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Abstract We present a strategy for realizing multiparty-controlled remote state preparation
(MCRSP) for a family of four-qubit cluster-type states by taking a pair of partial entan-
glements as the quantum channels. In this scenario, the encoded information is transmitted
from the sender to a spatially separated receiver with control of the transmission by multiple
parties. Predicated on the collaboration of all participants, the desired state can be faithfully
restored at the receiver’s location with high success probability by application of additional
appropriate local operations and necessary classical communication. Moreover, this pro-
posal for MCRSP can be faithfully achieved with unit total success probability when the
quantum channels are distilled to maximally entangled ones.

Keywords Remote state preparation · Cluster-type state · Local operation and classical
communication

1 Introduction

An important focus in the field of quantum information processing (QIP) has been the secure
and faithful transmission of information from one node of quantum network to another
non-local node with finite classical and quantum resources. Quantum teleportation (QT),
originating from the pioneering work of Bennett [1], is one application of non-local physics
which may be used to accomplish such a task. The central idea of QT is to deliver quan-
tum information by means of a pre-established entanglement without physically sending an
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information carrier from the sender to the receiver. Apart from QT, there exists yet another
such effective method: Remote State Preparation (RSP) [2–4]. RSP can be interpreted as
the transfer of arbitrary known quantum states from a sender (Alice) to a spatially distant
receiver (Bob), provided that the two parties share an entangled state and may communi-
cate classically. Although both QT and RSP are able to achieve the task of information
transfer [5–7], there are some subtle differences between QT and RSP that can be sum-
marized as follows: (i) Precondition. In RSP, the sender of the states is required to have
complete knowledge about the prepared state. In contrast, during QT neither the sender nor
the receiver need necessarily possesses information associated with the teleported states.
(ii) State existence. The state to be teleported initially inhabits a physical particle in the
context of QT, while this is not a requirement for RSP. That is to say, the sender in RSP
is fully aware of the information regarding the desired state, without any particle in such
a state existing within his possession. (iii) Resource trade-off. Bennett [4] has shown that
quantum and classical resources can be traded off in RSP but cannot in QT. In standard tele-
portation, an unknown quantum state is sent via a quantum channel, involving 1 ebit, and
2 cbits for communication. In contrast, if the teleported state is known to the sender prior
to teleportation, the required resources may be reduced to 1 ebit and 1 cbit in RSP at the
expense of a lower success probability (half of that from QT). However, Pati [3] has argued
that for special ensemble states (e.g., states on either the equator or great polar circle of the
Bloch sphere) RSP requires less classical information than teleportation while maintaining
the same unitary success probability.

Owing to its importance in QIP, RSP has triggered much attention and been the basis of a
number of theoretical investigations [8–24]. Specifically, there have been investigations con-
cerning: low-entanglement RSP [8], optimal RSP [9], oblivious RSP [10, 11], RSP without
oblivious conditions [12], generalized RSP [13], faithful RSP [14], joint RSP (JRSP) [15–
17], RSP for multi-qubit states [18–22], RSP for qutrit states [23] and continuous variable
RSP in phase space [24]. Several RSP proposals, by means of different physical systems,
have been experimentally demonstrated [25–31]. As examples, Peng et al. [25] investigated
a RSP scheme using NMR, while both Xiang et al. [26] and Peters et al. [27] proposed other
two RSP schemes using spontaneous parametric down-conversion. Julio et al. [31] reported
the remote preparation of two-qubit hybrid entangled states, including a family of vector-
polarization beams; where single-photon states are encoded in the photon spin and orbital
angular momentum, and then the desired state is reconstructed by means of spin-orbit state
tomography and transverse polarization tomography.

It is well known that cluster state is considered to be a significant resource in the field
of quantum information and communication. Remarkably, it can be efficiently applied to
accomplish various information processing tasks, including: quantum teleportation [32],
quantum dense coding [33, 34], quantum secret sharing [35], and quantum correction [36].
Moreover, it is also a powerful tool for testing nonlocality [37, 38]. Canonically, a cluster-
state is written as

|�N 〉 = 1

2N/2

N⊗
s=1

(|0〉sZ(s+1) + |1〉s) (1)

with the conventional use of Z is a pauli operator and ZN+1 ≡ 1. It has been shown that
one-dimensional N -qubit cluster states are generated in arrays of N qubits mediated with
an Ising-type interaction. It may easily be seen that such a state will be reduced into a Bell
state for N = 2 (or 3); the cluster states are equivalent to Bell states (or Greenberger-
Horne-Zeilinger (GHZ) states) respectively under stochastic local operation and classical
communication (LOCC). Yet when N > 3, the cluster state and the N -qubit GHZ states are
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not longer interconvertable to each other by LOCC. When N = 4, the four-qubit cluster-
state is expressed as

|�4〉 = 1

2
(|0000〉 + |0011〉 + |1100〉 − |1111〉). (2)

