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The success probability in an ancilla based circuit generally decreases exponentially in the number
of qubits consisted in the ancilla. Although the probability can be amplified through the amplitude
amplification process, the input dependence of the amplitude amplification makes difficult to se-
quentially combine two or more ancilla based circuits. A new version of the amplitude amplification
known as the oblivious amplitude amplification runs independently of the input to the system reg-
ister. This allows us to sequentially combine two or more ancilla based circuits. However, this type
of the amplification only works when the considered system is unitary or non-unitary but somehow
close to a unitary.

In this paper, we present a general framework to simulate non-unitary processes on ancilla based
quantum circuits in which the success probability is maximized by using the oblivious amplitude
amplification. In particular, we show how to extend a non-unitary matrix to an almost unitary
matrix. We then employ the extended matrix by using an ancilla based circuit design along with
the oblivious amplitude amplification. Measuring the distance of the produced matrix to the closest
unitary matrix, a lower bound for the fidelity of the final state obtained from the oblivious amplitude
amplification process is presented. Numerical simulations for random matrices of different sizes
show that independent of the system size, the final amplified probabilities are generally around 0.75
and the fidelity of the final state is mostly high and around 0.95. Furthermore, we discuss the
complexity analysis and show that combining two such ancilla based circuits, a matrix product can
be implemented. This may lead us to efficiently implement matrix functions represented as infinite
matrix products on quantum computers.

I. INTRODUCTION AND BACKGROUND

Quantum computers function by using the unitary
time evolution operators, i.e. quantum gates, described
in the formalism of the standard quantum mechanics.
Although non-unitary dynamics can be emulated in the
scope of unitary dynamics by using ancilla or measure-
ment based quantum circuits (e.g., [1–3]), the success
probability in these circuits diminish substantially with
the size of the ancilla register. In most cases, the small
success probability can be remedied by using the stan-
dard amplitude amplification [4–6]. However, the input
dependence of the amplitude amplification makes diffi-
cult to sequentially combine two or more ancilla based
circuits. In certain types of ancilla based quantum cir-
cuits, it is shown that the amplitude amplification can be
done on the ancilla system independently of the input to
the system register. This type of the amplification pro-
cess is named as the oblivious amplitude amplification
[7, 8]. In different contexts, it is also named as repeat
untill success algorithm [9, 10] (please see Ref. [11] for a
broad overview of the topic). A slightly modified version
of the oblivious amplitude amplification is proven to be
working also for matrices which are almost unitary: i.e.,
a non-unitary matrix but somehow close to a unitary ma-
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trix [12].
A Hermitian matrix, A, can be used along with

√
I −A

(I is an identity matrix) to form a unitary matrix which
can then be processed on an ancilla based quantum cir-
cuit. However, finding the square root of a matrix is nu-
merically a difficult problem when the size of the matrix
is large. In this paper, we show how to approximate this
unitary matrix formation in a way that the produced ma-
trix is almost unitary. In addition, we show that this type
of approximate matrices can be processed on the ancilla
based circuit where the success probability is maximized
by the oblivious amplitude amplification. We also present
a lower bound for the fidelity of the final state obtained
from the amplification process by measuring the distance
of the approximate matrix to the closest unitary matrix.
Numerical simulations are done for random matrices of
different sizes and it is found that independent of the sys-
tem size, the final amplified probabilities are generally
around 0.75 and the fidelity of the final state is mostly
high and around 0.95. This makes possible to implement
a product of non-unitary matrices on quantum comput-
ers by sequentially combining two ancilla based circuits.
Therefore, it may lead us to efficiently implement matrix
functions represented as infinite matrix products.
This paper is organized as follows: In the following two

subsections, the ancilla based circuits considered in this
paper and the amplitude amplification are introduced for
the unfamiliar readers. In the next section, first, it is de-
scribed how to complete a non-unitary matrix to a uni-
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A Ancilla Based Quantum Circuits I INTRODUCTION AND BACKGROUND

tary matrix and then how to approximate it. Then, the
numerical examples and the circuit design used in the ex-
amples are shown. In Sec.III, the algorithmic complexity
of the whole framework is analysed and its possible use
in the matrix product and matrix functions is discussed.
Finally, the paper is concluded with the summary of the
results.

