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Abstract
Perturbative gadgets are general techniques for reducing many-body spin interac-

tions to two-body ones using perturbation theory. This allows for potential realization of
effective many-body interactions using more physically viable two-body ones. In par-
allel with prior work (arXiv:1311.2555 [quant-ph]), here we consider minimizing the
physical resource required for implementing the gadgets initially proposed by Kempe,
Kitaev and Regev (arXiv:quant-ph/0406180) and later generalized by Jordan and Farhi
(arXiv:0802.1874v4). The main innovation of our result is a set of methods that effi-
ciently compute tight upper bounds to errors in the perturbation theory. We show that
in cases where the terms in the target Hamiltonian commute, the bounds produced by
our algorithm are sharp for arbitrary order perturbation theory. We provide numerics
which show orders of magnitudes improvement over gadget constructions based on triv-
ial upper bounds for the error term in the perturbation series. We also discuss further
improvement of our result by adopting the Schrieffer-Wolff formalism of perturbation
theory and supplement our observation with numerical results.
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1 Introduction

Quantum many-body interactions arise in a variety of contexts in quantum informa-

tion and quantum computation, such as topological quantum computing [1, 2, 3, 4],

measurement-based model of quantum computing [5, 6, 7, 8, 9, 10], adiabatic simulation

of quantum chemistry [11], universal adiabatic quantum computationa[15, 16], as well as

constructions of circuit-to-Hamiltonian mapping for QMA-completeness [17, 18]. Given

the broad range of applications for many-body interactions, it is then of great interest

aWe note that there are also several proposals [12, 13, 14] of universal adiabatic quantum computation that uses only simple
two-body interactions, thus circumventing the need for many-body interactions. On the other hand, some of these proposals
such as [13] also involve perturbation theory for which the error estimation algorithms of this paper may be useful for optimizing
the parameters of these constructions as well.
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2 Efficient optimization of perturbative gadgets

to simulate the behaviours of these many-body systems using experimental quantum

systems. However, the current technologies for realizing controllable quantum inter-

actions are limited to two-body interactions, implying a need for reducing many-body

interactions to two-body ones. Such reduction boils down to constructing a two-body

Hamiltonian whose low-lying eigenspace captures the eigenvectors and eigenvalues of the

many-body “target” Hamiltonian. The technique of perturbative gadgets [18, 19, 20, 21]

fulfills precisely this task.

The basic idea of perturbative gadget is that given a many-body “target” Hamiltonian

Htarg, we construct a two-body “gadget” Hamiltonian H̃ of the form H + V such that

the low energy effective Hamiltonian of H̃ is arbitrarily close to Htarg. The gadget

Hamiltonian H̃ acts on not only the Hilbert space of the target Hamiltonian but also

an ancilla space. In other words we are embedding the spectrum of a given many-

body Hamiltonian onto the low energy sector of a two-body Hamiltonian that acts on

a larger Hilbert space. The effectiveness of such embedding is established by using

perturbation theory for computing the low-energy effective interaction of H̃ and show

that terms involving Htarg appear at the first few orders and the total contribution from

the remaining terms in the infinite series amounts to a small quantity.

As useful as the perturbative gadgets have been in the study of the complexity of

various types of physical systems [18, 19, 22, 23], the need for convergence in the pertur-

bation series requires high variability in the coupling strengths that appear in the gadget

Hamiltonian [24], which impose challenges for experimentally implementating the gad-

get Hamiltonians. Constructions that avoid using perturbation theory for reducing from

many-body to two-body interactions have indeed been proposed [25, 26, 27]. However, as

far as the authors are aware of, most of the non-perturbative constructions can be applied

on general many-body Hamiltonians in the same way as their perturbative counterparts,

in the sense that the non-perturbative constructions always assume that the Hamiltonian

of the entire system must take certain form, while perturbative gadgets can be applied

to reduce any subset of terms in a target Hamiltonian to two-body without concern-

ing the form of the other terms in the Hamiltonian. A possible exception is perhaps a

recent numerical optimization approach for finding many-body to two-body reductions

[28]. However, it is unclear how the cost of performing such optimization scales as the

number of qubits and the number of k-local terms in the target Hamiltonian.

Here we consider minimizing variability in coupling strengths in the gadget Hamilto-

nians. This is important because it directly translates to reducing the physical resource

required for experimentally implementing perturbative gadgets. Prior efforts [24] have

optimized gadget constructions in [19, 20] for reducing many-body interactions to two-

body. Here we are interested in the gadget construction due to Kempe, Kitaev, Regev

[18] and later generalized by Jordan and Farhi [21]. The perturbative analysis of this

construction is significantly more involved than constructions analyzed previously in [24].

However, it is of interest to us due to numerical evidence in [11] using direct diagonal-

ization of target and gadget Hamiltonians which suggests that this construction requires

less variable range of couplings than the constructions presented in [19, 20].

The technique for optimizing the gadgets presented in this work generalizes our pre-

vious work [24] for the gadgets in [19, 20] and applies the general framework presented

in [29]. The main innovation of our result is an efficient method for finding tight upper

bounds for the error in the perturbation series (i.e. the sum of terms from a specific finite

order to infinity). By “efficient” we mean that suppose the gadget Hamiltonian acts on n

qubits, our algorithm finds a tight upper bound and sometimes the exact expression for

perturbation terms at any order r in time O(nr), even though each term in the pertur-

bative expansion is of dimension O(2n). Of course, the efficiency of our method heavily

exploits the structure of the gadget Hamiltonian [18, 21] and does not necessarily hold

for general perturbation theory on spin systems. However, in [29, 30] we argue that the
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assumptions needed for establishing efficiency may apply for a broader class of physical

Hamiltonians than perturbative gadgets.