Recently, many authors have chosen to focus on RSP for cluster-type states by exploring
various novel methods [39–43]. In this work, our aim is to examine the implementation of
multiparty-controlled remote state preparation (MCRSP) for a family of four-qubit cluster-
type entangled states with the aid of general quantum channels.

This paper is organized as follows: in the next section, we present the MCRSP scheme
for four-qubit cluster-type entangled states with multi-agent control by the utilization of
GHZ-class entanglements as quantum channels. The results show that the desired state can
be faithfully reconstructed in distant receiver’s laboratory with high success probability.
Moreover, the required classical communication cost (CCC) and total success probability
(TSP) will be worked out. Finally, the features of our proposed scheme are detailed followed
by conclusionary remarks.

2 MCRSP for Four-Qubit Cluster-Type Entangled States via Partial
Entanglements

Given there are (m + n + 2) authorized participants: Alice, Bob, Charlie1, · · · , Charlien,
Dick1, · · · , and Dickm. To be explicit, Alice is the sender of the desired state, Bob is the
receiver, and Charlies(s ∈ {1, · · · , n}) and Dickt (t ∈ {1, · · · ,m}) are other members of the
network. Now, Alice would like to remotely assist Bob in the preparation of a four-qubit
cluster-type entangled state, where the transmission is mediated by and may be controlled
by the agents within the network. Generally, the form of the four-qubit cluster-type state is
given by

|P 〉 = α|0000〉 + βeiϕ0 |0011〉 + γ eiϕ1 |1100〉 + δeiϕ2 |1111〉, (3)

where α, β, γ , δ and each ϕi are real-valued, satisfy the normalized condition α2 + β2 +
γ 2+δ2 = 1, and the boundary condition ϕi ∈ [0, 2π). Note that, the state will reduce to one
standard four-qubit cluster state as demonstrated in (2), once that α = β = γ = δ = 1/2,
ϕ0 = ϕ1 = 0 and ϕ2 = π . In order to commit MCRSP, Alice, Bob, Charlies and Dickt share
previously generated genuine quantum resources – i.e., GHZ-type entanglements – which
are given by

|ϒ(1)〉A1A2B1B2C1···Cn =
0,1∑
k

ak|k〉⊗(n+4)
A1A2B1B2C1···Cn

, (4)

and

|ϒ(2)〉A3A4B3B4D1···Dm =
0,1∑
l

bl |l〉⊗(m+4)
A3A4B3B4D1···Dm

, (5)

respectively. Initially, qubits A1, A2, A3 and A4 are distributed to Alice, qubits B1, B2, B3
and B4 to Bob, Cs to Charlies(s ∈ {1, · · · , n}) and Dt to Dickt (t ∈ {1, · · · ,m}). Without
loss of generality, the states’ coefficients obey

∑0,1
k |ak|2 = ∑0,1

l |bl |2 = 1, a1, b1 ∈ R, and
these bounds |a0| ≥ |a1| and |b0| ≥ |b1| are maintained.

The procedure for implementing MCRSP can be divided into the following steps:

Step 1. Firstly, Alice makes a two-qubit projective measurement on her qubit pair
(A1, A3) under a set of complete orthogonal basis vectors, {|Lij 〉}, composed of the
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computational basis {|00〉, |01〉, |10〉, |11〉}, which can be written as

(|L00〉, |L01〉, |L10〉, |L11〉)T=Q(|00〉, |01〉, |10〉, |11〉)T, (6)

where the projection operatorQ, in (6), is taken to be

Q =

⎛
⎜⎜⎝

α βe−iϕ0 γ e−iϕ1 δe−iϕ2

β −αe−iϕ0 δe−iϕ1 −γ e−iϕ2

γ −δe−iϕ0 −αe−iϕ1 βe−iϕ2

δ γ e−iϕ0 −βe−iϕ1 −αe−iϕ2

⎞
⎟⎟⎠ . (7)