A. Ancilla Based Quantum Circuits

It is well-known that using an ancilla register eases the
complexity in the implementation of quantum gates (e.g.
see [13, 14]). A particular type of ancilla based circuits
can be described for the matrices represented as a sum
of unitary matrices [12, 15]: Consider a unitary matrix,
A, which is of dimension N = 2n and represented as a
sum of unitary processes, Uis:

A =

M−1∑

i=0

Ui. (1)

A quantum operation can be described as a matrix vector
transformation: For instance, let |in〉 represent a general
input state. The application of A on this input state can
be described as A |in〉. The result of this transformation
can be obtained on an ancillary based circuit consisting of
an ancilla and a system registers by using Uis. One way of
doing this with an acilla register composed of m = logM
qubits can be described as follows:

• First, all Uis are aligned on the system register com-
posed of n qubits.

• Then, the application of each Ui is controlled by
the ancilla register. Here, the control scheme is
determined from the binary representation of i in
a way that Ui is applied when the ancilla is in |i〉
state. Here, |i〉 is the ith vector in the standard
basis. This circuit can be represented in matrix
form by a block diagonal matrix, V :

V =



U0

. . .
UM−1


 . (2)

• The initial state of the ancilla register is assumed to
be |0〉 state. Then, it is put into the superposition
state by the application of a series of Hadamard
gates,H⊗m. Thus, the whole circuit in matrix form
becomes equal to the following:

U = (H⊗m ⊗ I)V =
1√
M

(∑M−1

i=0
Ui J1

J2 J3

)
, (3)

where I is the identity matrix and J1, J2, and J3
represent the other parts of U .

|0〉 H · · · •

K
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︸
︷
︷

︸

...
...

...
|0〉 H · · · •

U0

· · ·
UM−1

S
y
st
em

︸
︷
︷

︸ · · ·

FIG. 1: The circuit representation of U .

U can be employed to emulate the action of A with
the success probability 1

M
: If we apply U to the input

|0〉|in〉; in the output, for the states in which the ancilla
is equal to |0〉, the circuit gives the action of A on the
system register, A |in〉. Since A in U is normalized by
the coefficient 1√

M
, the probability to see the ancilla in

|0〉 is 1

M
.

This can be also generalized to A =
∑M−1

i=0
kiUi by

using an operator K whose first row and column are
equal to the coefficients k0, . . . , kM−1 (Note that the co-
efficients are assumed to be normalized.):

U = (H⊗m ⊗ I)V (K ⊗ I) =
1√
M

(∑M−1

i=0
kiUi J1

J2 J3

)
.

(4)
K can be considered as a Householder transformation
for the vector 〈k| = (k0, . . . , kM−1): i.e., K |k〉 = |0〉 and
K |0〉 = |k〉. The circuit representing U is drawn in Fig.1.

B. Amplitude Amplification

As derived from Eq.(4), the success probability of emu-
lating the unitary matrix A by the circuit, U , is 1

M
. The

probability depends on the size of the ancilla and de-
creases exponentially in the number of qubits contained
in the ancilla. This can be increased upto one by the
application of the amplitude amplification, which is the
main part of the famous Grover’s search algorithm [4]
finding a solution encoded in a quantum state.
The amplitude amplification is described as follows

[5, 6, 16]: Let the state |ψ〉 be defined as the linear combi-
nation of the standard basis resulted from the application
of the operator B to an initial zero state:

|ψ〉 = B |0〉 =
N−1∑

x=0

bx |x〉 , (5)

where bx is the amplitude of the xth vector, |x〉, in the
standard basis. Let also some states in |ψ〉 be considered
as the “good” states represented by the set Xgood, and
the remaining states be the “bad” states represented by