2 Perturbation theory and perturbative gadgets

The basic setting that we consider for perturbative analysis is a Hamiltonian H̃ = H+V

where H is diagonal in the computational basis with an energy gap ∆ between the

ground space and the first excited space, and V is a perturbation that contains some

non-zero off-diagonal elements. The main formalism that we use for extracting the low-

energy effective Hamiltonian of H̃ is the well-known Feynman-Dyson series [31] based

on self energy. There are various other formulations of perturbation theory such as

Schrieffer-Wolff transformation [32, 33], Bloch expansion [34] and Rayleigh-Schrödinger

perturbation theory (see for example [35, Ch. 17]). However, in the context of present

work we focus on self-energy expansion from Feynman-Dyson series. In Section 5 we

will apply Schrieffer-Wolff transformation onto the gadget Hamiltonians and show a

connection between Feynman-Dyson series and Schrieffer-Wolff transformation.

Define the subspace spanned by eigenstates of H with energy lower than ∆/2 as

the low-energy subspace L− and its orthogonal complement as the high-energy subspace

L+. The projectors onto these subspaces are defined as Π− and Π+ respectively. We

then introduce the notation for projections of any operator O onto the subspaces: O+ ≡
Π+OΠ+, O− ≡ Π−OΠ−. O−+ ≡ Π−OΠ+ and O+− ≡ Π+OΠ−. The setup of self-energy

expansion Σ−(z) requires the definition of operator valued resolvents G(z) = (zI−H)−1

and G̃(z) = (zI − H̃)−1 where z is a scalar and I is the identity matrix. Then the

expression for self energy can be written as Σ−(z) = zI− − [G̃−(z)]−1. Using Taylor

expansion we have [18]

Σ−(z) = H− + V− + V−+G+V+− + V−+G+V+G+V+− + · · ·
= H0 + V− + T2 + T3 + · · · . (1)

Note that the r-th order term is simply a matrix product

Tr = V−+G+(V+G+)r−2G+V+−, (2)

which gives rise to our later discussion (Section 4) that interprets it as a sum of walks

on a graph. The self energy expansion is useful because it approximates the low-energy

sector of the perturbed Hamiltonian H̃. This is captured precisely in [18, Theorem 3],

which we restate below. In the present paper our analyses involve mainly two types

of operator norms, namely the 2-norm ‖A‖2 = max|ψ〉 ‖A|ψ〉‖2, which is equal to the

“spectral radius” for Hermitian operators, and ∞-norm ‖A‖∞ = maxi
∑
j |〈i|A|j〉|, the

“maximum row sum”, where {|i〉} is the set of computational basis states.

Theorem 1 ([18], Theorem 3 restated) Given a Hamiltonian H̃ = H + V with

H having a spectral gap ∆ between the ground space and the first excited subspace, suppose

‖V ‖2 ≤ ∆/2. If there exists a Hamiltonian Heff whose energies are contained in the

interval [a, b] and some real constant ε > 0 such that a < b < ∆/2 − ε and for z ∈
[a− ε, b+ ε], we have

‖Σ−(z)−Heff‖2 ≤ ε,

then the j-th eigenvalue λ̃j of H̃− and the corresponding j-th eigenvalue of Heff differ by

at most ε, for any appropriate range of j values.

Theorem 1 states that closeness in the operator norm between the self energy Σ−(z)

and Heff implies closeness in eigenvalues. In fact it also implies closeness in eigenvectors

(see [18, Lemma 11]). Hence the entire operator Heff is captured by the low energy sector

of H̃. The basic idea of perturbative gadgets is that for a given many-body Hamiltonian

Htarg, one constructs a two-body Hamiltonian H̃ = H + V with H and V matching the

setting described before Equation 1, and the self energy expansion according to Equation
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1 contains Htarg in its leading orders which constitutes the effective Hamiltonian Heff,

while the remaining terms can be bounded from above by ε. The gadget construction

[18, 21] considered in this work reduces an arbitrary many-body Hamiltonian

Htarg =

m∑
i=1

ciHtarg,i (3)

where each Htarg,i = σi,1σi,2 · · ·σi,k is a k-body term with σi,j ∈ {X,Y, Z, I} being the

j-th single-qubit operator in the i-th term in Htarg, to two-body. Here X, Y , and Z are

Pauli operators and I is the identity operator. The gadget Hamiltonian H̃ = H + V

works by first introducing a register of k ancilla qubits for each k-body term Htarg,i.

Hence there are km ancillas in total, each of which can be labelled as (i, j) with i ∈ [m]

(we use [x] to denote the set {1, · · · , x}) being the index of the register and j ∈ [k]

being the index of the ancilla within the register. For each register i we then impose a

Hamiltonian H(i) which ferromagnetically couples every pair of qubits in the register.

Precisely, H =
∑m
i=1 H

(i) is defined with each H(i) having the form

H(i) =
∑

1≤s<t≤k

∆

2(k − 1)
(I − Zi,sZi,t). (4)

Here in Equation 4 the operator Zi,j acts on the ancilla qubit (i, j). Accordingly, the

perturbation V =
∑m
i=1 V

(i) consists of the terms that couple each register of ancillas

with the corresponding qubits that the σi,j terms act on:

V (i) =

k∑
j=1

λi,jσi,j ⊗Xi,j . (5)

Note that the gadget Hamiltonian considered here is slightly different from the original

constructions [18, 21] in that the spectral gap ∆ is introduced in H(i) in Equation 4

and λi,j are coupling coefficients that are assigned such that the effective low energy

Hamiltonian of H̃ calculated using perturbation theory in Equation 1 gives rise to the

target Hamiltonian in Equation 3.

The spectrum of each H(i) is easy to find: the subspace of states with j qubits in |1〉
state has energy Ej = j(k−j)

k−1
∆. The ground state subspace of each register of ancillas

is L(i)
− = span{|0〉⊗k, |1〉⊗k}. The gap between the ground state subspace and the first

excited subspace is ∆. The perturbation terms V (i) break the degeneracy of L(i)
− and

are set up such that the perturbed subspace approximates the spectrum of Heff closely.

