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Abstract. The gradient expansion of the kinetic energy density functional, when applied
to atoms or finite systems, usually grossly overestimates the energy in the fourth order and
generally diverges in the sixth order. We avoid the divergence of the integral by replacing the
asymptotic series including the sixth order term in the integrand by a rational function. Padé
approximants show moderate improvements in accuracy in comparison with partial sums of the
series. The results are discussed for atoms and Hooke’s law model for two-electron atoms.

1. Introduction

For all electronic systems, Hohenberg and Kohn [1] proved the existence of a “universal
functional” that accounts for the total energy except those contributions due to an external
potential (mainly due to the electron-nuclei Coulombic interaction). The main challenge is
that the universal functional is not known and thus Kohn and Sham [2] devised an alternative
approach to approximate the “universal functional”. In this approach, the kinetic term for non-
interacting electrons was treated exactly but the exchange-correlation term are left unknown.
Furthermore, in their initial work, Hohenberg and Kohn [1] suggested that the components of
the “universal functional”; namely, the kinetic, exchange, and correlation contributions, can be
expanded using gradient based expansions.

Since then, many approximations have been developed. For kinetic energy, the starting point
has been mostly Thomas–Fermi functional. In the limit of infinitely extended uniform density,
the kinetic energy Ts[ρ] is simply Thomas–Fermi kinetic energy TTF[ρ] (in density functional
form) [3, 4, 5]. For slowly varying densities, corrections to TTF can be derived using gradient
expansions. Different approaches have been used and they agrees in most cases. The most
frequently used procedures are Kirzhnits expansion [6, 7, 8, 9], partition-function approach
[10, 7], and Grammaticos-Voros algebraic method [11, 12]. As a result, the kinetic energy
density functional (KEDF) can be arranged in the following series:

Ts[ρ(r)] = T0 + T2 + T4 + T6 + . . . , (1)
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where T0 = TTF, which will be presented in the next section, Tn =
∫

τndr, and the kinetic energy
densities τn collect terms that have gradients of the total order n. With the exception of solid
state systems [13], the sixth-order term of the gradient expansion generally diverges for a finite
system.

To eliminate the divergence, many additional approximations have been suggested. Pearson
and Gordon [14] suggested local truncation of the gradient expansion with additional corrections
to avoid vanishing densities. Also, many alternative approximate re-summation methods
[15, 16, 17, 18] including Padé approximants [19, 20, 21] were suggested. The suggested Padé
approximants are mostly based on τ2/τ0 expansions to resemble different asymptotic behaviors
[19, 20, 21]. Obviously, each approach has advantages and disadvantages and each has a range
of applicability.

In this paper, we present a systematic approach that allows to avoid regions where higher
order terms are relatively large and are no longer “small corrections” while taking advantage
of these terms in areas where they are small and improve the accuracy. So, we use a Padé
approximant to have a convergent sum of gradient expansion approximation up to the sixth-
order term. In many cases, adding of the correction T4[ρ] usually makes the result less accurate,
because this correction is valid only asymptotically for heavy atoms. Moreover, since T6[ρ]
diverges for finite systems, the knowledge of τ6 is assumingly -from the first glance- useless. By
using the proper Padé approximant, it is possible to “sum” approximately the gradient expansion
of kinetic energy so that the approximant has some asymptotic behavior, but suppresses
divergent terms in a region away from asymptotics.

The proposed Padé approximant improves the accuracy when there exists a significant region
of r where

|τ6(r)| < |τ4(r)|. (2)

In case of a finite system, ρ(r) decreases exponentially for large distance, and all gradients of ρ
are roughly proportional to ρ. Therefore, taking into account Equations (5) and (6), for large r
τ4(r) ∼ ρ1/3(r) and τ6(r) ∼ ρ−1/3(r), and for sufficiently large r, the inequality (2) is not satisfied.
We guess that for small r, the behavior of τ4 and τ6 may depend on the presence of Coulomb
singularity in the potential. In case of atoms, we have unfavorable inequality |τ6(r)| > |τ4(r)|
both for small r and for large r, with a narrow intermediate region where the inequality (2)
holds. We expect this approximation to work very well for confined harmonic potentials such
the case of treating quantum dots [22, 23].