The total systemic state taken to be the quantum channels can be described by

|
T 〉 = |ϒ(1)〉A1A2B1B2C1···Cn ⊗ |ϒ(2)〉A3A4B3B4D1···Dm

=
0,1∑
i,j

|Lij 〉A1A3 ⊗ |Xij 〉A2A4B1B2B3B4C1···CnD1···Dm

= |L00〉A1A3(a0b0α|0〉⊗(n+3)
A2B1B2C1···Cn

|0〉⊗(m+3)
A4B3B4D1···Dm

+a0b1βeiϕ0 |0〉⊗(n+3)
A2B1B2C1···Cn

|1〉⊗(m+3)
A4B3B4D1···Dm

+a1b0γ eiϕ1 |1〉⊗(n+3)
A2B1B2C1···Cn

|0〉⊗(m+3)
A4B3B4D1···Dm

+a1b1δe
iϕ2 |1〉⊗(n+3)

A2B1B2C1···Cn
|1〉⊗(m+3)

A4B3B4D1···Dn
)

+|L01〉A1A3(a0b0β|0〉⊗(n+3)
A2B1B2C1···Cn

|0〉⊗(m+3)
A4B3B4D1···Dm

−a0b1αeiϕ0 |0〉⊗(n+3)
A2B1B2C1···Cn

|1〉⊗(m+3)
A4B3B4D1···Dm

+a1b0δe
iϕ1 |1〉⊗(n+3)

A2B1B2C1···Cn
|0〉⊗(m+3)

A4B3B4D1···Dm

−a1b1γ eiϕ2 |1〉⊗(n+3)
A2B1B2C1···Cn

|1〉⊗(m+3)
A4B3B4D1···Dm

)

+|L10〉A1A3(a0b0γ |0〉⊗(n+3)
A2B1B2C1···Cn

|0〉⊗(m+3)
A4B3B4D1···Dm

−a0b1δe
iϕ0 |0〉⊗(n+3)

A2B1B2C1···Cn
|1〉⊗(m+3)

A4B3B4D1···Dm

−a1b0αeiϕ1 |1〉⊗(n+3)
A2B1B2C1···Cn

|0〉⊗(m+3)
A4B3B4D1···Dm

+a1b1βeiϕ2 |1〉⊗(n+3)
A2B1B2C1···Cn

|1〉⊗(m+3)
A4B3B4D1···Dm

)

+|L11〉A1A3(a0b0δ|0〉⊗(n+3)
A2B1B2C1···Cn

|0〉⊗(m+3)
A4B3B4D1···Dm

+a0b1γ eiϕ0 |0〉⊗(n+3)
A2B1B2C1···Cn

|1〉⊗(m+3)
A4B3B4D1···Dm

−a1b0βeiϕ1 |1〉⊗(n+3)
A2B1B2C1···Cn

|0〉⊗(m+3)
A4B3B4D1···Dm

−a1b1αeiϕ2 |1〉⊗(n+3)
A2B1B2C1···Cn

|1〉⊗(m+3)
A4B3B4D1···Dm

). (8)

Within the above, the non-normalized state |Xij 〉 ≡ A1A3〈Lij |
T 〉 (i, j = 0, 1) is
obtained with a probability of 1/N 2

ij , whereNij corresponds to the normalized parameter
of state |Xij 〉.

Step 2. According to her own measurement outcome, |Lij 〉, Alice makes an appropriate

unitary operation, Û (ij)
A2A4

, on her remaining qubit pair (A2, A4) under the ordering basis,
{|00〉, |01〉, |10〉, |11〉}. The specific forms of this unitary operator are given by one of the
following statements

Û
(00)
A2A4

= diag(1, 1, 1, 1), (9)
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Û
(01)
A2A4

= diag(eiϕ0 , −e−iϕ0 , ei(ϕ2−ϕ1),−ei(ϕ1−ϕ2)), (10)

Û
(10)
A2A4

= diag(eiϕ1 , −ei(ϕ2−ϕ0), −e−iϕ1 , ei(ϕ0−ϕ2)), (11)

and
Û

(11)
A2A4

= diag(eiϕ2 , ei(ϕ1−ϕ0),−ei(ϕ0−ϕ1), −e−iϕ2). (12)

