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Effect of Time-Delayed Feedback 
on the Interaction of a Dimer 
System with its Environment
M. Farhat1, S. Kais1,2 & F. H. Alharbi1,3

In this work, we report modeling of non-Markovian open quantum systems, consisting of an excitonic 
dimer that displays memory effect due to time delayed interaction with its environment. We, indeed 
investigate the effect of these time delays on quantum coherence and excitation dynamical behavior 
in the time domain generally considered for photosynthetic experiments (few hundred femtoseconds). 
In particular, we show that the coherence is maintained for periods proportional to time delays. 
Additionally, if delay is taken into account, coupling to the environment can be tuned to lower values, 
unlike in previous studies. This kind of intriguing effect can, therefore, when generalized to complete 
systems, permit more control on the experimental parameters, which may lead to more accurate 
description of the photosynthetic energy transfer functioning and subsequent applications in artificial 
photovoltaic research.

Photosynthesis is the main mechanism by which solar energy is converted into chemical and biological energy 
on earth. The captured sunlight (electronic excitation) is transferred from the antenna system to the reaction 
center, by transporting the electronic excitation that can be used for the charge separation initiating a bunch of 
biochemical processes1. This light harvesting and exciton transport by the photosynthetic protein complexes 
occurs with a surprisingly high efficiency. It is believed that this is quantum mechanical effect and should be 
accordingly explained by models based on quantum theory2–11. In fact, some of the states of molecular vibration 
of the chromophores facilitate the transfer of energy during the process of photosynthesis and contribute to its 
effectiveness11. Thus, for example, when two chromophores vibrate, it happens that certain energies associated 
with these collective vibrations of the two molecules are such that they correspond to transitions between two 
levels of electronic energy of the molecules. A resonance phenomenon occurs and a transfer of energy flows 
between the two chromophores8.

Several studies have reported the quantum coherence effect in excitonic transport in Fenna-Matthews-Olson 
(FMO) complexes. This was even experimentally proved in the seminal study of Engel and Scholes in 20072 using 
2D Fourier transform electronic spectroscopy12,13. Generally, the community concentrated on studying these 
effects on the FMO complex, that consists of Bacteriochlorophyll (BChl) pigments bound to a protein scaffold14. 
FMO is generally found in green sulfur bacteria and is a simple system that can be adequately described theoret-
ically and numerically. This complex is a trimer, where each monomer consists of eight BChl molecules, where 
the 8th BChl is though weakly bound15. The interest fueled among the community on FMO is justified by its 
well-documented structure, as well as its solubility in water, facilitating thus experimental uses16.

Soon after, several theoretical studies have been proposed in order to explain these somewhat counter-intuitive 
and unexpected features, i.e. highly efficient energy transfer at physiological temperatures. In fact, one would 
expect that a very fast decoherence due to strong interaction between the system and bath of oscillators occurs, 
and therefore leads to energy and phase relaxation, thus allowing for downhill directed transfer of energy17,18. 
However, experimental works (seminal work of Engel2) showed that decoherence times in FMO very much 
exceeded expected values calculated using traditional line-widths of electronic transitions19. This evidence means 
that the coupling to the vibrational bath must be more important than anticipated, in particular the vibrational 
modes with frequencies near the electronic frequency gaps between the BChl sites (to accurately model the energy 
transfer dynamics in the FMO complex). To this purpose, many theoretical studies used different methods to 
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study the excitonic dynamics, e.g. hierarchy equation of motion20–22, multi-configuration TD Hartree17, Redfield 
modified equations23–25, path integral approach26.

Unlike Markovian quantum systems, where deriving memory-less equations of motion is a feasible task27–29, 
the study of open quantum systems with random memory (or quantum feedback) effect is more elusive, because 
of the absence of systematic tools independent of the system-environment specific interaction30,31. In this context, 
Carmichael, Gardiner, and Sokolov, independently developed the theory of cascaded quantum open systems32–34 
where typically the output from one system is fed into another one. Conversely, coherent quantum feedback is 
completely different in the sense that it is not mediated by a sensor or measurement whose results are supplied to 
the quantum system, but rather it is a consequence of the dynamics of the system-bath coupling35. In this context 
Grimsmo et al. have proposed a control scheme designed to reduce the time a damped, driven system takes to 
reach a steady state36,37.