2. The method

As aforementioned, in the limit of uniform density [3, 4], the kinetic energy Ts[ρ] is

TTF = CTF

∫

ρ5/3 dr, CTF =
3

10

(

3π2
)2/3

(3)

Any effect due to slowly varying densities can be accounted for approximately as corrections to
Eq. 3 using gradient expansions. So, the kinetic energy density functional can be organized in a
series as in Eq. 1. Using Kirzhnits expansion approach, Kirzhnits [6], Hodges [7], and Murphy
[8] have derived the second-, forth-, and sixth-order terms respectively. These terms are

τ2 =
1

72

(∇ρ(~r))2
ρ(~r)

, (4)

τ4 =

(

3π2
)−2/3

540
ρ1/3

[

(∇2ρ

ρ

)2

− 9

8

(∇2ρ

ρ

)(∇ρ
ρ

)2

+
1

3

(∇ρ
ρ

)4
]

. (5)
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Figure 1. Gradient expansion corrections for the density of kinetic energy of beryllium atom,
in logarithmic scale. The black, blue, red, and green lines are for τ0, τ2, τ4, and τ6 respectively.
Obviously, the correction τ6 diverges as r → ∞, while τ4 converges, but very slowly.
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Generally, the sixth-order term diverges for atoms and molecules. Actually, it diverges when
the density vanishes at any position. A study of the gradient expansion for atomic isoelectronic
series [24] shows that that T0 + T2 is more accurate approximation than T0 + T2 + T4 in almost
all cases, except for highly ionized Ar-like ions. A similar study for all neutral atoms [25] shows
that T0 + T2 is more accurate than T0 + T2 +T4 for all atoms up to potassium. Only for heavier
atoms, the situation reverses. It rises the question of whether the forth order term T4 and the
diverging sixth-order density τ6 could be of any use for the case of finite systems.

A typical behaviour of the gradient correction for an atomic system is illustrated here for the
case of a beryllium atom. We took the electron density from the Hartree–Fock data of Clementi
tables [26]. The components of kinetic energy gradient expansion up to the 6-th order term are
shown on Figure 1. It is clear that in a narrow region of 1.6 < r < 1.9, the gradient expansion
seems convergent, i.e. |τ6| < |τ4| < |τ2| < |τ0|. However, everywhere else τ6 is no longer a small
correction to the lower order terms. For sufficiently large r > 6, we have an opposite inequality
|τ6| > |τ4| > |τ2| > |τ0|, that means that all corrections become erroneous.

So, the objective is to “sum” the gradient expansion at each point r by replacing it by another
function that has some asymptotic behavior, but suppresses the divergent terms in a region away
from asymptotics. Let’s consider a family of densities parameterized by a dummy variable g > 0,

ρg(~r) = gρ(r), (7)

so that the original density ρ can be recovered from this family of functions by setting g = 1.
Then, the gradient expansion for the density can be organized as in the following series

τg(~r) = g5/3
(

τ0(~r) + g−2/3τ2(~r) + g−4/3τ4(~r) + g−6/3τ6(~r) + . . .
)

. (8)
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The expression in parenthesis in Eq. 8 is obviously a power series in

x = g−2/3. (9)

So, asymptotically for small x we have

f(x) = τ0 + τ2x+ τ4x
2 + τ6x

3 + . . . , (10)

where
f(x) = g−5/3τg(~r). (11)

We would like to replace f(x) by an approximation f̃(x) having the same asymptotic expansion
as f(x) given by Eq. 10. We seek to have f̃(1) ≈ τ0 + τ2 + τ4 + τ6 if |τ6| < |τ4| < |τ2| < |τ0| and
f̃(1) ≈ τ0 + τ2 if |τ6| is large.

The Padé approximant [2/1] to the series Eq. (10) is defined as a ratio of two polynomials
of degree 2 and 1 in x,

f [2/1](x) =
a0 + a1x+ a2x

2

b0 + b1x
(12)

with b0 6= 0 that has the same expansion in x up to the third order,

f [2/1](x) = f(x) + o(x3). (13)

Explicitly

f [2/1](x) = τ0 + τ2x+
τ24x

2

τ4 − τ6x
. (14)

Notice that if τ6 → ∞, then f [2/1](1) = τ0 + τ2.

We define τ [2/1] = f [2/1](1) = τ0 + τ2 +
τ24

τ4−τ6
and T [2/1] = 4π

∫∞

0 r2τ [2/1] dr where the later
equation is written in case of spherical symmetry. If the integrand has poles, i.e. τ4 = τ6 for
some r, then the integral can be defined through Cauchy principal value.

