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Singularity of the time-energy 
uncertainty in adiabatic 
perturbation and cycloids on a 
Bloch sphere
Sangchul Oh1, Xuedong Hu2, Franco Nori3,4 & Sabre Kais1,5

Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a 
uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch 
sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more 
and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, 
calculated by the exact solution is entirely different from the one obtained by the adiabatic path 
traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov- Anandan geometric 
phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry 
phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy 
uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area 
of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different 
initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, 
parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic 
resonance is visualized by the number of cycloid arcs.

Perturbation theory1,2 is widely used in many fields of science and engineering as an effective method to find an 
approximate solution to a given problem, expressed in terms of a power series in a small parameter. In regular 
perturbation calculations, one only keeps the first few terms of the expansion to obtain a good approximate solu-
tion to the exact one, as the small parameter goes to zero. However, there are many interesting problems that have 
no such uniform asymptotic expansion. These involve singular perturbations2–7. A classic example of this singular 
perturbation is the flow in the limit of zero viscosity8. When the viscosity, a small parameter, approaches zero, the 
solution of the Navier-Stokes equation gives a completely different solution from the one obtained by taking zero 
viscosity from the beginning.

Adiabatic perturbation1 is one of the fundamental approximations used in many fields. Its classic applications 
include the Born-Oppenheimer approximation9 of decoupling the fast electronic motion from the slow ionic one, 
and adiabatic quantum computation10, an alternative to the quantum circuit model for quantum computing. The 
adiabatic theorem dictates that as long as a system changes slowly enough, a quantum system starting from an 
eigenstate would remain in the instantaneous eigenstate of the time-dependent Hamiltonian up to the dynamical 
and Berry phases11,12. It may seem quite reasonable then that all physical properties in the adiabatic limit should 
be obtainable from the instantaneous eigenstate. However, this conjecture has never been proved.

In this paper, we reveal singular features of the adiabatic approximation by studying the quantum dynamics 
of a spin-1/2 particle in a uniformly rotating magnetic field. Its quantum trajectory is shown to be a cycloid on 
the Bloch sphere, traced by a point on a rolling circle, with a radius determined by the angular speed of the mag-
netic field, along the adiabatic path of the instantaneous eigenstate. We find the two basic geometric quantities, 
the length and the enclosed area of the quantum trajectory, approach different limits in the adiabatic limit. As 
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the rotation of the magnetic field is slowed down, the non-adiabatic Aharonov-Anandan (AA) phase13, the area 
enclosed by the quantum trajectory goes to the adiabatic Berry phase, the area enclosed by the adiabatic path. 
However, the time-energy uncertainty, the length of the quantum trajectory, does not converge to the minimum 
time-energy uncertainty of the adiabatic path. This singular feature of the adiabatic approximation is explained 
by the arc length and arc area of the cycloid. In addition, the cycloid curve neatly explains some interesting phys-
ical results. First, the axis trajectory of a cycloid is interpreted as a transitionless driving that makes the quantum 
evolution follow the adiabatic path. Second, the non-adiabatic resonance condition is visualized by the number of 
perfect arcs of the cycloid. Finally, the exact cycloid, curtate and prolate cycloids on a Bloch sphere are generated 
by different initial states. Our results could be tested with a single qubit, a neutron, or light polarization, and could 
have important implications for the application of the adiabatic perturbation, for example, adiabatic quantum 
computing and adiabatic quantum dynamics.

Results
Spin-1/2 particle in a rotating magnetic field. We consider one of the simplest quantum systems, a 
spin-1/2 particle in a rotating magnetic field ( ) = ( )t B tB n  where we assume its strength B is constant and its 
direction n(t) rotates with constant angular speed ω. Quantum dynamics is governed by the time-dependent 
Schrödinger equation

 ψ ψ| 〉 = ( )| 〉 , ( )i d
dt

H t 1

where the time-dependent Hamiltonian is given by the Zeeman interaction

ω
σ( ) = − ( )⋅ . ( )H t tn

2 2
0

Here ω0 is the Larmor frequency (for the electron spin: ω = /egB m20 ), and σ is the Pauli spin vector. As Feynman 
et al.14 showed, with a Bloch vector ψ ψσ( ) ≡ ( ) ( )t t tr  Equation (1) can be written as the dynamics of a spin-
ning top

