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Quantum criticality analysis by finite-size scaling and exponential basis sets
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We combine the finite-size scaling method with the mesh-free spectral method to calculate quantum critical
parameters for a given Hamiltonian. The basic idea is to expand the exact wave function in a finite exponential
basis set and extrapolate the information about system criticality from a finite basis to the infinite basis set limit.
The used exponential basis set, though chosen intuitively, allows handling a very wide range of exponential decay
rates and calculating multiple eigenvalues simultaneously. As a benchmark system to illustrate the combined
approach, we choose the Hulthen potential. The results show that the method is very accurate and converges
faster when compared with other basis functions. The approach is general and can be extended to examine
near-threshold phenomena for atomic and molecular systems based on even-tempered exponential and Gaussian
basis functions.
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I. INTRODUCTION

The study of how the energy levels of a given system change
as one varies a parameter in the corresponding Hamiltonian is
of general interest, particularly near the binding threshold,
level crossings, and quantum phase transitions. In phase
transitions, critical points are associated with singularities
of the free energy which occur only in the thermodynamic
limit [1,2]. Finite size scaling (FSS) was developed by Fisher
and others [3–7] to calculate such parameters by extrapolating
information from a finite system to the thermodynamic limit.
In analogy, FSS was also developed to extrapolate information
from a finite basis set to the infinite basis set limit in order to
calculate quantum critical parameters for a given Hamiltonian.
This is done by expanding the exact wave function in a
complete basis set and use the number of basis functions to
play the role of system size [8]. Early work using FSS to
calculate quantum critical parameters was based on expanding
the wave function in Slater-type and Gaussian-type functions
[9–11]. Recently, the method was also combined with the finite
element method (FEM) [12,13] and B-splines expansion to
achieve similar results [14].

Here we combine FSS method with the mesh-free spec-
tral method (SM) to calculate quantum critical parameters.
Recently, the mesh-free SMs have started to gain growing
attention because of their high levels of analyticity and
accuracy [15–19]. In these methods, the unknown functions are
approximated by expansion using preselected basis sets. One
of the main challenges in SM is to handle domains extended
to infinity [20–26]. Many techniques were introduced to
overcome this challenge, such as using exponentially decaying
functions as basis sets, the truncation of the computational
windows, and applying size scaling. Recently a nonorthogonal
predefined exponential basis set for eignevalue problems
involving half bounded domains was introduced and used
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[27,28]. The set is easy to use and allows generally finding
a wide range of eigenvalues simultaneously.

In this paper, the exponential basis sets are implemented
in FSS analysis to obtain the quantum critical parameters
for a given Hamiltonian. The presented technique is real-
space mesh-free. Such real-space techniques are gaining more
attention in ab initio and density functional calculations
[12,29]. As a benchmark system we choose the Hulthen
potential. For such a Hamiltonian, the analytical solution is
known and FSS was implemented using other basis functions,
hence our numerical results can be compared and analyzed.
The comparison confirms the validity and efficiency of the new
approach and its applicability for FSS analysis, which will be
used on more complex systems.

II. THEORETICAL BACKGROUND

A. Analytical solution for the Hamiltonian
with Hulthen potential

A Hulthen potential [30,31] is a special case of a Eckart
potential [32], which is a family of screened Coulomb
potentials. It has the following form:

V (r) = − λ

a2

e−r/a

1 − e−r/a
, (1)

where λ is the coupling constant and a is the scaling parameter.
For small r , it resembles a Coulomb potential. But it dies faster
and exponentially for large r .

By defining a dimensionless variable, x = r
a

, and inserting
the potential in a Schrödinger radial differential equation, the
radial equation becomes[

−1

2

d2

dx2
− λ

e−x

1 − e−x

]
ψ = a2Eψ. (2)

The analytical solution for this equation is known in terms of
a hypergeometric function:

ψ = N0e
−ax(1 − e−x) 2F1(2a + 1 + n,1 − n,2a + 1; e−x),

(3)
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where a = −a2E, n is the state order, and N0 is the
normalization factor:

N0 =
√

a(a + n)(2a + n)
�(2a + n)

�(2a + 1)�(n)
. (4)

The energy levels are

En = − 1

a2

(2λ − n2)2

8n2
, for n = 1,2,3, . . . ,nmax. (5)

It is clear from Eq. (5) that λc = n2/2 is a critical coupling
constant. As λc is a function of n, it is obvious that the number
of allowed bounded states (i.e., nmax) is λ dependent. It has at
least one state for λ > 1/2, and this is the critical point to be
tracked.