In similar way, we consider here the Padé approximant τ [1/1] = τ0 +
τ22

τ2−τ4
along with the

partial sum τ0 + τ2 + τ4. Even if the integral of this partial sum converges, the convergence
is slow because of behavior ∼ ρ1/3 for large r. For the Padé approximant τ [1/1], much faster
convergence ∼ ρ7/3 is expected as obtained and presented in the next section.

3. Results and discussions

3.1. Hooke’s law model for two-electron atoms

The Hamiltonian for the Hooke’s law model for two-electron atoms is given by

H = −1

2
(∇2

1 +∇2
2) +

ω2

2
(r21 + r22) +

1

r12
. (15)

The ground state wavefunction is known analytically for some values of ω. For ω = 1/2, it is
[27, 28]

Ψ(r1, r2) = N0

(

1 +
1

2
r12

)

e−(1/4)(r21+r22), (16)

where

N0 =
[

4π5/2
(

8 + 5π1/2
)]−1/2

. (17)

and the density is (corrected Eq. (7) from [27])

ρ(r) = N2
0 e

−
1
2
r2
{

(π

2

)1/2
[

7

4
+

1

4
r2 +

(

r +
1

r

)

erf(2−1/2r)

]

+ e−
1
2
r2
}

. (18)
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If ω 6= 1/2, then we used a variational approach with the trial wavefunction in the form
similar to Hylleraas variational function for helium [29, 30, 31]

Ψ(r1, r2) =
∑

i,j,k≥0, i+j+k=N

Cijk

(

ri1r
j
2e

−α1r1−α2r2 + ri2r
j
1e

−α1r2−α2r1
)

rk12 (19)

with α1 = 2
√
ω, α2 = 3.2

√
ω (ideally, the values of α1 and α2 should be chosen by minimizing

the energy, but since it involves non-linear equations, we did it numerically for N = 8, and then
tried to approximate the near optimal values by a simple analytic formula). Calculations were
done for increasing set of basis functions with N = 10, 12, and 16 for ω = 1/2, and the results
agree with the results determined from the exact solution for the density, 18. For several other
values of ω, calculations were done for N = 10. The results are shown in Table 3.1 and for the
case of ω = 1/2, the gradient expansion corrections and their sums up to n-th order are shown
on Fig. 2 and Fig. 3 respectively. For ω < 1, it appears that the Padé approximant [2/1] is the
most accurate, and for ω ≥ 1 the partial sum T0 + T2 is the best.

Table 1. Comparison of kinetic energy obtained from density ρ by summation of gradient
expansion using different methods, for Hooke’s law model. (The results are presented as percent
error.)

Percent error (ET = 100 |Ts − T |/Ts)
ω Ts ET0 ET0+T2 ET0+T2+T4 ET [1/1] ET [2/1]

1/4 0.30036 -12.7 -1.67 15.6 0.48 -1.15

1/2 0.63525 -11.9 -0.78 16.5 1.27 -0.26

1 1.32757 -11.3 -0.19 15.4 1.81 0.33

4 5.62884 -10.7 0.45 15.1 2.4 0.98

Practically, for the system of two non-interacting particles with the same density ρ, ψ(~r1, ~r2) =
φ(~r1)φ(~r2) where φ

2
1 = φ22 =

1
2ρ. In the ground state, φ1 = φ2 =

√
ρ. So, we obtain

Ts = −
∫

dr1 dr2 ψ(r1, r2)
1

2
(∇2

1 +∇2
2)ψ(r1, r2)

= −
∫

drφ(r)∇2φ(r) =

∫

τK(ρ) dr

(20)

where

τK(ρ) =
1

8

(∇ρ)2
ρ

− 1

4
∇2ρ. (21)

In radial coordinates,

Ts = 4π

∫

r2 τK(ρ) dr, (22)

where

τK(ρ) =
1

8

(ρ′)2

ρ
− 1

4
ρ′′ − 1

2

ρ′

r
. (23)

Because of spherical symmetry, the integration reduces to integration over radius, T̃ =
4π