ω= − × . ( )
d
dt

r n r 30

Before discussing the solution of Equation (1), let us recall the adiabatic dynamics of a spin-1/2 particle. The  
adiabatic theorem states that when an applied magnetic field changes slowly enough, a quantum state ψ ( )t  adi-
abatically evolving from an initial instantaneous state ( )±n 0 , remains in an instantaneous eigenstate ( )± tn  up 
to the dynamical phase ω

 t
2

0  and the adiabatic geometric phase γ± (called the Berry phase)11,12

( )ψ γ| ( )〉 ± + | ( )〉. ( )
ω

± ±t i t i tnexp 4ad 2
0

The instantaneous eigenstates ( )± tn  are the solution of ( )| ( )〉 = | ( )〉ω
± ±H t t tn n

2
0  and written as 

| ( )〉 = | 〉 + | 〉θ φ θ
+ t en cos 0 sin 1i

2 2
 and | ( )〉 = − | 〉 + | 〉θ φ θ

− t en sin 0 cos 1i
2 2

. Here θ and φ are the polar and azi-
muthal angles of n, respectively. In the adiabatic limit, the Bloch vector ψ ψσ( ) = ( ) ( )t t tr ad ad , i.e., the spin 
direction is aligned with the direction of the magnetic field n(t) in the parameter space. The Berry phase is 
expressed in terms of the geometric quantity, the solid angle S subtended by n(t) as γ =±  S1

2
.

The question we would like to explore is how the non-adiabatic trajectory of the Bloch vector r approaches 
that of n when the magnetic field rotates slowly. To this end, the exact solution of Eq. (1) is obtained by transform-
ing the equation into the adiabatic frame via the transformation ψ ϕ( ) = ( ) ( )t A t t , where A(t) is composed of 
the column vectors ( )+ tn  and ( )− tn . In the adiabatic frame, the time-dependent Schrödinger Eq. becomes

ϕ ϕ∂
∂

| ( )〉 = | ( )〉 , ( )i
t

t H t 5eff

where the effective Hamiltonian is decomposed into the sum of the adiabatic and the non-adiabatic terms



  ω
σ

φ
θ σ θ σ

θ
σ

= −
∂
∂

= − + ( − + ) − .
( )




† †H A HA i A A
t

I
2 2

cos sin
2 6

ff

z z x y

e

0

For the magnetic field rotating with constant angular speed, the effective Hamiltonian (6) becomes 
time-independent and Eq. (1) is exactly solvable.

We consider two cases: (i) a rotation along the latitude, φ ω= t and constant θ, and (ii) a rotation along the 
meridian, θ ω= t and constant φ. In the adiabatic frame, the Bloch vector r(t) rotates with the frequency Ω  
around the new axis ê at an acute deviated angle α relative to the ẑ axis (adiabatic axis). The frequency Ω  and the 
deviated angle α are given by ω ωΩ = +0

2 2  and α ω ω= ( / )−tan 1
0  for the rotation along the meridian, and 

ω ω ω θ ωΩ = + +2 cos0
2

0
2  and α ω θ ω ω θ= − /( + )−tan [ sin cos ]1

0  for the rotation along the latitude, 
respectively. The slowness of the rotation of the magnetic field is relative to the Larmor frequency. So the ratio of 
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two frequencies, λ ω ω≡ / 0, controls the adiabaticity of the quantum dynamics. In the limit of λ → 0, the quan-
tum dynamics becomes adiabatic, and the radius a of the (imaginary) rolling circle along the adiabatic path, given 
by α=a sin , becomes smaller. The exact solution to Eq. (1) is written as

ψ ψσ= ⋅ Ω | .t A t i t Am( ) ( ) exp( /2) (0) (0) (7)