2



B Amplitude Amplification II APPLICATION IN THE CASE A IS NON-UNITARY

Xbad:

|ψ〉 =
∑

x∈Xgood

bx |x〉+
∑

x∈Xbad

bx |x〉 . (6)

The re-normalizations of Xgood and Xbad form a new
two dimensional basis set {|ψgood〉,|ψbad〉}. |ψ〉 can be
rewritten in this new basis with coefficients represented
by sin(θ) and cos(θ) with θ ∈ [0, π/2]:

|ψ〉 = sin(θ) |ψgood〉+ cos(θ) |ψbad〉 . (7)

Here, sin(θ)2 = Pgood =
∑

x∈Xgood
|bx|2, and cos(θ)2 =

Pbad =
∑

x∈Xbad
|bx|2.

In the amplitude amplification algorithm, the ampli-
tude of |ψgood〉 is amplified by using the following search
iterate:

Q = U⊥
ψ Uf . (8)

Here, when applied to |ψ〉, Uf negates the sign of |ψgood〉
and does nothing to |ψbad〉:

Uf |ψ〉 = −sin(θ) |ψgood〉+ cos(θ) |ψbad〉 . (9)

When |ψgood〉 is known, Uf can be easily constructed in
matrix form as follows:

Uf = I − 2 |ψgood〉 〈ψgood| . (10)

The other operator in the search iterate is U⊥
ψ de-

scribed in matrix form as:

U⊥
ψ = 2 |ψ〉 〈ψ| − I = BU⊥

0 B
−1, (11)

where U⊥
0 = (2 |0〉 〈0|−I) is the reflection about the axis

orthogonal to |0〉, and B−1 is the inverse of the matrix
B. When B is unitary, B−1 is equal to the conjugate
transpose of B, B†.
It is easy to prove that when Q is applied k number of

times to |ψ〉, the final state ends up in the following:

Qk |ψ〉 = sin ((2k + 1)θ) |ψgood〉+ cos ((2k + 1)θ) |ψbad〉 .
(12)

From the above equation, the highest probability for the
good states, sin ((2k + 1)θ)2, can be obtained when (2k+
1)θ ≈ π

2
. This leads O( π

4θ
) as a bound for k.

1. Application to U and Oblivious Amplitude Amplification

In the circuit U given in Fig.1, the good and the bad
states are already known: the set of good states are those
where the ancilla qubit is in |0〉 state and the rest is the
set of the bad states. Therefore, the iteration operator
used in the amplitude amplification can be determined.
Let |β〉 be the output state of U . |β〉 can be written in

terms of the combination of the good and the bad states:

|β〉 = 1√
M

|βgood〉+
√
M − 1√
M

|βbad〉 . (13)

Since the good states are the ones where the ancilla reg-
ister equal to zero, the normalized |βgood〉 reads the fol-
lowing:

|βgood〉 = |0〉
N−1∑

x=0

βx |x〉 , (14)

where |x〉 is the xth vector in the standard basis.

It is shown that the amplitude amplification can be
done on the first register by using the following search
iterate [7, 8, 12].

Q = −USUS, (15)

where S is considered in place of Uf and has the same
effect as U⊥

0 in the iteration:

S =
(
I⊗

m − 2 |0〉 〈0|
)
⊗ I⊗

n

. (16)

The main difference of this iteration from the standard
amplitude amplification is the independence from the in-
put to the system register: U does not include the input
preparation operator which converts a zero state into the
desired input.

Since the amplitude of the good states is 1/
√
M ; Q

is applied exactly
⌊
π
4

√
M

⌋
number of times to maximize

the amplitude of |βgood〉.