If one applies the self energy expansion (Equation 1) to the gadget Hamiltonian defined

according to Equations 4 and 5, it is apparent that at any order r ≤ k, Tr is proportional

to projection Π− onto L−, since the only r-step transitions under V that non-trivially

contribute to Tr are the ones that start from |0〉⊗k (resp. |1〉⊗k) and return to |0〉⊗k

(resp. |1〉⊗k). At the k-th order, if k is odd, then Tk consists of only a linear combination

of Htarg,i terms, since only k-step transitions that goes from |0〉⊗k (resp. |1〉⊗k) to |0〉⊗k

(resp. |1〉⊗k). If k is even, then Tk consists of terms proportional to Htarg,i as well as a

term proportional to Π−. Substituting the H and V in Equations 4 and 5 into Equation

1 leads to a self energy of the form

Σ−(z) = γΠ− +

m∑
i=1

Htarg,i ⊗ΠX,i︸ ︷︷ ︸
Heff

+Tk+1 + Tk+2 + · · · (6)

where γ = γ1 + · · ·+γk is a scalar which sums over all contributions up to the k-th order

and ΠX,i = |0〉〈1|⊗k + |1〉〈0|⊗k acts on the i-th register, where we will show that each

γi is efficiently computable by Algorithm 2 in Section 4.2. The remaining terms Tk+1

and so on are error terms that should be suppressed to below ε by assigning ∆ to be

appropriately large.
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Yes

Input

Target Hamiltonian Htarg Choose spectral gap ∆

Form gadget Hamiltonian
H̃ = H + V (Sec. 2)

Apply perturbation theory
(FD, Sec. 2; SW, Sec. 5)

Efficiently compute error bound ≤ ε?

Output

Optimized gad-
get Hamiltonian

No

Fig. 1. The flow chart of optimizing the gadget Hamiltonian considered in this paper. We start by choosing a value
∆ based on simple but loose error bounds that are dependent on ε, such as Equation 7. Then we construct the
gadget Hamiltonian and use perturbation theory to find the effective Hamiltonian up to a certain order (FD stands
for Feynman-Dyson series, which is introduced in Section 2 and SW stands for Schrieffer-Wolff transformation,
which will be introduced in Section 5). The norm of terms from the order of Hamiltonian on to infinite order are
bounded from above by efficiently computed error bounds. Techniques for producing tight error bounds without
extensive computation is the central theme of the present paper.

3 Improving and optimizing gadget constructions

From the construction presented in the previous section, note that here the energy gap ∆

is a crucial parameter that decides how accurate the perturbation theory is when applied

to the gadget Hamiltonian H + V . The larger ∆ is, the more accurately the gadget

Hamiltonian captures the spectrum of the target Hamiltonian in its low energy subspace.

However, larger values of ∆ means more challenges for realizing the gadget Hamiltonian

on an experimental system. This is because realizing the gadget Hamiltonian on a

physical quantum system requires setting the coupling strengths of both the unperturbed

Hamiltonian H, which is of the magnitude of ∆, and that of the perturbation V , whose

strength could differ substantially from that of H. In other words, the requirement for

variability in coupling strength becomes more stringent as ∆ increases. For a system

of n qubits with poly(n) many-body terms, typically ∆ scales as poly(n) [19], which is

unphysical for physical systems whose interactions are local.

The scaling of ∆ as poly(n) is one of the main reasons for hesitation among researchers

in using perturbative gadgets for reducing many-body interactions to two-body ones,

thus motivating various non-perturbative constructions for special cases [25, 26, 27].

This situation can be remedied for perturbative gadgets by either insisting on assigning

∆ independent of system size at a cost of extensive error O(nε) [20], or substituting the

current gadget construction with one that requires arbitrarily weak interaction strengths

at a cost of poly(ε−1) qubits [36]. Whichever gadget construction one wishes to adopt,

there is always a practical optimization question: what is the minimum value of ∆ such

that the error does not exceed ε? In other words, what is the value of ∆ for which the

error ‖Σ−(z)−Heff‖2 is precisely ε? This is the question that we address in this paper,

as minimizing ∆ is essentially minimizing the physical resource needed for realizing the

gadget Hamiltonian.

In Figure 1 we present a flow chart of this optimization process. A challenge one

has to face is then how to compute the error ‖Σ−(z) − Heff‖2, which is generally hard

(on a classical computer) simply due to the exponential size of the Hilbert space as
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system size grows. We pursue a different strategy, which is to seek an upper bound of

the form ‖Σ−(z)−Heff‖2 ≤ ‖Tk+1‖2 + ‖Tk+2‖2 + · · · , without requiring exponential-size

computation in the number of qubits. In [24] we use the upper bound

‖Tr‖2 = ‖V−+(G+V+)r−2G+V+−‖2 ≤
1

|z −∆|r−1
‖V−+‖22 · ‖V+‖r−2

2 (7)

which appears to be tight [24, Figures 2 and 4] for the case where m = 1 i.e. there is only

one target term to be reduced and one is using gadget constructions from [19]. However,

when m > 1 and multiple gadgets are applied, the upper bound in Equation 7 becomes

loose [24, Figure 3b]. This is because when perturbation theory of multiple ancilla qubits

are concerned, the crude upper bound in Equation 7 could no longer capture the fine-

grained details of the matrix product involved in Tr. Therefore we are also unable to

use Equation 7 for finding tight error bounds for the gadget constructions presented in

Section 2, since we are dealing with registers of ancillas of size k > 1.

We will show that by considering the more fine-grained details of matrix multiplica-

tion in Tr and exploiting the structure of the construction in Equations 4 and 5, it is

possible to find a tight upper bound to ‖Tr‖2 in O(mr) time, which is polynomial in m

for fixed r, thus enabling efficient optimization of ∆ in the gadget construction.

As a final remark of the section, we note that it suffices to consider Tr for fixed r

even though in the perturbation series r goes to infinity. Let λ = maxi,j λi,j with λi,j

defined in Equation 5. Our goal for the gadget construction is that at k-th order we

have the target Hamiltonian in Equation 3 with coupling coefficients ci = O(1), while

the terms at (k+ 1)-st order should be O(ε). This implies that roughly λk/∆k−1 = O(1)

and λk+1/∆k = O(ε), which implies that ∆ = O(ε−k) and λ = O(ε−(k−1)). Hence

‖Tr‖2 = O(λr/∆r−1) = O(εr−k). Assuming that the locality of target Hamiltonian k

is fixed, as r increases the norm of ‖Tr‖2 quickly becomes small enough to justify using

the crude bound in Equation 7 on the remaining terms of the self-energy expansion.