Subsequently, Alice measures her qubits (A2 and A4) under the a set of complete
orthogonal basis vectors, {|±〉 = 1√

2
(|0〉 ± |1〉)}, and broadcasts her measured out-

comes through classical channels. Incidentally, all of the authorized participators should
have previously entered into an agreement that cbits (i, j) correspond to the outcome
|Lij 〉A1A3 , and cbits (p, q) relate to the measuring outcome of qubits A2 and A4,
respectively. For simplicity, we define

p, q =
{
0, if |+〉 is probed
1, if |−〉 is probed . (13)

Step 3. The agents then proceed to carry out single-qubit measurements under the set
of vector basis, {|±〉}, on their qubits. Later, the agents will inform Bob of the results
via classical channels. We assume that the cbit xs (s ∈ {1, · · · , n}) corresponds to the
outcome of the agents Cs , and yt (t ∈ {1, · · · , m}) corresponds to the outcome of the
agents Dt . Note that the values of xs and yt have been assigned the notations as p and
q (see (13)), respectively. We have g = �n

s=1xs,mod ⊕ 2 and h = �m
t=1yt ,mod ⊕ 2.

Initially, there are four different situations defined by different values of (g, h); these
cases are listed here, as (g, h): I) (0, 0); II) (0, 1); III) (1, 0); and IV) (1, 1).

Step 4. In response to the different measurement outcomes of the sender and agents, Bob
operates on his qubits B1, B2, B3 and B4 with an appropriate unitary transformation
ÛB1B2B3B4 ; the forms of which are given explicitly in Table 1.

Step 5. Finally, Bob introduces one auxiliary qubit BA with an initial state of
|0〉. And then he makes a triplet collective unitary transformation (V̂ (ij)

B1B3BA
)

on his qubits B1, B3 and BA under a set of ordering basis vectors,
{|000〉, |010〉, |100〉, |110〉, |001〉, |011〉, |101〉, |111〉}, which is given by

V̂
(ij)
B1B3BA

=
(
Wij Uij

Uij −Wij

)
, (14)

whereWij and Uij are 4 × 4 matrices. Explicitly, the forms ofWij and Uij are⎧⎪⎪⎨
⎪⎪⎩
W00
W01
W10
W11

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

diag( a1b1
a0b0

,
a1
a0

,
b1
b0

, 1)

diag( a1
a0

,
a1b1
a0b0

, 1, b1
b0

)

diag( b1
b0

, 1, a1b1
a0b0

,
a1
a0

)

diag(1, b1
b0

,
a1
a0

,
a1b1
a0b0

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(15)

and

⎧⎪⎪⎨
⎪⎪⎩
U00
U01
U10
U11

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

diag(
√
1 − (

a1b1
a0b0

)2,
√
1 − (

a1
a0

)2,

√
1 − (

b1
b0

)2, 0)

diag(
√
1 − (

a1
a0

)2,

√
1 − (

a1b1
a0b0

)2, 0,
√
1 − (

b1
b0

)2)

diag(
√
1 − (

b1
b0

)2, 0,
√
1 − (

a1b1
a0b0

)2,
√
1 − (

a1
a0

)2)

diag(0,
√
1 − (

b1
b0

)2,
√
1 − (

a1
a0

)2,

√
1 − (

a1b1
a0b0

)2)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (16)

Bob then measures his auxiliary qubit, BA, under a set of measuring basis vectors,
{|0〉, |1〉}. If the state |1〉 is measured, his remaining qubits will collapse into the trivial
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state; the MCRSP fails in this situation. Otherwise, |0〉 is probed and the qubits’ state will
transform into the desired state; that is, our MCRSP is successful in this case.

Based on the above five-step protocol, it has been shown that the MCRSP for a family of
cluster-type states can be faithfully performed with a predictable success probability. The
steps can be decomposed into a schematic diagram shown in Fig. 1. As a summary, we list
Bob’s required local single-qubit transformations corresponding to various measurement
outcomes by both the sender and the agents in Table 1. By the analysis above, one can see
that the prepared state can be faithfully reconstructed with a specified success probability.

