimental particu-
lars. The transitions of interest, depicted in Fig. 10, occur in
the microwave region and involve Stark fields typically ten-
fold larger than used in the electric resonance spectroscopy,
so the line widths might be significantly broadened due to
field inhomogeneity. These observations do not permit firm
conclusions about the resolution issue, but it decidedly poses
an experimental challenge.

This discussion pertains only to the choice of qubits we
have considered, pendular states of linear polar molecules,
which involve transitions that change J̃ but not M . The res-
olution issue motivates examining other choices for qubits.
For instance, states with the same J̃ but different M could be
used. Other options, particularly use of hyperfine or nuclear
spin states instead of pendular states, have been suggested as
means to reduce sources of decoherence.1, 2, 13, 16 As yet, the
size of �ω for any qubit choice other than that used in this
paper remains to be determined.

We intend to extend the treatment developed here to other
choices for qubit basis states as well as to larger numbers
N > 2 of dipoles. In preliminary work on linear and pla-
nar arrays of dipoles up to N = 8, we find, as expected,
the maximum pairwise concurrence occurs for next-neighbor
dipoles, although that for non-nearest ones is significant. Also
in prospect is an analogous treatment of the proposed cou-
pling of polar molecules via microwave strip-lines.16 There
the entangling interaction differs from direct dipole–dipole in-
teractions, but again the proposed qubits are pendular states.

Another pendular variant inviting attention is use of po-
lar symmetric top molecules. The |0〉 and |1〉 qubits can be se-
lected as |J, K , M〉 = |1, 1,−1〉 and |1, 1,+1〉, which are de-
generate in the field-free limit and thus have a first-order Stark
effect.45 Even in a weak electric field, these states are strongly
oriented along and opposed to the field, with equal and oppo-
site projections. Moreover, the effective dipole moments do
not depend on the field strength (once the K doublets are cou-
pled) so quite low fields can be used if necessary to reduce line
broadening, without the penalty imposed by quenching of ef-
fective dipoles that would occur for the second-order Stark ef-
fect. At first blush, the symmetric top option appears to be dis-
allowed because transitions between the M = –1 and +1 Stark
states violate the selection rules, �M = 0 or �M = ±1. But
the prohibition is not absolute. Because the optical lattice per-
turbs cylindrical symmetry about the field, M is not strictly a
“good” quantum number, so the �M selection rule is relaxed.
Moreover, if the molecule contains an atom with nuclear spin
I > 1/2, and hence an electric quadrupole moment, transi-
tions with �M = ±2 become allowed. For instance, a deu-
terium nucleus (I = 1) makes �M = ±2 transitions facile in
Stark spectra.50 Other symmetric top options for qubits are
inversion doublets (e.g., in NH3) or internal rotation states as-
sociated with hindered torsional motion (e.g., CH3CF3), these
offer strong dipole-allowed transitions.

Previous studies of entanglement, both for polar
molecules7, 32 and for magnetic spins,23, 27–31 have considered
primarily domains where the concurrence is large (>0.1) and
have focused on means to tune the entanglement to attain
such domains. For polar molecules, that requires �/B > 1.
Recently, it was suggested that such large �/B could be
attained for dipole arrays by exploiting nanotraps with lat-
tice spacing of the order of only 10 nm.32 However, as em-
phasized in Sec. IV, for quantum computing large entangle-
ment in the ground eigenstate is not required. Indeed, reduc-
ing the array spacing so markedly would strongly foster in-
elastic, spontaneous Raman scattering of lattice photons and
hence induce decoherence.1, 2, 13 Such considerations make
small rather than large �/B and consequently weak rather
than strong entanglement in the ground eigenstate, actually
preferable for quantum computing37 provided resolution of
the �ω shift can be attained.
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APPENDIX A: DIPOLE–DIPOLE INTERACTION

The angular dependence of the dipole–dipole interaction,
given in Eq. (4), is usually expressed as

�i j = cosβ − 3cosγi cosγ j , (A1)

where β is the angle between dipoles μi and μ j ; angles γi

and γ j specify the orientation of the dipoles with respect to
the vector ri j between them. Ordinarily, it is natural (and done
in all textbooks) to express cosβ in terms of the angles γ to-
gether with the azimuthal angles φr about the ri j axis. Thus,
use

cosβ = cosγi cosγ j + sinγi sinγ j cos(φri − φr j ), (A2)

which when combined with the –3cosγi cosγ j term gives the
familiar expression.51 In the presence of the external electric
field, we need to recast �i j in terms of angles θi and θ j that
specify the orientation of the dipoles with respect to the direc-
tion of the external electric field. Therefore, we use

cosβ = cosθi cosθ j + sinθi sinθ j cos(φεi − φε j ), (A3)

cosγi = cosθi cosα + sinθi sinαcos(φεi − φεr ), (A4)

where the φε are azimuthal angles about the field vector ε and
α is the angle between the field vector and the ri j vector. The
azimuthal factors can be expressed as

cos(φεi − φε j ) = cosφεi cosφε j + sinφεi sinφε j . (A5)

As M = 0 states, which do not depend on the φ angles, are
chosen as the qubit basis states, in evaluating matrix elements
of �i j between these states the integrations over dφi dφ j

(from 0 to 2π ) eliminate all terms involving the φε angles.
The net result is simply

〈�i j 〉φ = (1 − 3cos2α)cosθi cosθ j . (A6)

The effect of integrating over the θ angles is just to replace
in Vdd the dipole moments μi and μ j by their effective val-
ues, μ〈cosθ〉. The effective dipole–dipole interaction hence
reduces to

Vd−d = �(1 − 3cos2α)〈cosθi 〉〈cosθ j 〉, (A7)

with � = μiμ j/r3
i j as a convenient scale factor.