II. APPLICATION IN THE CASE A IS

NON-UNITARY

When A is non-unitary; the expected output from the
circuit U can no longer be described by the fixed am-
plitudes given in Eq.(13) since it changes based on the
input state to the system. This necessitates the inclu-
sion of the input preparation in the operator U⊥

ψ of the
standard amplitude amplification:

U⊥
ψ = U(I⊗m ⊗Ain)U

⊥
0 (I⊗m ⊗Ain)

†U†, (17)

where Ain converts the zero state into the desired input
state. To reach the maximum amplitude, in this case, Q

needs to be applied
⌊
π
4η

√
M

⌋
number of times, where η

is the norm of the expected output state produced from
||UUin |0〉 ||. Since η is not known, one can apply quan-
tum search algorithm [16]. In that case, the first register
is partially measured: If it is zero, then the algorithm is
stopped. Otherwise, the iteration operator Q is applied
again.

In the following subsections, we shall show how to ex-
tend A to a unitary matrix in order to avoid input de-
pendence in the amplitude amplification and successfully
apply the oblivious amplitude amplification.
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A. Extending A to a Unitary Matrix

It is known that every Hermitian positive definite ma-
trix has a unique Hermitian positive definite square root
which can be numerically computed via Schur decom-
position [17, 18]. Using the square root of (I − A2), a
non-unitary Hermitian matrix, A, can be extended to a
unitary, U , as in the following form:

U =

(
A

√
I − A2√

I − A2 −A

)
. (18)

It is not difficult to see that U is a unitary matrix: UU † =
U †U = I⊗n+1. This can be seen easier when U is written
in the cosine-sine decomposition as:

U =

(
A

√
I −A2√

I −A2 −A

)
=

(
R 0
0 R

)(
C S
S −C

)(
R† 0
0 R†

)
,

(19)
where the eigendecomposition of A is described by A =
RCR†, and C and S are the diagonal matrices with the
diagonal elements cosine and sine of the eigenvalues of
the matrix A. Note that this cosine-sine decomposition
can also be used to generate a quantum circuit for U in
terms of single and two qubit gates [19–21].

1. Simulation of U

Computation of
√
I −A2 requires the eigendecompo-

sition of I − A2. Since the eigenvalues of
√
I −A2 and

A are related as cosine and sine of some values, the
eigendecomposition of A is enough to form the matrix√
I −A2. Eigendecomposition of a matrix can be found

through numerical methods such as power iterations and
QR method. For a Hermitian matrix whose size is rea-
sonable for classical computers, obtaining a kind of ap-
proximate decomposition is feasible in general. However,
when the system size is huge, this problem becomes a
very heavy computational task for the classical comput-
ers so that, in some cases, decomposition may be impos-
sible (note that the computational complexity in terms
of the system size is generally O(N3).)[22].
Therefore, when the computation of the eigendecom-

position of A is available; one can use the matrix A on
quantum computers as follows: In the circuit for U , the
initial state of the first qubit is always set to |0〉. Thus,
we apply U to an initial state |input〉=|0〉|in〉, where |in〉
represents the initial input desired to be applied to A.
This generates the following output vector:

|output〉 =
(

A |in〉√
I −A2 |in〉

)
(20)

To the above vector, if we apply the operator P =
(|0〉 〈0|⊗In), then the system collapses to the stateA |in〉.
Therefore, at the end of circuit U |input〉, the probability
to see the first qubit in zero state, determines the suc-
cess probability of the simulation done by the following
process.

When the eigendecomposition of A is not available (be-
cause of the computational complexity, this may be the
case when the system size of A is large), we shall try to
estimate U and process the estimated non-unitary on the
ancilla based circuit described in the previous section.