Above, we have shown that MCRSP for a four-qubit cluster-state can be faithfully per-
formed by employing general entangled states as quantum channels. For clarity, here we
will take the case of (i, j, p, q, g, h) = (1, 0, 0, 1, 1, 0) as an example. That is, the state
{|L10〉} is detected on qubits (A1, A3) by Alice at the beginning. Thus, the remaining qubits
will be converted into

|ψ1〉 = N10(a0b0γ |0〉⊗(n+3)
A2B1B2C1···Cn

|0〉⊗(m+3)
A4B3B4D1···Dm

−a0b1δe
iϕ0 |0〉⊗(n+3)

A2B1B2C1···Cn
|1〉⊗(m+3)

A4B3B4D1···Dm

−a1b0αeiϕ1 |1〉⊗(n+3)
A2B1B2C1···Cn

|0〉⊗(m+3)
A4B3B4D1···Dm

+a1b1βeiϕ2 |1〉⊗(n+3)
A2B1B2C1···Cn

|1〉⊗(m+3)
A4B3B4D1···Dm

), (17)

whereN10 = 1√
|a0b0γ |2+|a0b1δ|2+|a1b0α|2+|a1b1β|2 is the normalized coefficient.

Fig. 1 Schematic diagram for our MCRSP implementation. Seen above, the procedure is explicitly decom-
posed into diagrams (S1) through (S5). The dotted ellipse represents a two-qubit projective measurement
(TQPM) under the {|Lij 〉} basis; the dotted square represents a single-qubit projective measurement (SQPM)
under the {|±〉} basis; the dotted-line rectangle represents the operations of a bipartite collective unitary trans-
formation Û

(ij)
A2A4

; the dotted hexagon represents the single-qubit unitary transformation ÛB1B2B3B4 on Bob’s

qubits; the dotted circle signifies a triplet collective unitary operation V̂
(ij)
B1B3BA

; the dotted triangle repre-
sents SQPM under the {|0〉, |1〉} basis; the red solid dot represents a particle which has been measured in a
Hilbert Space, and Cbits represents classical information communication. Note that there are no operations
on Alice’s, Charlie’s and Dick’s qubits after Step 3
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Later, Alice makes the operation Û
(10)
A2A4

on her remaining qubits A2 and A4. As a
consequence, the above state will evolve into

|ψ2〉 = N10(a0b0γ eiϕ1 |0〉⊗(n+3)
A2B1B2C1···Cn

|0〉⊗(m+3)
A4B3B4D1···Dm

+a0b1δe
iϕ2 |0〉⊗(n+3)

A2B1B2C1···Cn
|1〉⊗(m+3)

A4B3B4D1···Dm

+a1b0α|1〉⊗(n+3)
A2B1B2C1···Cn

|0〉⊗(m+3)
A4B3B4D1···Dm

+a1b1βeiϕ0 |1〉⊗(n+3)
A2B1B2C1···Cn

|1〉⊗(m+3)
A4B3B4D1···Dm

). (18)

Incidentally, the state given in (18) can be rewritten as

|ψ3〉 = N10

2
[| + +〉A2A4(a0b0γ eiϕ1 |0〉⊗(n+2)

B1B2C1···Cn
|0〉⊗(m+2)

B3B4D1···Dm

+a0b1δe
iϕ2 |0〉⊗(n+2)

B1B2C1···Cn
|1〉⊗(m+2)

B3B4D1···Dm

+a1b0α|1〉⊗(n+2)
B1B2C1···Cn

|0〉⊗(m+2)
B3B4D1···Dm

+ a1b1βeiϕ0 |1〉⊗(n+2)
B1B2C1···Cn

|1〉⊗(m+2)
B3B4D1···Dm

)

+| + −〉A2A4(a0b0γ eiϕ1 |0〉⊗(n+2)
B1B2C1···Cn

|0〉⊗(m+2)
B3B4D1···Dm

−a0b1δe
iϕ2 |0〉⊗(n+2)

B1B2C1···Cn
|1〉⊗(m+2)

B3B4D1···Dm

+a1b0α|1〉⊗(n+2)
B1B2C1···Cn

|0〉⊗(m+2)
B3B4D1···Dm

− a1b1βeiϕ0 |1〉⊗(n+2)
B1B2C1···Cn

|1〉⊗(m+2)
B3B4D1···Dm

)

+| − +〉A2A4(a0b0γ eiϕ1 |0〉⊗(n+2)
B1B2C1···Cn

|0〉⊗(m+2)
B3B4D1···Dm

+a0b1δe
iϕ2 |0〉⊗(n+2)

B1B2C1···Cn
|1〉⊗(m+2)