Cycloids on a Bloch sphere. We calculate the trajectory of the Bloch vector r(t) on the Bloch sphere with 
the exact solution Eq. (7). Figure 1 plots the cycloids traced by the Bloch vector ψ ψσ( ) = ( ) ( )t t tr  on a Bloch 
sphere for different initial states when the magnetic field is rotated clockwise with angular speed ω ω= .0 5 0 
around the z-axis by the azimuthal angle θ π= /3. On a plane, a cycloid is the curve traced by a point on the rim 
of a circle that rolls along a straight line. In classical mechanics, it is the solution to two famous problems: brachis-
tochrone (shortest-time) curves and tautochrone (equal-time) curves15,16. Like on a plane, a cycloid on the Bloch 
sphere is traced by a point of an imaginary circle which rolls along the base line. Here the adiabatic path n(t), i.e., 
the trajectory of the magnetic field, plays the role of the base line, as shown by the blue curve in Fig. 1. The imag-
inary circle rolling along the adiabatic path represents a non-adiabatic quantum dynamics. The radius of the 
rolling circle is determined by two frequencies ω0 and ω, and given by α=a sin . The slower the rotation of the 
magnetic field, the smaller the rolling circle becomes. This clearly illustrates how the quantum trajectory 
approaches the adiabatic path in the adiabatic limit.

Like a cycloid on a plane, in addition to the instantaneous eigenstate of the initial Hamiltonian, any initial state 
corresponding to a point on the rim of the rolling circle generates a cycloid. Initial states inside and outside of the 
rolling circle trace a curtate cycloid and a prolate cycloid on the Bloch sphere, respectively. The arc length and arc 
area of the cycloid on the sphere were obtained by Bjelica17. Table 1 shows the comparison of cycloids on a plane 
and on a sphere. As shown by the blue curve in Fig. 1, the curve traced by the axis of the rolling circle is parallel to 
the base line, i.e., the adiabatic path. The axis path can be interpreted as an example of transitionless driving18–20 
to accelerate the adiabatic evolution. This could be understood by considering the axis path as a new evolution 
path of the spin, which is driven non-adiabatically by the parallel-rotating magnetic field, not by a slowly rotating 
magnetic field along the axis path. More specifically, this can be done by adding a transitionless-driving 
Hamiltonian HD(t) to cancel the non-adiabatic effect of the original time-dependent Hamiltonian H(t). As shown 
in Eq. (6), the original Hamiltonian H(t) is transformed to = ( ) − ∂

∂
† †H A H t A i A A

teff  in the adiabatic frame. 
Here the f irst term is diagonal with respect to the instantaneous eigenstates of H(t),  and  
the second term is off-diagonal and accounts for the non-adiabatic effect. A Hamiltonian ( ) ≡ ( ) + ( )H̃ t H t H tD  
with a transitionless-driving term = ∂

∂
†H i AD

A
t

  is transformed to the diagonal Hamiltonian = ( )˜ †H A H t Aeff  in 
the adiabatic frame. So if a Hamiltonian ( )H̃ t  is applied, a quantum state initially in an instantaneous eigenstate of 

Figure 1. Cycloids on a Bloch sphere. As the rotating magnetic field traces the blue line, the Bloch vector 
makes various trajectories in red: (a) the exact cycloid, (b) prolate cycloid, (c) curtate cycloid, and (d) the axis 
trajectory, depending on the initial conditions.
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H(0) remains in the instantaneous eigenstate of H(t), and a non-adiabatic evolution along the adiabatic path of 
H(t) is achieved. This technique could be used to flip neutron spins non-adiabatically.

Non-adiabatic resonance. The non-adiabatic term, the second part in Hamiltonian (6), causes the quan-
tum trajectory to deviate from the adiabatic path. The question we address now is how the quantum evolution 
follows the adiabatic path as the rotation of the magnetic field becomes slower. Even before approaching the adi-
abatic limit, an evolved state could end up in the adiabatic target state under some condition. This is the so-called 
adiabatic resonance. Let us consider the magnetic field rotated by an angle β during the time T, i.e., ω β=T . 
Clearly, the Bloch vector r(t), which is initially aligned to the z-axis in the adiabatic frame (that is, the instantane-
ous eigenstate at t =  0), will point again to the z-axis if the Bloch vector in the adiabatic frame rotates precisely n 
times, i.e., π=Ω nT

2
. The non-adiabatic resonance condition is thus given by

ω
π
β

Ω
= ,

( )
n2

8

where n is the number of cycloid arcs.