∫∞

o r2 τ̃ dr, where τ̃ is an approximation to the density of kinetic energy, and T̃ is
corresponding approximation to the total kinetic energy.
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Figure 2. Gradient expansion corrections for the density of kinetic energy, in logarithmic scale.
The black, blue, red, and green lines are for τ0, τ2, τ4, and τ6 respectively. Obviously, the
correction τ6 diverges as r → ∞, while τ4 converges, but very slowly.
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Figure 3. Sum of several first terms of gradient expansion, τ (0) = τ0 (black), τ (2) = τ0 + τ2
(blue), τ (4) = τ0 + τ2 + τ4 (red), and τ (6) = τ0 + τ2 + τ4 + τ6 (green) for Hooke’s law model.
Clearly, the 6-th order sum diverges when r > 1. It appears that the most accurate partial sum
is τ (2), and the curve for Padé approximant τ [2/1] coincides with τ (2) within accuracy of the
plotting.

Table 2. Comparison of kinetic energy obtained from density ρ by summation of gradient
expansion using different methods, for atoms. (The results are presented as percent error.)

Percent error (ET = 100 |Ts − T |/Ts)
Atom THF (a.u.) ET0 ET0+T2 ET0+T2+T4 ET [1/1] ET [2/1]

He 2.8617 -10.5 0.59 3.57 2.01 0.53

Li 7.4328 -10.1 0.62 3.09 2.00 0.61

Be 14.573 -9.9 0.50 2.9 1.86 0.53

Ne 128.55 -8.4 -0.55 0.95 0.50 -0.51

Ar 526.81 -7.0 -0.49 0.69 0.32 -0.43

Kr 2752.05 -5.9 -0.69 0.18 -0.09 -0.63

Xe 7232.13 -5.2 -0.68 0.07 -0.17 -0.62

3.2. Atomic densities

For the atoms, we calculated the densities using Hartree–Fock wavefunctions from Clementi
Atomic Data Tables [26]. The results of summation of the gradient expansion are given in Table
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3.2. For He, we found that the gradient expansion and its summations are similar to the case
of Hooke’s law model for two-electron atoms, but the sixth-order term diverges even faster. As
a result, the Padé approximant improves the partial sum τ0 + τ2 only in a narrow range of
r ∼ 0.6, where τ6 is comparable with τ0. Outside of this range, τ [2/1] ≈ τ (2). Therefore, results
of integration of these functions are very close, but still the Padé approximant gives some small
improvement in comparison with the partial sum.

While for Li and Be, we found that the gradient expansion and its summation is similar to
the case of helium atom, but the sixth-order term diverges much faster. As a result, the Padé
approximant does not improve accuracy in comparison with the partial sum.

For heavier noble-gas atoms (Ne, Ar, Kr, and Xe), we found that the Padé approximant [2/1]
is still slightly more accurate than the sum of two terms, but the Padé approximant [1/1] is
even more accurate. Calculations show that in these cases τ4 < τ2 in the most important area
of integration when τ(r) > 0.01. It explains the good accuracy of the Padé approximant [1/1]
which is based on fourth order expansion. However, we found that τ6(r) > τ4(r) for almost all
r, which is probably the reason of relatively poor performance of the Padé approximant [2/1]
that is based on sixth order expansion.

4. Conclusion

Here, we take advantage of the known higher order corrections to the density of the kinetic
energy, τ4 and τ6, to improve the accuracy of the gradient expansion. Simple adding of the
correction T4 =

∫

τ4(r) dr usually makes the result less accurate, because this correction is valid
only asymptotically for heavy atoms. Moreover, since T6 =

∫

τ6(r) dr is given by a divergent
integral for finite systems, the knowledge of τ6 is assumingly useless, from the first glance. In
this paper, we present a systematic approach that allows to avoid regions where higher order
terms are relatively large and are no longer “small corrections” while taking advantage of these
terms in areas where they are small and improve the accuracy.

We expect that this approximation can improve the accuracy in case when there exists a
significant region of ~r where |τ6(~r)| < |τ4(~r)|. We found that for atoms, this region is quite
narrow, presumably because of the presence of Coulomb singularity. In this case the method
has only small advantage over the method of plane summation. Our second example is Hooke’s
law model for two-electron atoms, where the Coulomb attraction −Z/r is replaced by a harmonic

binding ω2

2 r
2. In the latter case, we found that the method works only in case of sufficiently weak

binding, ω ≤ 1/2. So, we expect this approximation to work very well for confined harmonic
potentials such the case of treating quantum dots.
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