B3B4D1···Dm

−a1b0α|1〉⊗(n+2)
B1B2C1···Cn

|0〉⊗(m+2)
B3B4D1···Dm

− a1b1βeiϕ0 |1〉⊗(n+2)
B1B2C1···Cn

|1〉⊗(m+2)
B3B4D1···Dm

)

+| − −〉A2A4(a0b0γ eiϕ1 |0〉⊗(n+2)
B1B2C1···Cn

|0〉⊗(m+2)
B3B4D1···Dm

−a0b1δe
iϕ2 |0〉⊗(n+2)

B1B2C1···Cn
|1〉⊗(m+2)

B3B4D1···Dm

−a1b0α|1〉⊗(n+2)
B1B2C1···Cn

|0〉⊗(m+2)
B3B4D1···Dm

+a1b1βeiϕ0 |1〉⊗(n+2)
B1B2C1···Cn

|1〉⊗(m+2)
B3B4D1···Dm

)]. (19)

Accordingly, Alice measures her qubits A2 and A4 under the basis vectors {|±〉}. Let-
ting the outcome be |+〉A2 |−〉A4 , Alice broadcasts this outcome to Bob and agents via the
classical message ‘01’. The subsystem state will then be

|ψ4〉=N10(a0b0γ eiϕ1 |0〉⊗(n+2)
B1B2C1···Cn

|0〉⊗(m+2)
B3B4D1···Dm

− a0b1δe
iϕ2 |0〉⊗(n+2)

B1B2C1···Cn
|1〉⊗(m+2)

B3B4D1···Dm

+a1b0α|1〉⊗(n+2)
B1B2C1···Cn

|0〉⊗(m+2)
B3B4D1···Dm

− a1b1βeiϕ0 |1〉⊗(n+2)
B1B2C1···Cn

|1〉⊗(m+2)
B3B4D1···Dm

). (20)

Meanwhile, the agents proceed to carry out single-qubit projective measurements under
the same vector basis {|±〉} on their own qubits respectively, and then informs Bob of their
measurement results via classical channels. Supposing the measuring outcome (p, q) =
(1, 0), Bob realizes the state of his qubits B1, B2, B3 and B4 will collapse into

|ψ5〉 = N10(a0b0γ eiϕ1 |0000〉 − a0b1δe
iϕ2 |0011〉 − a1b0α|1100〉

+a1b1βeiϕ0 |1111〉)B1B2B3B4 . (21)

Subsequently, Bob performsXB1ZB1XB2ZB3IB4 on his qubitsB1,B2,B3 andB4, respec-
tively, where X and Z are pauli operators and I is an identity operator. His systematic state
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will collapse into

|ψ6〉 = N10(a1b0α|0000〉 + a1b1βeiϕ0 |0011〉 + a0b0γ eiϕ1 |1100〉
+a0b1δe

iϕ2 |1111〉)B1B2B3B4 . (22)

Bob then introduces the auxiliary qubit, BA, with an initial state of |0〉. He will now
implement a local triplet collective unitary transformation, V̂

(10)
B1B3BA

, on qubits B1, B3 and
BA. Thus Bob’s system will become

|ψ7〉 = N10[a1b1(α|0000〉 + βeiϕ0 |0011〉 + γ eiϕ1 |1100〉 + δeiϕ2 |1111〉)B1B2B3B4 ⊗ |0〉BA

+(a1b0α

√
1 − (

b1

b0
)2|0000〉 + a0b0γ eiϕ1

√
1 − (

a1b1

a0b0
)2|1100〉

+a0b1δe
iϕ2

√
1 − (

a1

a0
)2|1111〉)B1B2B3B4 ⊗ |1〉BA

]. (23)

Finally, Bob makes a single-qubit projective measurement on qubit BA under basis vec-
tors {|0〉, |1〉}. If |1〉BA

is measured, his remaining qubits will collapse into the trivial state
and the RSP fails. If |0〉BA

is measured, the remaining qubits will transform into the state:
(α|0000〉 + βeiϕ0 |0011〉 + γ eiϕ1 |1100〉 + δeiϕ2 |1111〉)B1B2B3B4 ≡ |P 〉.