Arc area of a cycloid as geometric phase. Let us take a close look at the physics associated with the 
geometric properties of a cycloid curve on a Bloch sphere. The length and area are two basic geometric quantities 
of a curve. First, we discuss the area enclosed by the cycloid curve. To this end, we consider again the magnetic 
field which rotates completely around the z-axis by the azimuthal angle θ as shown in Fig. 1. As is well known, 
when the magnetic field rotates slowly enough, the evolved state remains in the instantaneous eigenstate, Eq. (4), 
and accumulates, in addition to the dynamical phase, a Berry phase which is proportional to the solid angle 
enclosed by the adiabatic path n(t)11. When the adiabatic condition is relaxed, a quantum state accumulates 
both dynamical and geometric phases. The latter is called the Aharonov-Anandan (AA) phase, which is propor-
tional to the area of the curve of the quantum evolution in the projected Hilbert space13. When the resonance 
condition is satisfied, the Bloch vector r(t) returns to its initial position after a complete rotation of the magnetic 
field, so that the cycloid curve is closed. This allows us to calculate the AA phase and explore how the AA phase 
approaches the Berry phase in the adiabatic limit.

The AA phase γAA
13 is defined by subtracting the dynamical phase γd from the total phase γt

γ γ γ= − , ( )9AA t d

where the dynamical phase is defined by

∫γ ψ ψ= − 〈 ( )| ( )| ( )〉 . ( )t H t t dt1
10d

T

0

When the magnetic field rotates completely around the z axis for the time π ω= /T 2 , the quantum state also 
returns to the initial state ψ γ ψ( ) = ( ) ( )T iexp 0t  up to the total phase γd if πΩ / =T n2 , with = , , ,n 1 2 3 . 
Here n represents the number of complete cycloid arcs. From πΩ / =T n2  and ω π=T 2 , the ratio of the two 
frequencies to make the cycloid closed is given by λ ω ω θ θ/ = / = − + −n1 cos sin0

2 2 , for = , , ,n 2 3 4 . For 
n =  1, one has ω ω θ/ = −2 cos0 . With the exact solution (7), one obtains γ π= −2t  for odd n or γ π= −t  for 
even n, up to 2πk (k =  integer). The dynamical phase, Eq. (10), is calculated as

γ
ω τ

α π
λ

α= = , ( )2
cos cos 11d

0 2 2

plane cycloid spherical cycloid

base line straight line adiabatic path n(t)

circle radius a α=a sin

rolling speed ϕ = Ωt ω θ ω ω ωΩ ≡ + +2 cos0
2

0
2

equations ϕ ϕ
ϕ






= −
= −

x a b
y a b

sin
sin

ψ

ω

σ= − ⋅ | 〉

= − ×

ψ ω|i n

n r

d
dt
d
dt

r

0
2

0

curtate/prolate in/outside in/outside

arc length 8a α






+






− +
−

a4 cos 1 lna
a

a
a

1 2

2
1
1

arc area 3πa2
π







+






α
α+

a2 12 cos2

1 cos

Table 1.  Comparison between cycloids on a plane and on a sphere. In plane case, the curtate and prolate 
cycloids are traced by a point at radii b <  a and a > b, respectively.
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where α λ θ λ θ λ= ( + )/ + +cos 1 cos 1 2 cos 2 and τ π ω= /2 . As expected, the dynamical phase becomes 
γ ω τ≈ /2d 0  in the adiabatic limit because α →cos 1 as λ → 0. The AA phase up to 2πk (k =  integer) can be writ-
ten as