Therefore it suffices to consider r up to k + d for some fixed d such that the total

magnitude of the remaining sum is O(εd). For r > k + d, the upper bound becomes

sufficiently small (assuming ‖Tr‖∞ → 0 as r → ∞), we use Equation 7 to bound the

terms from r = k + d+ 1 to infinity.

4 Efficiently computed tight error bound

In this section we present the details of our techniques. Section 4.1 introduces the notions

that we use for reducing the amount of computation needed for the upper bound. These

notions (such as “configuration” and “reduced configuration” as will be discussed in

Section 4.1) are essentially simplified representations of H eigenstates. In Appendix 1

we provide an explicit example for calculating the norm of T2 that illustrates the uses of

these notions, hoping that the presentation be as instructive to the reader as possible.

In Section 4.2 we present general algorithms for computing an upper bound to ‖Tr‖2 for

any fixed r.

In Section 4.3 we prove that in the case where the terms Htarg,i pairwise commute,

our algorithms in fact computes the exact value of ‖Tr‖2. We accomplish this by first

developing further properties of the notions that are introduced in Section 4.1, and then

show how the algorithms introduced in Section 4.2 use these properties to effectively

collect all the terms that contribute to ‖Tr‖.

4.1 Reducing the space of summation to polynomial size

For simplicity from here on we let λi,j = c
1/k
i ≡ λi in Equation 5 and define the vector

λ = (λ1, λ2, · · · , λm). Let E(i)(j) = j(k−j)
k−1

∆ ≡ Ej be the energy level of H(i) in Equation

4 with j out of k ancillas in |1〉 state. For a k-local target Hamiltonian of m terms the

computational basis states of the km ancilla qubits can be represented by km-bit strings

of the form s1s2 · · · sm with each si being a k-bit string describing the state of the ancilla
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qubits in the i-th register. For any φ ∈ {0, 1}km, we use the notation E(φ) = 〈φ|H|φ〉
to represent the energy of the ancilla state |φ〉. Recall that H =

∑m
i=1 H

(i) and the

H(i) terms pairwise commute. As an explicit connection between the E(φ) and E(i)(j)

notations, defining h(s) as the Hamming weight of a string s, we have

E(φ) =

m∑
i=1

E(i)(h(si)). (8)

In order to gain more insights about the structure of the r-th order term Tr in

Equation 2, we insert resolutions of identity I =
∑
φ∈{0,1}km |φ〉〈φ| between the V and

G operators in Tr. From Equation 2 we get

Tr =
∑

φ0,φ1,··· ,φr∈{0,1}km

(
〈φ0|V |φ1〉

1

z − E(φ1)
〈φ1|V |φ2〉 · · ·

· · · 1

z − E(φr−1)
〈φr−1|V |φr〉

)
⊗ |φ0〉〈φr|.

(9)
Note that in the basis of |φ〉 states, each matrix block 〈φ0|Tr|φr〉 is a sum of 2kmr terms,

which is an enormous amount of computation. However, we note that a majority of

summants are in fact zero. In order for a sequence of states (φ0, φ1, · · · , φr) to have

non-zero contribution to the sum in Equation 9, there are certain conditions that must

be satisfied:

1. Because the self-energy Σ−(z) is restricted to the low energy subspace L− of

the unperturbed Hamiltonian H, both |φ0〉 and |φr〉 must be restricted to L− =⊗m
i=1 L−.i = span{|0k〉, |1k〉}⊗m. In other words, they must be of the form s1s2 · · · sm

with each si ∈ {0k, 1k};

2. Because each V (i) contains only single Pauli X operators acting on the ancilla

qubits, for any pair of ancilla states |φi〉, |φj〉, the matrix block 〈φi|V |φj〉 is nonzero

iff φi and φj differ by one and only one bit;

3. Because the V+ and G+ terms in Tr are projections onto the high energy subspace

L+ of H, all the intermediate states φ1 through φr−1 must also belong to L+. In

other words, they must not be of the form s1s2 · · · sm with each si ∈ {0k, 1k}.

Conditions 1 and 3 are reminiscent of Goldstone’s theorem in quantum many-body

physics [31, 37], where all non-zero contributions to the spectral difference between the

perturbed and the unperturbed systems is a summation of “connected diagrams” i.e. the

state with no particles or holes present can never occur as an intermediate state because

the resulting matrix element will contain disconnected parts. For condition 2 above if φi

and φj differ at bit which belongs to the p-th register of k ancilla qubits, then

‖〈φi|V |φj〉‖∞ = λp. (10)

Let Wr be the set of sequences (φ0, φ1, · · · , φr) that satisfy the above three conditions.

Then the summation in Equation 9 can be replaced by a summation over Wr. The

following Lemma states that to find an upper bound to ‖Tr‖2 from Equation 9 it suffices

to consider a subset of sequences with fixed φ0 = 0km, which is a string of km zeros. For

convenience from here on we use “φ ∈ L−” to as a shorthand for “φ ∈ {0, 1}mk : |φ〉 ∈
L−”.

Lemma 1 For the r-th order term Tr as written in Equation 2, we have

‖Tr‖2 ≤
∑
φr∈L− ‖〈0

mk|Tr|φr〉‖∞. (11)
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Proof. Let the operator Si =
⊗k

j=1 Xi,j , recalling the subscript notation “i, j” means

the j-th ancilla in the i-th register (Equation 5). Then for a state |φ〉 of the mk ancillary

qubits, Si acting on |φ〉 flips all the bits in the i-th register. From Equation 5 it is clear

that for any sequence of Si operations

S = Si1Si2 · · ·Si` (12)

with i1, i2, · · · , i` ∈ [m], we have SV S = V . Additionally, the set of all ancilla states

|φ〉 ∈ L− with φ ∈ {0, 1}mk is invariant with respect to Si for any i. Finally, substituting

V with SV S in Equation 9 leads to

〈φ0|STrS|φr〉 = 〈φ0|Tr|φr〉. (13)

Because we could express any φ ∈ L− as |φ〉 = S|0mk〉 for some S with the form in

Equation 12, we could further write Tr as

Tr =
∑

φr∈L−

∑
S

〈0km|STr|φr〉S|0km〉〈φr|

=
∑

φr∈L−

∑
S

〈0km|TrS|φr〉S|0km〉〈φr|

=
∑

φr∈L−

〈0km|Tr|φr〉 ⊗

(∑
S

S|0km〉〈φr|S

)
︸ ︷︷ ︸

(∗)

.