B. Finite-size scaling

As aforementioned, FSS method is a systematic approach
allowing extrapolating the critical behavior of an infinite
system by analyzing a finite sample of it. It is efficient
and accurate for the calculation of critical parameters of the
Schrödinger equation. Assuming that the Hamiltonian of a
system is of the following form:

H = H0 + Vλ (λ) , (6)

where again λ is the coupling constant, the critical point, λc,
will be defined as a point for which a bound state becomes
absorbed or degenerate with a continuum.

As is known, the asymptotic behaviors of physical quan-
tities near the critical points are associated with critical
exponents. So the energy nearλc can be defined as

Eλ − Eth = (λ − λc)α , (7)

where we assume that the threshold energy, Eth, does not
depend on λ. In principle, λc can be calculated, providing
the exact solution. However, when use variational calculations
to expand the exact wave function of the system in a basis
set, only a finite number of basis functions (N ) can be used
practically. So the calculated physical observable (i.e., Eλ in
this case) depends on N . Thus, for each N , the calculated
energy level is denoted by E

(N)
λ . FSS assumes the existence of

a scaling function FE such that

E
(N)
λ = EλFE (N |λ − λc|ν) , (8)

where ν is the scaling exponent for the correlation length. To
obtain the numerical values of the critical parameters (λc,α)
for the energy, we define for any given operator O the function

�O(λ; N,N ′) = ln
(〈
ON

λ

〉/〈O〉N ′
λ

)
ln(N ′/N)

. (9)

If we take the operatorO to be H − Eth and ∂H/∂λ, we can
obtain the critical parameters from the following function [8]:

�α(λ,N,N ′) = �H (λ; N,N ′)
�H (λ; N,N ′) − � ∂H

∂λ
(λ; N,N ′)

, (10)

which at the critical point is independent of N and N ′ and
takes the value α. Namely, for λ = λc and any values of N and
N ′ we have

�α(λc,N,N ′) = α. (11)

Because our results are asymptotic for large values of N ,
we obtain a sequence of pseudocritical parameters (λN, αN )
that converge to (λc, α) for N → ∞.

C. Spectral methods and the exponential basis sets

Mesh-free SM is a special family of the weighted residual
methods [15–18]. In these methods, the unknown functions are
approximated by either an expansion or interpolation (known
as a collocation method) using preselected basis sets. For
homogeneous and smooth computational windows, SMs work
very well. But they suffer from the Gibbs phenomenon if any of
the structural functions of the studied problem is not analytical.
To avoid this problem, the computational window is divided
into homogeneous domains where the discontinuities lie at
the boundaries. This approach is known as the multidomain
spectral method (MDSM) [15–19]. In general MDSM methods
allow handling very complicated and discontinuous functions.
This capability is very flexible as any expansion basis set can be
used. In this paper the studied problem has a smooth structural
function (i.e., Hulthen potential). So MDSM is not used.

In many physical problems, the extensions toward infinities
decay exponentially as

f (x) ∝ e±βx, (12)

where ± is used to cover both ∓∞ with positive β. As
aforementioned, this is one of the main challenges in SM
[20–26]. A review paper by Shen and Wang discusses this
problem in further detail [26]. Recently, a nonorthogonal
predefined exponential basis set for eignevalue problems
involving half bounded domains was reintroduced [27,28].
Similar sets were introduced in the 1970s by Raffenetti,
Bardo, and Ruedenberg [33–35] for self-consistent field wave
functions.

The set is easy to use, and it overcomes many challenges
such as zero-crossing and single scaling problems by approxi-
mating the decaying domain functions by an exponential basis
set which spans a wide range of decaying rates as follows:

f (x) =
N∑

n=1

cnun(x) =
N∑

n=1

cne
−βnx, (13)

where cn are the expansion coefficients and βn are the
preselected decaying rates. They are chosen intuitively based
on the studied problem. But they should allow many possible
decay rates with a very small number of bases. In this paper,
the decaying rates are defined as

βn = 10pn, (14)

pn = ds + n − 1

N − 1
(de − ds) , (15)

where ds and de are the smallest and largest powers used,
respectively, and N is the number of the used bases.