2. Estimation of U

From now on, we assume that A is a real symmetric
matrix. Then, we normalize the matrix A as A = A

µ
with

µ =
√
maxi

∑
j A

2
ij . This makes 2-norms of the columns

of the matrix less than or equal to 1. Then, instead of
the matrix in Eq.(18), we construct the following matrix:

U =

(
A D
D −A

)
, (21)

where D is a diagonal matrix described by the diagonal

entries Dii =
√

1−∑
j A

2
ij . The matrix U is not a uni-

tary matrix; however, A2+D2 and so UU † = U †U = U2

have diagonal elements equal to one. In addition, since
A is normalized with µ; ρ(A2) ≤ ρ(A) ≤ 1, where ρ(A)
is the spectral radius (the largest eigenvalue) of A. In
particular cases such as ρ(A) < 1 or a diagonally dom-
inant A, the off-diagonal entries of A2 are likely to be
small, and so one can expect the matrix U to be close
to a unitary since A2 +D2 becomes close to an identity
matrix.
We shall describe the closeness of U to a unitary matrix

via polar decomposition which is known to produce the
closest unitary matrix to a given arbitrary matrix (e.g.

see [23]): In the polar decomposition, U = ŨH̃ , while Ũ

is the closest unitary to U , H̃ is an Hermitian positive
definite matrix. We define the following as a measure of

the closeness of the estimated unitary U to Ũ :

c =
||U − Ũ ||2

||U ||2 =
||H̃ − I||2

||H̃ ||2
, (22)

where ||.|| represents the norm of a matrix. Also note

that a similar measure, ||U − Ũ ||, is used by Berry et al.
as an error bound in the modified version of the oblivious
amplitude amplification [12]. To bound the value of c, we
will use the Frobenius norm: ||.||F , which is also invariant

under unitary transformations. Thus, ||H̃ ||F = ||U ||F =
√
trace(UU †) =

√
trace(H̃2) =

√
2N . In addition, we

can represent the term ||H̃ − I||F as follows:

||H̃ − I||F =

√
trace(H̃2 − 2H̃ + I)

=

√
trace(H̃2)− trace(2H̃) + trace(I))

=

√
4N − trace(2H̃) =

√
4N − Φ.

(23)

From the generalized mean equality; since the trace is
the sum of eigenvalues, the following inequality holds:

4
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1

2N
trace(H̃) ≤

√
1

2N
trace(H̃2). As a consequence of

this, Φ = trace(2H̃) ≤ 4N and so
√
4N − Φ ≤ 2N . This

makes c in terms of the Frobenius norms always less than
or equal to one. When Φ = 4N , c becomes zero and so
the matrix can be considered a unitary matrix. Note that
one can also try to maximize c for different choices of A.
In the numerical examples, we shall compute c by us-

ing 2-norms of the matrices instead of the Frobenious
norms: Since the error also depends on the input state,
the 2-norm obtained from the maximum eigenvalue likely
gives a better approximation for the possible maximum
error. Furthermore, we shall use the following as an esti-
mate lower bound for the fidelity of the output after the
oblivious amplitude amplification algorithm:

ef = |1− c|2. (24)

The estimated fidelity would be one for the unitary ma-
trices. And it would be small when the closeness between
U and Ũ is small.
When U is non-unitary, it cannot be used directly on

quantum computers. Berry et al.[12] have proved that a
slightly modified version of the oblivious amplitude am-
plification works also for any arbitrary non-unitary ma-
trix which is close to a unitary matrix. Therefore, since
the constructed matrix in Eq.21 is expected to be close to
a unitary matrix, the modified oblivious amplitude am-
plification can be used for the simulation of this matrix
in the ancilla based circuit. However, in the next sec-
tion, the numerical results for the randomly generated
matrices show that one can use the oblivious amplitude
amplification given in Eq.(15) without modification for
the matrices generated by (21). Note that the modified
version of the oblivious amplitude amplification would
give better results; however, it requires a projection op-
erator.

B. Numerical Examples

In the numerical examples, we shall use the standard
oblivious amplitude amplification given in Eq.(15) along
with the circuit design method described in Ref.[15]. The
circuit design method is only included for the complete-
ness. One can also run simulations by generating random
matrices in the form Eq.(21) and then writing each one
of them as a direct sum of M unitary matrices.