(14)

Here the summation
∑
S is over all operators of the form in Equation 12. Going from

the first line to the second we have used Equation 13. Going from the second line to

the third is a substitution of variable |φr〉 → S|φr〉. Note that the term (∗) in Equation

14 is a sum of projectors that are orthogonal to each other (i.e. each pair multiply to

zero), implying that the norm of (∗) is always one. Therefore to find an upper bound

to ‖Tr‖2 from Equation 9 it suffices to consider a fixed φ0 = 0km, which is a string

of km zeros (For convenience from here on we use “φ ∈ L−” to as a shorthand for

“φ ∈ {0, 1}mk : |φ〉 ∈ L−”):

‖Tr‖2 ≤ ‖Tr‖∞ ≤ max
φ0∈L−

∑
φr∈L−

‖〈φ0|Tr|φr〉‖∞ =
∑

φr∈L−

‖〈0mk|Tr|φr〉‖∞. (15)

Here in Equation 15 the first ≤ uses ‖Tr‖∞ = ‖Tr‖1 implied by the hermiticity of Tr

and the property ‖Tr‖22 ≤ ‖Tr‖1 · ‖Tr‖∞, where ‖ · ‖1 is the 1-norm of a matrix defined

as “maximum column sum” ‖A‖1 = maxj
∑
i |〈i|A|j〉|. The second ≤ uses the definition

of the ∞-norm. The final equality in Equation 15 comes from the invariance property

described in Equation 14. �

We further partition Wr into subsets according to different combinations of φ0 and φr.

Denote Wr(φ0, φr) as the subset of sequences in Wr that starts from φ0 and ends at φr.

For a given sequence (φ0, φ1, · · · , φr), let pi ∈ [m] be the index of the ancilla register

that contains the bit where φi differs from φi−1. Using Equation 10, the norm of each

matrix block 〈φ0|Tr|φr〉 can be bounded from above by

‖〈φ0|Tr|φr〉‖∞ ≤
∑

Wr(φ0,φr)

λp1 ·
1

|z − E(φ1)| · λp2 · · ·λpr−1 ·
1

|z − E(φr−1)| · λpr︸ ︷︷ ︸
≡tφ(φ0,··· ,φr)

(16)

where the weight function tφ describes the contribution, or the “weight” of a specific

sequence in the sum. Regardless of the restriction to Wr, evaluating the upper bound in

Equation 16 with brute-force enumeration of all possible intermediate steps φ1, · · · , φr−1

would still lead to a computational cost that is exponential in the number of registers

m. However, by exploiting the structure of the gadget Hamiltonian we could reduce it
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L−|anc

H|anc

|φ〉anc = |s1s2 · · · sm〉 ji = h(si)

C−

c = (j1, j2, · · · , jm)

C

sorting

C̃−

c̃

C̃

Fig. 2. Relationship between elements of the various spaces that are relevant to our discussion in Section 4.1. We
use the notation |anc to represent the restriction of the Hibert spaces on which the gadget Hamiltonian acts to the
ancilla registers. Here the si’s are k-bit strings, and h(·) is the Hamming weight of a string. We highlight the
subspaces (or subsets) that correspond to the low energy subspace of the unperturbed HamiltonianH . C− consists
of all the configurations of ancilla states in L−|anc and C̃− consists of the reduced configurations of those in C−.

to poly(m) for any fixed order r of perturbation theory. Such reduction is accomplished

by introducing a sequence of two mappings c and c̃ (Figure 2) which we will introduce

in the following discussion.

Definition 1 (Configuration) For a state |φ〉 with φ = s1s2 · · · sm where each si de-

scribes the state of a k-qubit register, we define the vector c(φ) = (j1, j2, · · · , jm) with

ji = h(si) as the configuration of a state |φ〉. Each element ji of the configuration

corresponds to energy level E(i)(ji) of the term H(i).

Previously we have defined the set Wr as the set of r-step sequences (φ0, φ1, · · · , φr)
that contribute non-trivially to Tr. Since each bit string φ is associated with a con-

figuration c, each sequence of ancilla states (bit strings) is naturally associated with a

sequence of configurations (c0, c1, · · · , cr). Similar to Wr, we define Wc
r as the set of

r-step sequences (c0, c1, · · · , cr) that correspond to the r-step sequences inWr. We then

letWc
r (c0, cr) be the set of r-step configuration sequences that starts from specific values

of c0 and cr. With the Definition 1 we could rewrite the sum in Equation 16 as

‖〈φ0|Tr|φr〉‖∞ ≤
∑

Wc
r (c0,cr)

∑
c(φi)=ci

tφ(φ0, · · · , φr) =
∑

Wc
r (c0,cr)

tc(c0, · · · , cr) (17)

where tc(c0, · · · , cr) is the total weight of all sequences (φ0, · · · , φr) for which c(φi) = ci.

Note that unlike Equation 16 which sums over states that dwell in a space of dimension

2mk, the summation in Equation 17 sums over configurations, which dwells in a space of

dimension O(km). This is an exponential reduction with respect to k, but the dimension

is still exponential in m nonetheless. To reduce the dimension further, we first note

that the energy of a configuration is invariant with respect to permutations of the ancilla

registers. We would like to exploit this permutation invariance by restricting to a class of

configuration vectors that are sorted. Specifically, we put forward the following definition.