APPENDIX B: ZERO-FIELD CASE

For με/B = 0, the Hamiltonian matrix reduces to di-
agonal terms from Eq. (12) and antidiagonal elements from
Eq. (13), and the pendular qubit basis states become simply

TABLE II. Zero-Field limit for N = 2 dipoles.a

i Eigenenergies, Ei /B Wavefunction, �i C12

1 2 − 2(1 + ζ 2)1/2 1√
1+α2+

(|11〉 − α+|00〉) 2α+
1+α2+

2 2(1 − ζ ) 1√
2

(|10〉 − |01〉) 1

3 2(1 + ζ ) 1√
2

(|10〉 + |01〉) 1

4 2 + 2(1 + ζ 2)1/2 1√
1+α2−

(|11〉 − α−|00〉) 2|α−|
1+α2−

aWhere α± = [1 ± (1 + ζ 2)1/2]/ζ , with ζ = �/6B.

|0〉 = Y00 and |1〉 = Y10. The form of the Hamiltonian makes
it equivalent to that for the Ising model for a system with
two qubits.52 Diagonalization of the Hamiltonian yields the
eigenenergies and eigenvectors given in Table II as explicit
functions of �/B.

The density matrix for eigenstate 1, the ground state is

ρ(1) = |�1〉〈�1| = 1

1 + α2+

⎛
⎜⎜⎜⎜⎜⎝

α2
+ 0 0 −α+

0 0 0 0

0 0 0 0

−α+ 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ .

(B1)
That for eigenstate 2 is

ρ(2) = |�2〉〈�2| = +1

2

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ . (B2)

The ρ(3) matrix differs from ρ(2) by having +1 in place of
each −1; the ρ(4) matrix differs from ρ(1) by having α− in
place of α+. As these density matrices pertain to only two
dipoles, they need not be reduced further.

Obtaining the density matrices, ρ̃(i), for the spin-flipped
states, defined in Eq. (9), involves shuffling the rows and
columns of ρ(i) in accord with |00〉 ↔ |11〉 and |01〉 ↔ |10〉.
This gives

ρ̃(1) = 1

1 + α2+

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 −α+

0 0 0 0

0 0 0 0

−α+ 0 0 α2
+

⎞
⎟⎟⎟⎟⎟⎠ , (B3)

and thus the product matrix is

ρ(1)ρ̃(1) = 1(
1 + α2+

)2

⎛
⎜⎜⎜⎜⎜⎝

2α2
+ 0 0 −α3

+

0 0 0 0

0 0 0 0

−2α+ 0 0 2α2
+

⎞
⎟⎟⎟⎟⎟⎠ . (B4)

The eigenvalues of this matrix are λ1 = 4α2
+/

(
1 + α2

+
)2

, λ2

= λ3 = λ4 = 0. From Eq. (8), the concurrence is, C12(1)
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FIG. 13. Contour plot of thermal pairwise concurrence for field-free case,
prepared in same format for comparison with Fig. 8 for the pendular case.
Here, C12(max) = 0.1644 at T = 0, �/B = 1.

= 2α+/(1 + α2
+). Similarly, we find the concurrences for the

other eigenstates, given in Table I.
To evaluate the thermal concurrence, we need to set up

the thermal density matrix,

ρ(T ) =
4∑

i=1

exp (−Ei/kB T ) |�i 〉〈�i | =

⎛
⎜⎜⎜⎜⎜⎝

a 0 0 g

0 b d 0

0 d b 0

g 0 0 c

⎞
⎟⎟⎟⎟⎟⎠ ,

(B5)
where

a = α2
+

1 + α2+
P1 + α2

−
1 + α2−

P4, (B6)

b = 1

2
(P2 + P3), (B7)

c = 1

1 + α2+
P1 + 1

1 + α2−
P4, (B8)

d = 1

2
(P3 − P2), (B9)

TABLE III. Values of the parameters for Eq. (19).

Parameters Pendular Field-free CIa

A1 0.01092 0.00221 ±0.0003
A2 0.21953 0.24779 ±0.006
x0 0.96578 0.74035 ±0.05
�x 0.97429 0.86072 ±0.03

a95% confidence interval; values listed are maximum found for the 2 curves shown in
Fig. 6. Both R2 values are around 0.9981. Similarly accurate results are found when
Eq. (18) is generalized for different E-fields at the dipole sites by replacing K (x) by
[K (x)K (x ′)]1/2.