1. General Circuit Designs

An ancilla-based quantum circuit design technique is
introduced in Ref. [15]. A 2n-qubit system U is employed
to emulate a general n-qubit quantum operation, U . The
primary intuition of the technique is based on generating
the matrix-vector product result of a quantum operation
inside the new system. This intuition is conveyed in two

parts: First, the ancilla register is put into the superpo-
sition state, then the following matrix V similar to the
one in Eq.(2) is used:

V =




u11 u12 ··· u1N• • ... •
...

...
. . .

...
• • ... •

u21 u22 ... u2N• • ... •
...

...
. . .

...
• • ... •

. . .
uN1 uN2 ... uNN• • ... •
...

...
. . .

...
• • ... •




,

(25)
where uijs are the matrix elements of U , and each “•”
represents a matrix element which plays no significant
role in the description. If this matrix is applied to a
quantum state in which the ancilla is in the superposition
state, the desired output is obtained in the states where
the system register is in |0〉 state:

V (
1√
M

M−1∑

x=0

|x〉 |input〉) = 1√
M




β0
...
βi
...

βN−1

...




. (26)

Obviously, when we swap the ancilla and the system reg-
ister, we obtain the same output as in Eq.(13) with the
good states in Eq.(14) (Note that here M = N .). As a
consequence, the same amplitude amplification given in
Eq.(15) can be applied to increase the probability upto
one.
Having a non-unitary U does not change the circuit de-

sign. However, it changes the success probability given
in the above equation. When U is close to a unitary ma-
trix, we can apply the oblivious amplitude amplification
in Eq.(15) (One can also use the modified version of the
oblivious amplitude amplification given in Ref.[12]).

2. Numerical Examples

In the numerical examples, the oblivious amplitude
amplification given in Eq.(15) is applied to the non-
unitary matrices constructed in the form given in
Eq.(21). The following method is used to generate ran-
dom symmetric matrices:

• An N ×N symmetric random matrix, A, with the
elements in [−1, 1] is generated.

• Then, A is normalized by µ =
√
maxi

∑
j A

2
ij .

• Then, the diagonal matrix D is obtained: Dii =√
1−∑

j A
2
ij .

5
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• Then, the matrices A and D are used to construct
2N × 2N matrix U .

In addition, we also generate random input state to U
in the form: |input〉 = (|0〉⊗|in〉), where |in〉 is a random
quantum state with real coefficients.
We have run the simulations for 100 random cases with

U of ordersN = 16, N = 32, N = 64, andN = 128 (Note
that the total system sizes with the ancilla register be-
comes (28 × 28), (210 × 210), (212 × 212) and (214 × 214),
respectively.). For each random case, the estimated fi-
delity given in Eq.(24) has been computed as follows:

• First, to find the polar decomposition of U , the
singular value decomposition of U is computed:

U = V1EV
†
2 , where E represents the singular val-

ues and V1 and V2 are the right and left singular
vectors.

• Then, the closest unitary is computed from Ũ =

V1V
†
2 .

• Then, c given in Eq.(22) is computed by using the
2-norms of the matrices.

• Finally, the estimated fidelity is computed from
Eq.(24).

In the amplitude amplification process, the amplitudes
of the first N states-i.e., the states where the first regis-
ter is in |0〉-are used to compute the success probability.
Furthermore, the estimated fidelity is compared with the
real fidelity which is the inner product of the collapsed
quantum state (the first N amplitudes) and the vector
(A |in〉).
In Fig.2, both U and |in〉 are generated randomly. And

from the last iteration of the oblivious amplitude ampli-
fication (the state in which the success probability is the
highest), the fidelity and probability are computed for
each case. As can be observed in the figure, the mean
value of the observed fidelities is 0.9462 and the mean
value of the observed success probabilities is 0.7666.
Furthermore, in Fig.3, the same matrix U is tested in