In this report, we utilize the modeling where delay is introduced to quantum open systems (bosonic and 
fermionic, alike) as in ref.38 and we propose to study a general example of a dimer, i.e. a two-level system basi-
cally (that can be used as a benchmark for describing a system of two specific BChl, as was done for example in 
refs39–41). and the population beating due to feedback in the interaction with a bath of phonons. We believe that 
such memory effect (non-Markovianity) can have a role in the excitonic dynamics of more complex FMO sys-
tems and that this simple model shows that taking into account this effect, one is able to reduce the coupling to 
vibrations (in coherence with the expected line-widths). We believe also that a more complete treatment taking 
into account this feedback can help in shedding new light towards the understanding of efficient energy transfer 
in photosynthetic organisms and to be able to propose artificial devices based on this concept10,42,43.

The outline of this manuscript is the following, in the first section we derive the theoretical model describing 
delay in the interaction between a two-level system and its environment (bath of phonons). In next section, we 
use this simplified model of dimer to study the dynamics of the populations. We finally, investigate the role of the 
delay τ in the beating effect and show how this can help in reducing the high coupling to environment.

Theoretical modeling
Frenkel exciton Hamiltonian is generally used to describe excitonic dynamics, that consists of N sites, each having 
the excitation energy Ωn . This system is embedded in a reservoir (bath) of phonons (collection of harmonic 
oscillators) of energies ω ξm ,  (where each site is assumed to be associated to its own bath).

System Hamiltonian and approximations. The Hamiltonian that describes the complete dynamics of 
Frenkel excitons is given in the form11

= + +H H H H , (1)S SE E

where  †δ= ∑ Ω +′ ′ ′ ′HS V t a a( ( ))n n n n n n n n n, , , , ω= ∑ ξ ξ ξ ξ
†H b bE m m m m, , , , , and HSE denote the system, the environ-

ment, and the interaction Hamiltonian, respectively. Equation (1) can be re-cast in the more convenient form

= + +H H H H , (2)A SE0

where we have defined

∑ ∑∑ ω= Ω +
ξ

ξ ξ ξ
† †H a a b b ,

(3)n
n n n

m
m m m0 , , , 

where an †a( )n  and ξbm ,  ξ
†b( )m ,  denote annihilation (creation) operators of an excitation of the system and reservoir, 

respectively. The time-dependent Hamiltonian H t( )A  represents the coupling between the neighboring sites, i.e. 
the detuning from the central frequencies Ωn

Figure 1. (a) The two interacting TLS (top) and their effective modeling (bottom) as a single two-level system, 
with |e1〉, |g1〉 and |e2〉, |g2〉 the excited and ground states of the two TLS, respectively. (b) Scheme of the interaction 
between the system and the environment, showing the delay τ and the interaction strength constant γ0.
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The system-environment (sites-bath) interact via the Hamiltonian4

∑∑ κ σ κ σ= +
ξ

ξ ξ ξ ξ
+ ∗ − †H b b( ),

(5)
SE

n m
n m m n m m

,
, , , , , ,

where each site is supposed to to be coupled to an independent bath of harmonic oscillators. σ+ and σ− are the 
pseudo-spin operators of a two-level system and are related to the electronic operators as σ =+ − †a a,

1,2 2,1. The 
constants κ ξn m, ,  denote the coupling strength between electronic excitation n and m bosonic bath modes of 
momenta ξ. The coupling is assumed to be linear in the coordinates of the harmonic oscillator. Additionally, the 
total excitation is conserved.

The initial state of the total system (sites-bath) is given in terms of the decoupled density matrix29

ρ ρ ρ ψ ψ= ⊗ = | | + − | |.⟩⟨ ⟩⟨p p(0) 0 0 (1 ) (0) (0) (6)S E 0 0

At time t and due to excitation number conservation, the sate ψ t( ) can be expanded as29

∑ ∑ψ = | + | + | .
ξ

ξ ξ⟩ ⟩ ⟩† †t c c t a d t b( ) 0 ( ) 0 ( ) 0
(7)n

n n
m

m m0
,

, ,

Substituting Eq. (7) in the Schrödinger equation, one can get the differential equation for the amplitudes of 
the system29

Figure 2. (a) Two-dimensional plot showing the variation of the population of the donor site as function of 
time t and delay time τ in unit of femtoseconds. (b) Populations of the donor and acceptor for three specific 
delay times, corresponding to the white-dashed lines in (a). (c) Same as in (b) but here for the coherence 
between both sites, in the time interval 0–2000 fs. The numerical values of the other parameters are γ = 5300  
cm−1 and φ π= .
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where we have defined the spectral densities, in their most general form ω κ κ δ ω ω= ∑ −ξ ξ ξ ξ
∗J ( ) ( )m j l j m l m m, , , , , , , .