In this paper, the set is modified slightly to have a faster
convergence by enforcing the states to vanish at x = 0. The
modified set is

f (x) =
N∑

n=1

cnun(x) =
N∑

n=1

cn x e−βnx, (16)

where βn is as defined in Eq. (14).
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III. IMPLEMENTATION

A. Formulation

To simplify the moments calculations, the normalized
Schrödinger radial differential equation [Eq. (2)] is rewritten
as [

−1

2
(1 − e−x)

d2

dx2
− λe−x

]
ψ = a2Eλ,a(1 − e−x)ψ.

(17)

The expansion form [Eq. (16)] is used to solve the above
equation. For each used number of basis N , the expansion
form is rewritten as follows:

ψ (N)(x) =
N∑

n=1

c(N)
n x e−β

(N)
n x . (18)

This form is working only for bounded states and hence should
work fine only for λ > 0.5. By implementing this expansion
form, Eq. (17) can be written as

(AN + λBN ) c(N)
λ = a2E

(N)
λ,a ONc(N)

λ , (19)

where the elements of the matrices are the following scalar
products:

[AN ]mn = 〈
e−β

(N)
m x

∣∣ − (1 − e−x)

2x

[(
β(N)

n

)2
x − 2β(N)

n

]
− λe−x

∣∣e−β
(N)
n x

〉
1D

= −(
β(N)

n

)2

2

[
1(

β
(N)
m +β

(N)
n

)2 − 1(
β

(N)
m + β

(N)
n +1

)2

]

+β(N)
n

(
1

β
(N)
m + β

(N)
n

− 1

β
(N)
m + β

(N)
n + 1

)
(20)

[BN ]mn = 〈
e−β

(N)
m x

∣∣−e−x

x

∣∣e−β
(N)
n x

〉
1D

= −1(
β

(N)
m + β

(N)
n

)2 (21)

[ON ]mn = 〈
e−β

(N)
m x

∣∣ (1 − e−x)

x

∣∣e−β
(N)
n x

〉
1D

= 1(
β

(N)
m + β

(N)
n

)2 − 1(
β

(N)
m + β

(N)
n + 1

)2 . (22)

In the above three equations, the integrations are taking place
in one dimension and not over the physical three-dimensional
space. Equation (19) is a direct eigenvalue problem, and
by selecting proper values for ds and de, a wide range of
eigenvalues (E(N)

λ,a ) and their corresponding eigenstates (c(N)
λ )

can be calculated directly. The used values for ds and de are
−4 and 4, respectively.

In this paper we focus on the critical change in the lowest
energy level. So in the remainder of this paper, E

(N)
λ,a is

corresponding to the calculated ground state level with N

basis; clearly it is a function for λ and the scaling factor
a. Also, c(N)

λ is corresponding to the ground state, and it
contains the expansion coefficients. Generally, the states need
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FIG. 1. (Color online) The calculated ground state energy (E0)
as a function of λ using different numbers of bases, which are varied
between 32 and 48 in steps of 2. The errors are very small (as shown in
Fig. 2), and hence the lines are overlapping, and thus more resolution
about λc is shown in the small box.

normalization by dividing the coefficients by N
(N)
f,λ , where

(
N

(N)
f,λ

)2 = 4π
∑
mn

c(N)∗
m c(N)

n

∫ ∞

0
x4e−(β(N)

m +β
(N)
n )xdx

= 4π
∑
mn

c(N)∗
m c(N)

n

2(
β

(N)
m + β

(N)
n

)5
. (23)

In this case and the following calculations for the potential
energy, the integrations are calculated over the physical three-
dimensional space for the case of l = 0.

To apply FSS as shown later, we need to calculate the
potential energy. It is simply

V
(N)
λ = −4π λ

∑
mn

c(N)∗
m c(N)

n

∫ ∞

0
x4 e−(β(N)

m +β
(N)
n +1)x

1 − e−x
dx.

(24)
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FIG. 2. The relative errors of the calculated ground state energy
as a function of λ for N = 32 and N = 48.
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FIG. 3. �α as a function of λ. The numbers of bases are varied
between 32 and 48 in steps of 2.