Definition 2 (Reduced configuration) For a configuration c as in Definition 1, we

define the reduced configuration of c, denoted as c̃(c), as the vector obtained by sorting

a configuration c in non-decreasing order.

Then by definition any set of configurations that differ by only permutations of the ancilla

registers share the same reduced configurations. With an elementary inductive argument

we can show that while there are O(km) configurations, there are only O(mk) reduced

configurations [38].
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Since each sequence of configurations (c0, c1, · · · , cr) has a corresponding sequence of

reduced configurations (c̃0, c̃1, · · · , c̃r), we define W̃c
r as the set of reduced configuration

sequences derived from all sequences of configurations in Wc
r . We then let W̃c

r (c̃0, c̃r)

be the set of r-step configuration sequences that starts from specific values of c̃0 and c̃r.

The sum in Equation 17 could then be further rewritten as

‖〈φ0|Tr|φr〉‖∞ ≤
∑

W̃c
r (c̃0,c̃r)

∑
c̃(ci)=c̃i

tc(c0, · · · , cr) =
∑

Wc
r (c0,cr)

t̃c(c̃0, · · · , c̃r) (18)

where t̃c(c̃0, · · · , c̃r) sums over all sequences (c0, c1, · · · , cr) for which c̃(ci) = c̃i. Figure

2 summarizes the relationship between the space of H eigenstates (restricted to the

ancilla qubits), configurations and reduced configurations.

Let C̃− be the set of reduced configurations corresponding to basis states in L−. Then

since for each ancilla register the low energy subspace is spanned by states with 0 or k

qubits in |1〉 state, we have

C̃− = {i ∈ [m]|(k, k, · · · , k︸ ︷︷ ︸
i times

, 0, 0, · · · , 0)}. (19)

This property will become useful in our later discussion of Algorithm 2 in Section 4.2.

Combining Lemma 1 and Equation 18 yields an upper bound to ‖Tr‖2 with fixed c̃0 =

(0, 0, · · · , 0) as

‖Tr‖2 ≤
∑

c̃r∈C̃−

∑
W̃c
r (c̃0,c̃r)

t̃c(c̃0, c̃1, · · · , c̃r) (20)

with the function t defined in Equation 18. Equation 20 is the basis of our main algo-

rithms for finding an upper bound to ‖Tr‖2 to be presented in Section 4.2. In order to

illustrate the definitions and their properties introduced in this section, in Appendix 1 we

present a detailed example showing the procedure for estimating ‖T2‖2. The algorithms

for general ‖Tr‖2 are discusssed in the subsequent Section 4.2.

4.2 Algorithm for computing the upper bound

An upper bound to the right hand side of Equation 20 can be efficiently evaluated and

expressed using monomial symmetric polynomials in the λi coefficients [29]. A monomial

symmetric polynomial mb(x1, x2, · · · , xn) =
∑
π x

b1
π(1)x

b2
π(2) · · ·x

bk
π(k) where b ∈ Nk is the

partition of the symmetric polynomial and π : [n] 7→ [k] is an arrangement of k elements

among n elements. In order to address the combinatorics involved in summing over

c̃ sequences, we also need a (k + 1) × (k + 1) matrix M with element Mij being the

number of possible ways to cause a transition from an H eigenstate with energy Ei to an

eigenstate with energy Ej by one application of the perturbation V . For the unperturbed

Hamiltonian defined according to Equation 4, we have

Mij =


i if j = i− 1
k − i if j = i+ 1
0 otherwise.

(21)

With the above definition in place, here we present a simple method for evaluating

the sum in Equation 18. Consider a fixed sequence of reduced configurations c̃0, c̃1, · · · ,
c̃r with c̃0 = (0, 0, · · · , 0). We compute w = t̃c(c̃1, c̃2, · · · , c̃r), the term in Equation 18

corresponding to c̃0, c̃1, · · · , c̃r, by Algorithm 1, which can be considered as a procedure

for computing the symmetric polynomial that is an upper bound to the right hand side

of (22) for general r. The discussion in Appendix 1 may be used as an example for

bounding the second order termb.

b From (A.3) in Appendix 1 we can see that M01 = 3. The sequences in (A.3) give rise to the term whose norm is 3(λ2
1 +

λ2
2) · 1

z−E1
, which can be interpreted as a symmetric polynomial (recall that we have fixed c̃0 = (0, 0))

1

|z − E1|
· Ω1Ω2m(2)(λ1, λ2) =

∑
c̃1 , c̃2 such that

(c̃0,c̃1,c̃2)∈W̃c
2

t(c̃0, c̃1, c̃2) (22)
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Algorithm 1 : w =WALKBOUND(c̃1, c̃2, · · · , c̃r)

1. Let c̃0 = (0, 0, · · · , 0︸ ︷︷ ︸).

2. Check if the following holds:

(a) c̃r /∈ C̃−;
(b) there is any pair of reduced configurations c̃i = c̃i+1.
(c) any of the reduced configuration c̃i with i ∈ [r − 1] satisfies n(c̃i) /∈ N+;

If either of the conditions hold, w = 0 and return.

3. For each i = 0, · · · , r, introduce a partition vector bi of length at most i and a mapping µi :
c̃i 7→ bi that maps some elements of c̃i to bi. We would like each element in bi to have a
unique pre-image in ci, because intuitively, the q-th element of bi, denoted as bi,q , represents
how many times the register µ−1(bi,q) has been acted on by V during the sequence.

4. Start from b0 = ∅ and µ0 = ∅. We scan from c̃1 through c̃r and update the µ and b assignments
in the following way. Suppose we have already computed µi and bi. Then we find the element
c̃i+1,s in c̃i+1 that differs from the corresponding element c̃i,s in c̃i.

(a) If c̃i,s is not in the domain of µi (implying c̃i,s = 0 since the s-th element of c̃ has not
been modified by the algorithm before), let bi+1 = bi ∪ {bt} with bt = 1, c̃i+1,s = 1 and
µi+1 = µi ∪ {c̃i+1,s 7→ bt};

(b) If c̃i,s is in the domain of µi, then first let bi+1 = bi and µi+1 = µi and then increment
µi+1(c̃i+1) by 1;

(c) Compute and store Ωi = Mxy with x = c̃i,s and y = c̃i+1,s.