the amplitude amplification with different input states in
order to observe the effect of the change in the input state
on the fidelity and the validity of the estimated fidelity.
Fig.3 shows that the fidelity remains high and is always
above the estimated fidelity (the mean of fidelities in all
subfigures is 0.9426). Therefore, the proposed estimated
fidelity may provide a good lower bound for the fidelity.
As in Fig.2, the mean value of the success probabilities
here also remain as 0.7601.
In Fig.4, we also present the change of the fidelity and

the probability in the iterations of the oblivious ampli-
tude amplification for random cases with the matrices
of the same orders: N = 16, N = 32, N = 64, and
N = 128. The required number of iterations for each

case has been computed from k =
⌊
π
4

√
N
⌋
. For N = 16,

N = 32, N = 64, and N = 128; respectively, k = 3,
k = 4, k = 6, and k = 8 drawn as dashed vertical lines

on the figures. As seen in the figure: the fidelities in all
figures remain high for a few iterations, but then start
gradually decreasing while the probabilities are rising.
When the probabilities reach their maximums either at
the kth iteration or before that; the fidelities go down to
around 0.95.

As a general observation, we can see that the numerical
results presented in Fig.2, Fig.3, and Fig.4 remain mostly
similar despite the change in the system size. This indi-
cates the independence of the results from the system
size.

III. DISCUSSION

3. The Total Circuit Complexity

Quantum circuit design methods can be broadly cat-
egorized into stochastic and non-stochastic approaches
[24]. In terms of stochastic approaches, generally genetic
and evolutionary algorithms are used to obtain a circuit
which minimizes an optimization function measuring the
closeness of the found circuit to the given operator (e.g.
[25]). Note that instead of designing a quantum circuit
implementing a specific matrix, one can also consider the
quantum control approach using optimization to find a
way to implement the operator directly, without gates(
e.g. [26]). This can also be done for non-unitary pro-
cesses. On the other hand, non-stochastic deterministic
methods are generally based on matrix decomposition
techniques: for instance, methods based on the Cartan
decomposition [27], the cosine-sine decomposition [21],
the QR decomposition [28] are presented. It is shown
that a circuit for a general unitary matrix requires at
least (22n−2−3n/4−1/4) number of two-qubit quantum
gates [21].

The combination of the circuits for each Ui forms a
binary coded network controlled by the ancilla register.
These types of networks can be decomposed into single
and two qubit quantum gates by using a simple decom-
position technique described in Ref.[20]. The decompo-
sitions of the networks for the circuit design in Ref. [15]
yield a circuit with O(N2 −N) number of CNOT gates
if M = N (For the complete complexity analyses, please
refer to Ref.[15].). Therefore, the quantum complexity of
the circuit U is O(N2 − N). The amplitude amplifica-

tion requires O(
√
N) repetitions which makes the total

complexity O(
√
MN2 −

√
MN).

If each Ui can be efficiently simulatable: i.e. each
requires only O(poly(n)) gates; the total circuit com-
plexity for U can be bounded by O(poly(n)M): Since
there would be O(poly(n)) number of quantum gates for
each Ui, they are likely to compose O(poly(n)) num-
ber of binary coded networks. The decomposition of
such networks produce, in total, O(poly(n)M) number
of quantum gates. On the other had, the amplitude
amplification would require O(

√
M) repetitions yielding
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FIG. 2: The change of the fidelity, the probability, and the estimated lowest fidelity at the end of the amplitude
amplification process for 100 random matrices of different sizes and random inputs.

O(poly(n)M
√
M) number of CNOT and single quantum

gates. When M = N , this becomes O(poly(n)N
√
N).