Of course, Alice’s outcome may be one of the remaining three states: |L00〉, |L01〉 and
|L11〉. Therefore, the desired state can be faithfully recovered at Bob’s location with cer-
tainty by similar analysis methods as those above. And the whole process of our MCRSP
scheme can be described by

ρout =TrBA
(M̂BA

(V̂B1B3BA
(ÛB1B2B3B4TrC1···CnD1···Dm(M̂C1···CnD1···DmTrA2A4 (M̂A2A4 ÛA2A4TrA1A3

(M̂A1A3ρinM
†
A1A3

)U
†M†

A2A4
A2A4

)M̂
†
C1···CnD1···Dm

)Û
†
B1B2B3B4

⊗ |0〉BA
〈0|)V̂ †

B1B3BA
)M̂

†
BA

), (24)

where Tr denotes partial trace, ρin = |ϒ(1)〉〈ϒ(1)|ϒ(2)〉〈ϒ(2)|, and M̂i denotes the
projection operators of measurements on qubits i under corresponding measuring basis
vectors.

Now, let us proceed with the calculation of TSP and CCC for the current scheme. Derived
from (8), Alice’s measurement outcome, |Lij 〉, has an occurrence probability of

PLij
= 1

N 2
ij

. (25)

Furthermore, it should be noted that the probability of capturing the state |0〉BA
is given

by
P|0〉BA

|Lij
= (Nij a1b1)

2. (26)

Thus, the TSP of MCRSP sums to be

PT ot =
0,1∑
i

0,1∑
j

PLij
× P|0〉BA

|Lij
= 4(a1b1)

2. (27)

Moreover, one should note that the required CCC should be (m + n + 4) cbits totally;
where the 4 required CCC’s are from passing of measurement outcomes from Alice to Bob
during Step 2 of the procedure.

Herein, we presented a novel proposed method for MCRSP involving a family of
four-qubit cluster-type entangled states. We have proved that our scheme can be realized
faithfully with a TSP of 4(a1b1)2 and a CCC of (m + n + 4) via the control of multiple
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Fig. 2 The quantum circuit diagram for implementing our MCRSP scheme. TQPM denotes a two-qubit
projective measurement under a set of complete orthogonal basis vectors, {|Lij 〉}; Û

(ij)
A2A4

denotes Alice’s

appropriate bipartite collective unitary transformation on the qubit pair (A2, A4); ÛB1B2B3B4 denotes Bob’s

single-qubit unitary transformation on qubitsB1,B2,B3 andB4; and V̂
(ij)
A1A3BA

denotes Bob’s triplet collective
unitary transformation on qubits B1, B3 and BA

agents within a quantum network. For clarity, the quantum circuit diagram for our MCRSP
protocol is provided as Fig. 2.

3 Discussions

We have found several remarkable features with respect to the scheme presented above;
these features are summarized as follows: (1) To the best of our knowledge, this is the
first time one has exploited such a scenario concerning MCRSP for four-qubit, cluster-type
entangled states under the control of a (m+n)−party. Conveyance of information regarding
the prepared state takes place only between the sender and the receiver, i.e., 1 → 1 thresh-
old communication. Moreover, the agents are capable of supervising and switching the
procedure during the relay of information communication. This type of secure multi-node
information communication ought to be considerably important in prospective quantum net-
works. (2) Generally, our MCRSP can be faithfully performed with a TSP of 4(a1b1)2.
Moreover, when the state |a1| = |b1| = 1/

√
2 is chosen initially, the channels become

maximally entangled and the TSP can reach unity as shown in Fig. 3. Consequently, that
indicates our scheme becomes deterministic at this limit. It should also be noted that the
parameters a1 and b1 relate to the Shannon entropies of the employed quantum channels

H(f ) = −|f |2 log
(
|f |2

)
− (1 − |f |2) log

(
1 − |f |2

)
, (28)

within the above, f ∈ {a1, b1} and a1, b1 ∈ [−√
2/2,

√
2/2]. The entropy will vary with

respect to coefficients specific to various choices in quantum channels, depicted in Fig. 4.
The entropy in essence reflects inherent and fundamental properties (i.e., entanglements)
associated with the specific choice of quantum channels. (3) This scheme enables one to
complete RSP via a multi-agent control protocol. Incidentally, all of the agents are capable
of switching the preparation procedures. The desired state can be recovered at Bob’s site
conditional upon the total collaboration of the network members. Any member of the party
cannot recover the desired state by themselves. The receiver is not capable of recovering the
desired state without the added classical information from all the controllers; controllers are
incapable of recovering the desired state even with all of the classical information. In this
sense, the security of information is to a large extent guaranteed. (4) Within our scheme,
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Fig. 3 TSP versus the different ensembles of entanglements employed as quantum channels. TSP represents
the total success probability of the scheme

there exists (m + n) controllers capable of manipulating or switching the preparation pro-
cedure. If both m and n are chosen to be 0, there are no authorized controllers during the
process of the preparation; it has been found that our scheme is smoothly reduces to one
resembling RSP for four-qubit cluster-type states with a TSP of 4(a1b1)2. In this case,
measurements made by the controllers and communication between the controllers and the
receiver are unnecessary.