System and discrete delay. In particular, we consider in this study a simplified system, i.e. a system con-
sisting of two sites. Each of these sites can be approximated by a two-level system (as depicted in Fig. 1(a))39. And 
since the intensity of incident light excitation is generally weak, one can further approximate these two 
sub-systems by an effective other two-level system (see Fig. 1(a))41 coupled to a bosonic environment at two spatial 
different locations (as schematically depicted in Fig. 1(b)), forming a coherent feedback loop with time delay τ and 
time domain interval M38. The Hamiltonian of the environment is expressed as ω= ∑ +ξ ξ ξ ξ=−∞

∞ †H b b(1/2 )E  , 
leading to the total free Hamiltonian for the system and environment

 ∑ ω= Ω +
ξ

ξ ξ ξ
=−∞

∞
† †H a a b b1

2
,

(10)
n n0 0

where the bosonic environment operators satisfy the usual commutation relations δ=ξ ξ ξξ′ ′
†b b[ , ]  and where we 

neglect the zero-point energy term in the free system Hamiltonian. The coupling between the system and the 
environment is assumed to be at two spatial locations, and the interaction Hamiltonian is given in the framework 
of the rotating wave approximation by

Figure 3. (a) Populations and (b) coherences for the dimer system with delay time τ = 50 fs, coupling to the 
environment γ = 5300  cm−1 for different values of the phase parameter φ.
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∑κ σ σ= +
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with σ+ and σ− the pseudo-spin operators of a two-level system38. The coupling coefficients in this scenario 
(depicted in Fig. 1(b)) κ γ ξ ω τ φ= +ξ ξM2 / cos( ( /2 ))0 0 , with ξ  denoting the sign of ξ and M a time parameter 
describing the time interval that we will take the limit to infinity at the end, and γ0 the coupling parameter. The 
spectral density ω κ δ ω ω= ∑ | | −ξ ξ ξJ( ) ( )2 , and in the continuum limit, one get

J( ) (1 cos( )), (12)
0ω

γ
π

ωτ φ= + +

for ω > 0, and with φ φ= 2 0. Substituting Eq. (12) in Eq. (9), one further get the dissipation kernel of the system, 
using a reverse Fourier transform, i.e.

γ δ τ δ δ τ− ′ = − − ′ + − ′ + + − ′ .φ φ−f t t e t t t t e t t( ) ( ( ) 2 ( ) ( )) (13)i i
0

Using this form for the dissipation kernel, it is straightforward to show that using Eq. (8), the time evolution 
of the system amplitude obeys the delay differential equation

δ γ θ τ γ τ= − − − − −φ−d
dt
c t i c t c t t e c t( ) ( ) ( ) ( ) ( ), (14)

i
0 0 0

with the right-side parameters normalized with respect to the Planck’s constant ħ, and θ t( ) the Heaviside function. 
Also the detuning term δ0 is assumed to be zero, i.e. the coupling between sites occurs only through their mutual 
coupling to the environment.

Results
Population beating and decoherence in the dimer system. We are now in a position to discuss the 
role played by time delay in the interaction between the two-level system (TLS) and the environment on the 
evolution of the populations dynamics and coherence, after initial excitation of the first site. Equation (14) can 
be solved analytically, by Fourier transforming it (in the frequency-domain) and extracting the eigenvalues. This 

Figure 4. Effect of the coupling constant γ0 on the population of the donor site for (a) τ = .0 01 fs, (b) τ = 10 fs, 
and (c) τ = 100 fs. [Note the difference in the scale in (a) in comparisons to (b) and (c)]. The inset of Fig. 4(b) 
shows a zoom of the population patterns to highlight short-lived quantum oscillations. (d) Figure showing the 
population of the dimer system for different values of γ τ( , )0 . This shows how increasing τ (in units of 
femtoseconds) allows for lower values of the coupling coefficient to the environment (shown in units of cm−1).
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class of differential equations is also known to possess an infinite number of complex eigenvalues, leading to some 
stability issues related to stiffness44,45. Here we solve it numerically using the delay differential equation solver of 
Matlab46, in order to obtain the relation between different parameters of the TLS and amplitudes.