A. The Circuit Simulation of a Matrix Product

Let U1 and U2 are the universal circuits for the unitary
matrices, respectively, W1 and W2. Then, the circuit for
the product W1W2 can be implemented as Qk2U2Q

k
1U1,

where Uj represents the universal circuit, Qj is in the

form of Eq.(15) and k =
⌊
π
4

√
M

⌋
. This can be general-

ized to the product consisting of r number of matrices,

∏r
j=1

Wj by the following:

r∏

j=1

QkjUj . (27)

Here, if each Uj requires O(N2) quantum gates, the
obtained circuit implementation for the matrix prod-
uct requires O(r

√
MN2) quantum gates or O(

√
MN2)

for r << N . When Uj can be efficiently imple-
mentable, e.g. O(poly(n)), the matrix product requires

only O(poly(n)M
√
M) number of quantum gates.
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FIG. 3: The change of the fidelity, the probability, and the estimated lowest fidelity at the end of the amplitude
amplification process. In each run, the matrix U is unchanged but a different random input is used.

1. Non-Unitary Matrix Product

When the standard amplitude amplification is em-
ployed; the amplitude amplification in the second cir-
cuit requires the whole amplitude amplification process
in the first circuit to be applied again in every iteration.
Because of this input dependence, this results in a recur-
sion which makes the whole thing very inefficient.

However, when U is non-unitary but close to a unitary,
one can apply the oblivious amplitude amplification. In
that case, the complexity of the matrix product becomes
the same as the unitary case.

B. Quantum Circuits for the Functions of a Matrix

Many trigonometric functions can be represented in
the forms of infinite products (Please see the first chap-
ter of Ref.[29]). Some of the infinite product formulas
are also valid for matrices. For instance, formulas for the
exponential and the cosines are as follows: Let A ∈ C⊗n,
then the product formula for the exponential of this ma-
trix is defined as [30]:

eA = lim
k→∞

(
1 +

A

k

)k
= lim
k→∞

W k
k . (28)
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FIG. 4: The change of the fidelity and the probability in the amplitude amplification process for the random matrix

U given in Eq.21 of different sizes. In each figure, the vertical dashed line shows the value of k =
⌊
π
4

√
N
⌋
.

This can be simply proved by the binomial expansion:

(I +
A

k
)k =

k∑

j=0

1

kj
k!

j!(k − j)!
Aj . (29)

If we plug this into Eq.(28), then we attain the Taylor
expansion of the matrix exponential and complete the
proof:

lim
k→∞

(I+
A

k
)k = lim

k→∞

k∑

j=0

1

kj
k!

j!(k − j)!
Aj =

∞∑

j=0

1

j!
Aj = eA.

(30)

In a similar fashion, the cosine representation of A can
be defined in the product form as:

cos(πA) =

∞∏

j=1

(
I − 4A2

(2j + 1)2

)

=

∞∏

j=1

(
I − 2A

2j + 1

)(
I +

2A

2j + 1

)
=

∞∏

j=1

Wj1Wj2

(31)

As in the matrix product case discussed in the previous
section, first eachWj in the product formulas is extended
to the form of U given in Eq.(21) where Wj replaces A.
Then, we generate the circuit designs U| for each Wj by
either writing U as a sum of simple unitary matrices or

9
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following the circuit design in Ref.[15] used in the numer-
ical examples. Then, the same product formula given in
Eq.(27) is applied.

IV. CONCLUSION

In this paper, after extending a non-unitary matrix to a
unitary matrix, we have described a method to approx-
imate this unitary extension. It is shown that in most
cases the approximation gives a non-unitary matrix suf-
ficiently close to a unitary matrix. Therefore, this matrix
can be simulated on an acilla based circuit where the suc-
cess probability is increased by the oblivious amplitude
amplification. Since the oblivious amplitude amplifica-

tion does not depend on the input to the system regis-
ter, using the proposed framework one can implement a
matrix product for non-unitary matrices by combining
two ancilla based quantum circuits. This allows quan-
tum computers to implement the approximation of the
matrix functions represented as infinite matrix products.
A non-unitary matrix can be written in terms of sums of
unitary matrices: when each unitary matrix in the sum-
mation can be efficiently implementable, then one may
also implement the non-unitary matrix efficiently. There-
fore, one may also implement the matrix product and so
the approximations of matrix functions efficiently. We
have run numerical simulations for random matrices and
shown how the fidelities and the probabilities change in
each random case.
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