Let us now compare our reduced scheme with previous schemes [39–43]. The following
discussion is done with respect to RSP and JRSP schemes in view of their resource con-
sumption and their quantum operation complexity as shown in Table 2. From Table 2, one
can directly note that the TSP of our scheme is capable of unity and the Intrinsic Efficiency

Fig. 4 The entropic diagram under the variation of coefficients a1 and b1 associated with the quantum
channels. f denotes {a1, b1}; and the vertical coordinate represents the information entropy of the employed
channels
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Table 2 Comparison between our scheme and the previous ones in the case of maximally entangled channels

Schemes Required qubits Quantum operations CCC TSP η

Ref. [39] six 2-qubit ETs two 4-qubit PMs 8 1
16 1.25 %

two 6-qubit ETs two 4-qubit PMs 8 1
16 1.25 %

Ref. [40] two 3-qubit ETs & two ASQ two 2-qubit PMs & 2 CNOTs 4 1
4 8.33 %

Ref. [41] two 2-qubit ETs & four ASQ two 4-qubit PMs & 4 CNOTs 4 1
4 8.33 %

Ref. [42] six 2-qubit ETs two 4-qubit PMs 8 1 20.00 %

Ref. [43] two 2-qubit & one 3-qubit ET one 3-qubit PM 3 1
4 10.00 %

Current scheme two 4-qubit ETs one 2-qbuit PMs & two SQPMs 4 1 33.33 %

ET represents entanglement; SQ represents single-qubit; ASQ represents auxiliary single-qubit; CNOT repre-
sents controlled-not gates; PM represents projective measurement; SQPM represents single-qubit projective
measurement and TSP represents total success probability

(η) achieves 33.33 %, which is much greater than those values of previous schemes [39–
43]. Due to a characteristic high-efficiency and a high-TSP in the present scheme, it is both
highly efficient and optimal in comparison to other existing methods. Incidentally, the effi-
ciency of a scheme regarding quantum information processing is related to the amount of
qubits in the prepared state and the employed entanglement channels, as well as classical
communication (as defined by [44]). Here we similarly define the intrinsic efficiency of our
scheme as

η = Ns

Nq + Nc

× TSP, (29)

where Ns represents the number of qubits of the prepared states, Nq represents the amount
of quantum resource consumption, and Nc is the amount of CCC during the quantum com-
putation. Zhan et al. [42] can be realized with a TSP of 100 %, similar to our work at
the maximally entangled limit; however, there are several crucial differences between our
method and those of ref. [42]. Explicitly: (i) Resource consumption. In ref. [42], 12 qubits
and 8 cbits are required in the course of RSP for four-qubit cluster-type states, while our
scheme requires 8 qubits and 4 cbits to implement RSP for such states. This implies that
our scheme is more economic with respect to both quantum and classical resource expen-
diture. (ii) Operation complexity. Two four-qubit projective measurements in ref. [42] are
required for their procedure, while two-qubit projection measurements are sufficient for our
scheme. Averagely, the experimental realization of a four-qubit projective measurement is
much more difficult than that for a two-qubit measurement. Thus, in principal our scheme
is easier to experimentally realize than the previous method.

4 Conclusion

Herein we have derived a novel strategy for implementing MCRSP scheme for a family
of four-qubit cluster-type entangled states by taking advantage of robust GHZ-class states
as quantum channels. With the aid of suitable LOCC, our scheme can be realized with
high success probability. Our scheme has several nontrivial features, including: high suc-
cess probability, security and reducibility. The TSP of MCRSP can reach unity when the
quantum channels are distilled to maximally entangled ones; that is, our scheme can be
performed both deterministically and efficiently at this limit. We believe that the current
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scheme might be beneficial to gain better understanding of long-range controllable quantum
communication in multi-node networks.
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