γ
π

λ
α

π
λ

α
=











−


 +





−


 +



 ,

( )

n

n

2 1 cos for odd

1 1 cos for even
12

AA

2

2

where the integer n is defined by the relation πΩ / =T n2 .
In the adiabatic limit, i.e., λ → 0, one may think that γAA would diverge because of the second term α λ/cos2  

of Eq. (12). However, the phase is defined up to 2πk. The condition λ θ θ/ = − + −n1 cos sin2 2  becomes 
λ θ/ ≈ − + n1 cos , for n 1. Thus, in the adiabatic limit, the AA phase, Eq. (12) converges to the Berry phase

γ π θ= − ( − ). ( )1 cos 13Berry

Note that the above equation holds for both even and odd n. As shown in Fig. 1, the difference between AA and 
Berry phases is the sum of the arc areas of a cycloid. In the adiabatic limit, i.e., λ → 0, the arc area of a cycloid on 
a sphere becomes the arc area on a plane,

π α
α

π =




 +

+





 → .

( )
a aArc area 2 1 cos

1 cos
3

14
2

2
2

When the magnetic field is rotated around the z-axis by the angle θ, the total number n of arc areas is calculated 
from the resonance condition: ω π=T 2  and πΩ / =T n2 , i.e., ω= Ω/n . The radius of a cycloid is written as 

α ω θ= = /Ωa sin sin0 . Thus the total arc area in the adiabatic approximation is given by

π π θ
λ θ λ λ

⋅ =
+ +

.
( )

a n3 3 sin 1

1 2 cos 15
2 2

2

This is inversely proportional to λ so that the difference between the AA and Berry phases vanishes as λ → 0. 
That is, the AA phase becomes the Berry phase in the adiabatic limit, as expected.

Length of a cycloid as time-energy uncertainty and its singular limit. Let us turn to the physics 
related with the length of the cycloid curve. The Heisenberg position-momentum uncertainty relation is based on 
the commutation relation between two operators. However, the energy-time uncertainty is different because time 
in quantum mechanics is not an operator. Anandan and Aharonov21 gave a nice interpretation of the energy-time 
uncertainty relation as the distance of the quantum evolution measured by the Fubini-Study metric in the projec-
tive Hilbert space. The length L of the quantum evolution between two orthogonal states, here from |0  to |1 , is 
expressed as

 ∫=
∆ ( )

= 〈∆ 〉 , ( )L E t dt E T2 2
16

T

0

where ψ ψ ψ ψ∆ = −E H H2 2  is the uncertainty in the energy during the running time T. The length of 
any curve connecting two orthogonal states |0  and |1  is greater than or equal to the shortest distance between 
them, i.e., the geodesic line of length π, π≥L . So the energy-time uncertainty is given by

〈∆ 〉 ≥ . ( )E T h
4 17

In other words, the minimum time T required for transforming a quantum state to an orthogonal one is bounded 
by ≥ / ∆T h E4 , as shown by Mandelstam and Tamm22, Fleming23, Vaidman24, and Levitin and Toffoli25.

Now let us examine how the length of the quantum evolution changes as the speed of a rotating magnetic field 
from the north to the south pole along the geodesic line varies, as shown in Fig. 2. The adiabatic theorem dictates 
that if the magnetic field rotates slowly enough, the quantum evolution is well approximated by an instantaneous 
eigenstate. As depicted in Fig. 2, in the adiabatic limit, the path of the quantum evolution approaches the adiaba-
tic path, i.e., the geodesic line. One would expect that the length of the quantum evolution in the adiabatic limit 
becomes just that of the adiabatic path (the geodesic line) because the difference between the two paths, measured 
by the enclosed area (difference between the AA and Berry phases) vanishes. So the time-energy uncertainty in 
the adiabatic limit would be minimum. However, this is not the case. In the adiabatic limit the length of the quan-
tum evolution becomes L =  4, not π, as explained below. This is called the diagonal paradox or the limit paradox26 
in calculus. Some well-known examples showing singular limits27 are the classical limit of quantum mechanics, 
and the limit of zero viscosity8 called d’Alembert’s paradox.