The integrations are computed numerically by Gaussian
quadrature. Obviously this is the most numerically expensive
part in work. However, it is clear also that the integrations
are independent of the state-distinctive parameters (i.e., λ and
c(N)
n ). So, for each N , the integrations are calculated at the

beginning, and the results are used to calculate V
(N)
λ while

varying λ.
To obtain the critical parameters, we use the following

shifted functions:


E(λ; N,N ′,N ′′) =
ln

(
E

(N ′′ )
λ,a −E

(N ′ )
λ,a

E
(N ′ )
λ,a −E

(N)
λ,a

)
ln(N ′/N)

(25)

and


∂H
∂λ

(λ; N,N ′,N ′′) =
ln

(
V

(N ′′ )
λ,a −V

(N ′ )
λ,a

V
(N ′ )
λ,a −V

(N)
λ,a

)
ln(N ′/N )

. (26)
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FIG. 4. The extrapolated values of λc vs. 1/N as obtained by this
work (solid circles), Hermite interpolation polynomials (HIP) (white
squares [13]), and finite element method (FEM) (crosses [13]).
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FIG. 5. The extrapolated values of α vs 1/N as obtained by this
work (solid circles), Hermite interpolation polynomials (HIP) (white
squares [13]), and finite element method (FEM) (crosses [13]).

The critical parameters λc and α can be obtained from �α as
defined in Eq. (10).

B. Results and discussion

In the calculations, the scaling parameter (a) is set to
one. Also as aforementioned, the used parameters for the
exponential basis set are −4 and 4 for ds and de, respectively.
These parameters are chosen after few iterations to have a
reasonable accuracy for the eigenvalues. To implement FSS,
N is varied between 32 and 48 in steps of 2. So, λc and α can
be obtained by seeking the crossing of the FSS curves.

The calculated ground state energies (E0) are shown in
Fig. 1 as a function of λ for all the used values of N . The
errors are very small (as shown in Fig. 2), and hence the lines
are overlapping. More resolution (in λ) is shown in the inset.
As can be observed, the calculated values for the ground state
energy start diverging slightly from the exact solutions as λ

approaches λc. This is expected as the used basis works for
bounded states, and the error will increase as the states get
extended in space. However, the calculated values of E0 are
still very accurate, and a relative error of about 10−10 was
obtained around λ = 0.51 for N = 32 and λ = 0.5001 for
N = 48 as shown in Fig. 2.

In Fig. 3 the results of FSS calculations are shown. Plotting
�α as a function of λ for different values of N gives a family
of curves that intersect around the analytical λc = 0.5 and
α = 2. The exact crossing of any adjacent curves defines

TABLE I. Results for critical parameters.

Analytical This work FEM [13] HIP [13]

λc 0.5 0.500001 0.50184 0.50000
α 2 2.00094 1.99993 2.00011
ν 1 1.00000 1.00079 1.00032
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FIG. 6. Data collapse study of the used approach using different
numbers of bases, which are varied between 32 and 48 in steps
of 2.

the pseudocritical parameters λN and αN , which are used to
analyze the convergence.

To check the convergence, the pseudocritical parameters
λN (Fig. 4) and αN (Fig. 5) are plotted as functions of
1/N and compared with the results obtained using Hermite
interpolation polynomials FEM by Antillon et al. [13]. It is
clear that the three methods converge to the analytical values.
However, the used exponential basis set in this paper results in
considerably faster convergence when compared with the other
two methods. The results of the three methods are summarized
in Table I.

The last point to be presented is to confirm the validity of
FSS assumptions using a data collapse calculation. In Fig. 6,
E0N

−α/ν is plotted as a function of (λ − λc) N−1/ν for all the
used N values. It is clear that all the curves overlap perfectly
and thus validates our FSS assumptions.

IV. CONCLUSION

In atomic and molecular physics, the near-threshold bind-
ing is important in the study of ionization of atoms and
molecules, molecular dissociation, and scattering collisions.
Our benchmark calculations for the near-threshold behavior
of the energy levels of the Hultthen potential indicate the
validity of combining the FSS method with the mesh-free
SMs to calculate quantum critical parameters. Fortunately,
the exponential basis sets used in this study have been
used previously as an exponential-type even-tempered basis
for atomic orbitals [33–35]. The results indicate that even-
tempered bases are very accurate in Hartree-Fock atomic
calculations. Also, a systematic approach extending even-
tempered atomic orbitals to optimal even-tempered Gaussian
primitives have been developed and used decades ago in stan-
dard quantum chemistry calculations for atomic and molecular
system [33,34,36,37]. Thus, our combined FSS method and
SMs based on even-tempered basis sets might be used to
extract quantum critical parameters for atomic and molecular
systems. In future studies, we plan to combine our FSS
procedure with the Hartree-Fock and density functional theory
and other ab initio methods using SMs with even-tempered
basis and other intuitive basis sets to analyze criticality and
near-threshold phenomena for molecular and extended sys-
tems. The presented approach allows scaling to analyze large
systems.
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