Figure 2(a) plots the population of the donor site versus time lag τ  and evolution time t, in the femtosecond 
range. One can see from this figure that population of site 1 undergoes several quantum oscillations (beating) in 
the time domain of study (1–2000 fs). The domain of these oscillations clearly increase as well as their period, 
with increasing values of τ. The dashed white lines in Fig. 2(a) denote three specific values of the delay τ, that are 
50, 100, and 150 fs, and are plotted in Fig. 2(b,c) for the populations and decoherences, respectively. Here the 
decoherence is defined in the usual way as the off-diagonal term of the density matrix, or equivalently | |⁎c t c t( ) ( )1 2 , 
with c t( )1  and c t( )2  the components of the total amplitude c, appearing in Eq. (14). For the smallest values of τ 
depicted at the bottom of Fig. 2(a) with the yellow color, the population has almost constant values close to 1, 
meaning that there is nearly no coupling between the sites. For appreciably higher values of τ , one can see in 
Fig. 2(b) that the dynamics is considerably different, with the beatings becoming more pronounced as τ  is 
increased from 50 to 150 fs. Similar effect can be observed in Fig. 2(c) for the decoherence rates where the quan-
tum mechanical beatings live clearly longer due to higher delays that increase the interaction between the two 
sites via coherent feedback with the phononic bath environment. These oscillations can be interpreted in the fol-
lowing way: energy is transferred from the system into the environment during the positive regions of the deco-
herence and later re-emitted back towards the system at the negative regime of the decoherence rates47.

It should be mentioned that if the TLS reaches a steady state in which τ− =c t c t( ) ( ) the decoupling will 
persist, and excitations can become trapped in the system-loop subsystem. This effect can be seen in Fig. 3 where 
populations and coherences are depicted for different values of the phase φ. In particular, for φ π= , destructive 
interference occurs and it corresponds to negative feedback effect, leading to stabilization of the donor site in a 
state of partial excitation (solid black curve in Fig. 3). In fact it is possible to show that the amplitude c t( ) solution 
of Eq. (14) tends to γ τ+1/(1 )0  if + =φe1 0i  and to zero otherwise, when t goes to ∞. The other extreme sce-
nario occurs thus when φ = 0, i.e. for constructive interference, corresponding to positive feedback that increases 
the decay rate of the donor site and ultimately leads to its de-excitation as can be seen in Fig. 3 for the dashed 
green curve. The two other plots correspond to intermediate values of the phase, i.e. φ π= /4 and π/2, and one can 
see that in the interval 1–2000 fs, the decay of the population of site 1 is much lower than in the case of construc-
tive interference.

These results show the importance of taking into account the role played by delay in the interaction of a TLS 
with phononic environment, in contrast to previous studies that only considered the effect of non-Markovianity40, 
the environment timescale48, and the temperature49.

To better illustrate the effect of environment feedback, the population of the donor site is given versus time 
and coupling constant γ0 in the domains 1–1000 fs and 0–2500 cm−1, respectively. These plots shown in  
Fig. 4(a–c) correspond to different values of the time delay, i.e. 0.01 fs (almost no delay), 10 fs (moderate delay), 
and 100 fs (high delay), respectively. From the first two graphs (note the different scale of the color map of both 
these plots), it is obvious that no noticeable oscillations occur in the given domains. This confirms that when the 
delay is very small, no quantum oscillation can occur naturally, except when the value of the coupling is chosen to 
be very high. In contrast, Fig. 4(c) shows the same results for higher value of the delay (100 fs) and the oscillations 
can be observed for almost all values of γ0. Figure 4(d) gives the population for coupled values of the delay time τ 
and coupling to the environment γ0. These results further confirm that in order to observe quantum oscillations 
and long-lived coherence (few hundreds of femstoseconds) for moderate values of γ0 (few hundreds of cm−1) one 
needs to tune the value of the delay accordingly. It should be also mentioned that in the case of small delay and 
high coupling (green dot-dashed curve of Fig. 4(d)) the oscillations die quicker than in the scenario of high delay 
and small coupling (black and red curves), even if the product τγ0 is kept constant for both cases. This can be 
explained by the fact that the solution of the delay differential equation, i.e. Eq. (14) has its oscillations related to 
the delay τ, so for higher values of τ the period is higher and the beats leave longer44,45.

Discussion
In conclusion, we wish to emphasize the usefulness of taking into account the coherent feedback effect for mod-
eling open quantum systems (e.g. a two-level system) interacting with a bosonic environment (e.g. a bath of 
phonons). In the simple example that we have considered in this work, i.e. a two-level system interacting with a 
phononic bath a two spatial locations, the role of delay was shown to be detrimental in the quantum beating and 
long-lived coherence. Although this model is very simple (described by Eq. (14)) one can gain from it considera-
ble insight into the behavior of more complex system, e.g. the FMO molecules by extending it. In fact, we believe 
that such delay could have significant effect on the population quantum beatings of FMO systems, permitting 
thus to avoid unrealistically high values for the coupling to vibrational modes.
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