With the exact solution of the Schrödinger equation, one can calculate the length of the quantum evolution. 
After some algebra, the length L as a function of adiabatic parameter λ is given by
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∫λ
λ

=
+

− 

 + 




π λ
λ λ

λ

+
−

+
L x x dx[ ] 2

1
1 cos sin

(18)2 0

2
1

2 1
1

2
2

2
2

2

In the limit λ → 0, while the integrand of Eq. (18) becomes smaller, the interval of integration become larger. So 
one obtains

Figure 2. Trajectories, infidelity, and length. The top panel shows two trajectories, in red, on a Bloch sphere 
for λ = −n1/(2 ) 1/42  with n =  1 and 7, respectively. Here n represents the number of complete cycloid arcs. 
The blue line is the adiabatic path or the trajectory of a magnetic field. The middle and bottom panels plot the 
infidelity, the probability deviating from |1 , and the distance of the quantum evolution, respectively, as a 
function of the adiabatic parameter λ. The blue points in the bottom panel represent the perfect transition.
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λ = ( )λ→
Llim [ ] 4 190

which is greater than the geodesic length π between the north and the south poles. This result can be also under-
stood in terms of the product of the arc length of a cycloid and the number of cycloid arcs needed. At the 
non-adiabatic resonance condition with πΩ =T n2  and ω π=T , the radius a of the cycloid is given by 

= = =ω

λΩ +
a

n
1

1

1
22

. In the adiabatic limit, the cycloid can be seen as a plane cycloid, so the arc length is just 

8a. Thus the length becomes ≈ × =L a n8 4.
Figure 2 plots the infidelity, the probability of deviating from the target state |1 , and the distance L of quantum 

evolution as a function of the adiabatic parameter λ ω ω/ = /1 0 . At the first non-adiabatic resonance, i.e., 
λ/ =1 2 1, the curve is composed of a single segment of a cycloid and deviates from the adiabatic path. However, 

its length is slightly larger than π. This implies ∆ ≈ /E T h 4. On the other hand, in the adiabatic limit, i.e., 
λ/ 1 2 1, the curve is composed of many cycloids with smaller radius, which gets close to the adiabatic path with 

length π. In the adiabatic limit of λ → 0, while the red curve in Fig. 2 approaches the blue one, the adiabatic path, 
its length converges to 4 not to π, as shown before. The time-energy uncertainty becomes π∆ ∼E T h/ , which is 
not minimum. Recall that within the quantum adiabatic theorem, the instantaneous eigenstate (4) is a good 
approximation to the true quantum evolution if the Hamiltonian changes slowly enough. What we find here is 
different. While the non-adiabatic geometric phase indeed converges to the adiabatic geometric phase, the 
time-energy uncertainty does not. In other words, the adiabatic limit is singular in the sense that the instantaneous 
eigenstate cannot capture all the physical properties in this limit.

Discussion
In conclusion, we have shown that the Bloch vector of a spin in a rotating magnetic field traces a cycloid on a 
Bloch sphere. Like on a plane, different initial states trace prolate and curtate cycloids, and a trajectory parallel to 
the adiabatic path. The perfect non-adiabatic resonance is geometrically interpreted as the complete rolling of a 
cycloid. Two fundamental geometric quantities, the area enclosed by a cycloid curve and its length, are connected 
to two physical quantities, the geometric phase and the time-energy uncertainty, respectively. The arch areas of a 
cycloid give rise to the difference between the AA phase and the Berry phase. The energy-time uncertainty 
becomes π∆ ≈ /E T h  which is greater than the minimum time-energy uncertainty h/4. We found the quantum 
adiabatic limit is singular, similar to the diagonal paradox or d’Alembert’s paradox in the limit of zero viscosity. In 
the adiabatic limit, while the AA phase converges to the Berry phase, the length, time-energy uncertainty, does 
not converge to that of the adiabatic path. In other words, as we approach the adiabatic limit, some non-adiabatic 
errors integrated over the longer duration of the adiabatic cycle do not vanish28.