5. Return w(c̃1, c̃2, · · · , c̃r−1) =
(

Πr−1
i=1 |z − E(c̃i)|−1

)
(Πr

i=1Ωi)mbr (λ1, λ2, · · · , λm).

In Algorithm 1, we assume (step 1) that c̃0 is the all-zero vector, as a consequence

of the discussion that leads to Equation 15. Then in step 2 we check if the input

sequence of reduced configurations would actually produce a non-zero contribution to

Tr by examining the three criteria listed in Section 4.1 after Equation 9. Step 2a, 2b

and 2c examines violation of each of the three criteria respectively. If any of the criteria

is violated, return w = 0 since the input sequence does not contribute non-trivially to

Tr. Step 3 introduces the data structure used for representing a monomial symmetric

polynomial, which includes 1) a partition vector b, 2) a reduced configuration c̃ as given

by the input sequence and 3) an injective partial function µ : c̃ 7→ b. The partition

b is needed for computing the symmetric polynomial mb(λ), while c̃ and µ are needed

for guiding the computation of b. As shown in step 4, depending on how the reduced

configuration changes from the current i-th step to the (i+ 1)-st, the data structure for

the new step is updated. Because at this point of the algorithm c̃i and c̃i+1 differ by

exactly one element (step 2 has excluded all invalid sequences of reduced configurations),

what matters is then the position of the differing element, which we call c̃i,s. There are

two possibilities, each handled by step 4a and 4b. Recall that the value of each element

in a reduced configuration stands for the energy level of an ancilla register. Making a

transition from energy level x = c̃i,s to y = c̃i+1,s induces a combinatorial factor Mxy

which is handled in step 4c.

The steps for computing µr and br takes O(r) time. In the final step, evaluating

the symmetric polynomial in w takes O(mr) time. Hence for a fixed r, the total time

needed for computing the upper bound w for a fixed sequence of reduced configurations

is polynomial in m. We outline the algorithm for computing the tight error bound in

Algorithm 2. Recall the definition of λ at the beginning of Section 4.1.

Algorithm 2 essentially computes the right hand side of Equation 20. Step 1 computes

with Ω1 = M01 = 3 and Ω2 = M10 = 1. Note that the right hand side of (22) matches with that of Equation 20 for r = 2.
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Algorithm 2 : τr =PERTURBBOUND(r,k,λ,M )

1. If r ≥ k, compute integers p = br/kc and q = r − p. Otherwise let p = 0, q = 0.

2. If q is odd, let γr = 0. Otherwise, compute

γr =
∑

c̃1, · · · , c̃r−1 such that
(c̃0,··· ,c̃r−1,c̃0)∈W̃c

r

WALKBOUND(c̃1 , · · · , c̃r−1 , c̃0). (23)

3. If r ≥ k, then for each i from 1 to min{p,m}
(a) Let c̃r = (k, k, · · · , k︸ ︷︷ ︸

i times

, 0, 0, · · · , 0︸ ︷︷ ︸
m− i times

);

(b) Compute γi,r =
∑

c̃1, · · · , c̃r−1 such that
(c̃0,··· ,c̃r−1,c̃r)∈W̃c

r

WALKBOUND(c̃1, · · · , c̃r−1, c̃r).

Otherwise let γi,r = 0 for all i.

4. Return τr = γr +
∑min{p,m}

i=1 γi,r.

parameters p and q that are relevant to the the general structure of Wr introduced in

the beginning of Section 4.1. Recall the three criteria for sequences (φ0, φ1, · · · , φr) in

Wr: φ0 and φr must be of the form s1s2 · · · sm with each si ∈ {0k, 1k} while φ1, · · · ,
φr−1 must not be of this form and φi, φi+1 must differ by one and only one bit for

i = 0, · · · , r − 1. For r < k, clearly Wr could only contain sequences where φ0 = φr,

resulting in Tr being proportional to the identity operator in L− with the proportional

constant being γr (Equation 6). For r ≥ k, it is then possible that φr = s1s2 · · · sm
with at most p = br/kc substrings si = 1k. Therefore one needs to also take sequences

with these φr possibilities into account. Step 2 computes the magnitude of the term in

Tr that is proportional to identity in the low energy subspace L−, by summing over all

sequences of reduced configurations that starts from c̃0 and ends at c̃0. For r ≤ k, the

γr computed here is precisely the leading coeffcients γr in Equation 6. Looping over

all viable sequences (c̃0, c̃1, · · · , c̃r−1, c̃0) induces O(mk(r−1)) in the computational cost.

Step 3 completes the remainder of the outer summation in Equation 20 over the space C̃−
for c̃r. In the case where r < k this step is entirely skipped and there will be no γi,r values

computed. There are in total at most m iterations in the step and each iteration sum

over at most O(mkr) sequences (c̃0, c̃1, · · · , c̃r). Hence the total runtime of Algorithm 2

scales as O(mkr+1), which is polynomial in the number m of ancilla registers.

4.3 Sharpness of the upper bound

Algorithm 2 is useful for computing the exact value of γr in Tr with r < k (Equation

6). Here we show that for the special case where the terms Heff,i pairwise commute,

Algorithm 2 also allows one to efficiently compute the exact value of ‖Tr‖2 for any

r ≥ k. This is a stronger claim than the one implied by Equation 20 and we state it

precisely in the following Theorem 2.