TABLE IV. Values of the parameters for Eq. (22).

Parameters Values CIa

A1 12.42379 ±0.0533
A2 –10.47646 ±0.0534
x0 8.77516 ±0.0534
p 1.5867 ±0.00527

a95% confidence interval. R2 = 0.9999.

g = − α+
1 + α2+

P1 − α−
1 + α2−

P4, (B10)

with

Pi = exp(−Ei/kB T )

Z
. (B11)

Then we find

ρ(T )ρ̃(T ) =

⎛
⎜⎜⎜⎜⎜⎝

ac + g2 0 0 2ag

0 b2 + d2 2bd 0

0 2bd b2 + d2 0

2cg 0 0 ac + g2

⎞
⎟⎟⎟⎟⎟⎠ ,

(B12)
and obtain the eigenvalues,

λ1 = (
√

ac − g)2, λ2 = (b − d)2, λ3 = (b + d)2,

λ4 = (
√

ac + g)2. (B13)

Hence from Eq. (8), we obtain the thermal concurrence

C12(T ) = max {0,−2(b + g)} , (B14)

with the C12(i) of Table I, this gives Eq. (20) of the text,

C12(T ) = C12(1)P1 − C12(2)P2 − C12(3)P3 − C12(4)P4,

(B15)

when �/B � 1, the ground-state concurrence becomes
C12(1) → �/6B, in accord with Eq. (18) of the text, whereas
C12(4) → �/6B and C12(2) = C12(3) = 1. Provided that
also kB T/B � 1, a first-order expansion of Eq. (B15) gives

C12(T ) ≈ C12(1) − ε2 − ε3, (B16)

where ε2 = P2/P1 � 1; ε3 = P3/P2 � 1 and P4/P1 �< 1.
Then

C12(T ) ≈ K (0)[�/B − �c/B], (B17)

which has the form of Eq. (21) of the text with K (0) = 1/6
and

TABLE V. Values of the parameters for Eq. (28).

Parameters Values CIa

A1 0.84855 ±0.00145
A2 –0.84355 ±0.00180
x0 1.6339 ±0.00508
p 1.2459 ±0.00539

a95% confidence interval. R2 = 0.99994.
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TABLE VI. Values of the parameters for Eq. (29).

Parameters Values CIa

A0 –0.75212 ±0.0323
A1 1.04192 ±0.0336
A2 1.14092 ±0.0325
x1 –0.16241 ±0.0224
x2 3.1232 ±0.124
�x1 0.90544 ±0.0136
�x2 2.76286 ±0.0496

a95% confidence interval. R2 = 1.

y0(T ) = �c/B = (ε2 + ε3)/K (0)

= 12exp (−2B/kB T ) cosh (�/3kB T ) . (B18)

This result for the zero-field case, although not useful
in practice, illustrates how the excited states are involved in
creating a temperature dependent minimum level of dipole-
dipole coupling, �c/B, that is required to have nonzero ther-
mal concurrence.

Figure 13 shows a contour plot of C12(T ) for the zero-
field case, derived from Eq. (B14). It is qualitatively quite
similar to Fig. 8 for the pendular case, over the same wide
range of kBT/B and �/B.

APPENDIX C: REDUCED VARIABLE FORMULAS

In order to find a proper reduced variable formula, three
steps are needed: (1) calculate enough sample points to de-
fine well the exact curve; (2) find a function with adjustable
parameters that enables fitting those points; (3) evaluate the
parameters using a non-linear regression method. For our
curve fitting we use the Levenberg-Marquardt Algorithm,53

also called “Chi-square minimization.” Chi-square is defined
as

χ2 =
N∑

i=1

[Yi − f (xi ; θ̂ )]2, (C1)

where xi and Yi are the independent and dependent vari-
ables for the i th (i = 1, 2,...,n) sample points of the ex-
act curve; θ̂ are the parameters to be fitted. The Levenberg–
Marquardt algorithm iteratively adjusts the parameters to
get the minimum chi-square value, which corresponds to
the best fit. The input data for fitting Eqs. (19), (22), (28),
and (29), comprised our numerical results for the pendular
case, over the ranges x = με/B = 0–8. Tables III–VI list
the optimal values found for the parameters and 95% per-
cent confidence intervals. At x = 0, the Eq. (19) fit gives
K (0) = 0.17103, different slightly from the exact zero-field
limit, K (0) = 1/6. Likewise, at x = 0 the Eqs. (28) and (29)
fits give C0 = 0.005 and C1 = 0.00072 rather than the ex-
act value of zero. The critical point for C1 to change sign is
x = 4.902, whereas Eq. (29) gives C1 = −0.00025, slightly
different from zero.

For convenience, we give formulas for the three unitless
ratios, evaluated with customary units:

με/B = 0.0168 μ(Debye)ε(kV/cm)/B(cm−1),

�/B = 5.04 × 10−9μ2(Debye)/r3(μm)/B(cm−1),

kBT/B = 0.695 T (K )/B(cm−1).
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