In mathematics, the isoperimetric inequality gives the relation between the circumference L of a closed curve 
and the area A it encloses. The isoperimetric inequality on a sphere29 is given by

π≥ ( − ) , ( )L A A4 202

where the equality holds if and only if the curve is a circle. In our case, this inequality gives the relation between 
the geometric phase and the time-energy uncertainty. For a slow rotation of the magnetic field along the great cir-
cle passing from the north to the south pole, the area is given by A =  2π, and the quantum state acquires the phase 
factor − 1. If the quantum trajectory were the great circle, its length would be L =  2π, according to the equality 
condition of the isoperimetric inequality. The actual distance of the quantum evolution is 8, not 2π, even though 
it looks like a great circle.

The geometric phases, the area enclosed by a cycloid curve, have been measured with various spin-1/2 systems 
such as a neutron in a rotating magnetic field, the polarization of light in a coiled optical fiber, and qubits. The 
time-energy uncertainty, the length of a cycloid curve, and its singular limit can be measured with these systems 
as well. While the geometric phase is measured via interference between an evolved and initial quantum states, 
a trajectory on a Bloch sphere seems necessary for calculating the time-energy uncertainty because of difficulty 
in measuring energy fluctuation. However, with the rapid advancement in manipulating qubits, it is possible to 
track a trajectory of a qubit on a Bloch sphere. Especially, we notice that Roushan et al.30 traced the cycloid curve 
on a Bloch sphere in an experiment measuring the non-adiabatic geometric phase with superconducting qubits.

The adiabatic approximation is one of the fundamental theorems in quantum mechanics, and has many appli-
cations; for example, the Born-Oppenheimer approximation and adiabatic quantum computing. The results here 
could give an opportunity to deepen our understanding of the adiabatic approximation.

Methods
Time-evolution of a spin in a rotating magnetic field. The evolved quantum state at time t is given by

ψ ψ( ) = ( ) ( ) ( )| ( ) ,t A t U t A 0 0

where U(t) is the time-evolution operator in the adiabatic frame. Here the operator A(t) has ( )± tn  as its column 
vectors and is given explicitly by

( ) =









− 







.

θ θ

θ φ θ φ
A t

e e

cos sin

sin cosi i
2 2

2 2



www.nature.com/scientificreports/

8Scientific RepoRts | 6:20824 | DOI: 10.1038/srep20824

For a magnetic field rotating about the z axis by an angle θ, the effective Hamiltonian in the adiabatic frame is 
given by

 



ω
σ ω θσ θσ

σ

= − − ( − )

= −
Ω

⋅

H

m

2 2
cos sin

2

z z xeff
0

where ω ωω θ ωΩ = + +2 cos0
2

0
2 , α α= − = +ˆ ˆˆ ˆx xm mm z zcos sin z x  is the direction of the effective 

magnetic field in the adiabatic frame, α ω ω θ= = ( + )/Ωm cos cosz 0 , and α ω θ= − = − /Ωm sin sinx . 
Thus, the time-evolution in the adiabatic frame is given by  σ− = ⋅Ω( )iH t i mexp( / ) exp t

eff 2
.

Calculation of the time-energy uncertainty. The magnetic field is rotated from the north pole to the south 
pole along the geodesic line. The initial state is |0 . With the exact solution, it is straightforward to calculate the length 


=L 2  ∫ ∆ ( )

τ E t dt
0

 

Where

ψ ψ ψ ψ∆ ( ) = ( ) ( ) ( ) − ( ( ) ( ) ( ) )E t t H t t t H t t2 2 . 

One obtains 

ψ ψ( ) ( ) ( ) =t H t t2  ω /42
0
2  

and


ψ ψ

ω
=










Ω 


 + −




Ω 









t H t t t m m t( ( ) ( ) ( ) )
4

cos
2

( )sin
2z x

2
2

0
2

2 2 2 2

where ω ω ω ω λ λ− = ( − )/( + ) = ( − )/( + )m m 1 1z x
2 2

0
2 2

0
2 2 2 2 . By changing the variable in the integrand, one 

obtains Equation (18).

Calculation of the trajectory. The trajectory of the Bloch vector ψ ψσ( ) ( )t t  is plotted with the exact 
solution and by solving the time-dependent Schrödinger equation numerically with the Runge-Kutta method.
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