Theorem 2 Given the k-body target Hamiltonian Htarg =
∑m
i=1 ciHtarg,i as defined

in Section 2, the gadget Hamiltonian H̃ = H + V as defined in Equations 4 and 5,

and the self energy expansion Σ−(z) shown in Equation 6. If for any i, j ∈ {1, · · · ,m},
[Htarg,i, Htarg,j ] = 0, then for any r ≥ 2 and k ≥ 3, we have

‖Tr‖2 = PerturbBound(r,k,λ,M) (24)

where λ is defined in Section 4.1 and M is defined in Equation 21.
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Before proving Theorem 2, we would like to first establish a few properties of the

sets Wr, Wc
r , and W̃ c

r , which are introduced in Section 4.1. Recall that Wr is a collec-

tion of sequences (φ0, φ1, · · · , φr) with each φi being a km-bit string which we write as

s1s2 · · · sm, sj ∈ {0, 1}k. Let ζ be a permutation that only involves permuting bits inside

the same k-bit substrings sj . In other words, for any bit b ∈ φ = s1s2 · · · sm, let j be such

that b ∈ sj , then ζ(b) ∈ sj always holds. We call such ζ a local permutation. For any

sequence W = (φ0, φ1, · · · , φr), we use the notation ζ(W ) = (ζ(φ0), ζ(φ1), · · · , ζ(φr)) to

mean a sequence produced by applying the permutation ζ onto the string at every inter-

mediate step. We further say that for two sequences A and B in Wr, A ∼ B if there is a

local permutation ζ such that A = ζ(B). Clearly the relation ∼ is symmetric, reflexive

and transitive. Hence ∼ is an equivalence relation that partitions Wr into equivalence

classes (Figure 3). Because local permutations do not alter the Hamming weight of any

k-bit substrings si, each equivalence class in Wr corresponds to an element in Wc
r since

a configuration c is constructed based on Hamming weights of substrings in a state |φ〉
(Figure 2). In the set Wc

r we could also define an equivalence relation ∼c based on

permutation over the ancilla registers i.e. the elements of the configuration vector. For

A, B in Wc
r , we say A ∼c B if there is a permutation π over ancilla registers such that

A = π(B). Here the definition of π acting on a sequence of configurations is analogous

to ζ on a sequence of ancilla states and we omit the details. Since by definition reduced

configurations are obtained from sorting the elements of configurations, each equivalence

class in Wc
r naturally corresponds to a sequence of reduced configuration in W̃c

r .

Proof of Theorem 2. Because we could express any φ ∈ L− as |φ〉 = S|0mk〉 for some S

with the form in Equation 12, we could write Tr as (cf. Equation 14)

Tr =
∑
S1,S2

〈0km|S1TrS2|0km〉S1|0km〉〈0km|S2 (25)

where the summation is over any pair of operators S1, S2 of the form in Equation 12.

We could further split Tr as a sum of diagonal and off-diagonal components:

Tr =
∑
S

〈0km|STrS|0km〉+
∑
S1

∑
S2 6=S1

〈0km|TrS1S2|0km〉S1|0km〉〈0km|S2

=
∑
S

〈0km|Tr|0km〉S|0km〉〈0km|S +
∑
S1

∑
S 6=I

〈0km|TrS|0km〉S1|0km〉〈0km|S1S

= 〈0km|Tr|0km〉
∑
S

S|0km〉〈0km|S +
∑
S 6=I

〈0km|TrS|0km〉
∑
S1

S1(|0km〉〈0km|S)S1

=
∑
S

OS,r ⊗ΠS

(26)
where going from the first line to the second we have used Equation 13 on the first term

and applied the substitution S2 = S1S to the second term. Going from the second line

to the third is merely a relocation of the summation so that the form of the expression

can be more easily recognized as the last line with

OS,r = 〈0km|TrS|0km〉 and ΠS =
∑
S′

S′(|0km〉〈0km|S)S′. (27)

Note that the projectors ΠS have unit norms and they are orthogonal, namely ‖ΠS1ΠS2‖ =

δS1,S2 . Since each Htarg,i is a tensor product of Pauli operators and we assume that the

set of Htarg,i terms pairwise commute, we have

‖Tr‖2 =
∑
S

‖OS,r‖2 =
∑
S

‖OS,r‖∞. (28)

Because the operator S flips all of the qubits in a certain subset F ⊆ {1, 2, · · · ,m} of

ancilla registers, the operator OS,r is proportional to
∑
i∈F Htarg,i (see Equation 3 for the

definition of Htarg,i). Therefore the problem of evaluating ‖Tr‖2 becomes the problem



14 Efficient optimization of perturbative gadgets

(φ0, φ1, · · · , φr)

(φ′
0, φ

′
1, · · · , φ′

r)
ζ· · ·

ζ ′

ζ ′′
ζ ′′′

· · ·

· · ·

Wr

Wc
r

(c′
0, c′

1, · · · , c′
r)

(c0, c1, · · · , cr)

π

· · ·

(c̃0, · · · , c̃r)

· · ·

W̃c
r

Fig. 3. The hierarchy of equivalence classes that relates the sets Wr , Wc
r , and W̃c

r . Each light shaded circle
represents an equivalence class inside the set. For Wr , each node represents a sequence and sequences in the
same equivalence class are related by a “local permutation” (defined formally in Section 4.3) ζ that only permutes
qubits in the same ancilla register. Each equivalence class inWr then maps to a sequence of configurations in
Wc
r , as shown with the dashed lines, and each sequence of configurations inWc

r also belongs to an equivalence
class where the sequences are related by permutation π of the elements of the configuration i.e. ancilla registers.
Each equivalence class inWc

r then corresponds to an element in W̃c
r .

of finding the coefficients for all of the OS,r operators. These coefficients are precisely

given by Algorithm 2. We show that in fact the quantities γr computed at step 2 and

γi,r computed at step 3b satisfy

γr = ‖〈0km|Tr|0km〉‖∞
γi,r =

∑
S acting
on i regs

‖〈0km|TrS|0km〉‖∞. (29)

Here in the expression for γi,r the summation is over all S operators of the form in

Equation 13 that acts non-trivially on i ancilla registers. The collection of all states

of the form S|0km〉 acting non-trivially on i registers is then the set of all states |φ〉,
φ ∈ {0, 1}km such that its reduced configuration is c̃ = (k, · · · , k︸ ︷︷ ︸

i times

, 0, · · · , 0).

We show Equation 29 by taking advantage of the hierarchical structure of equivalence

classes in the sets Wr, Wc
r , and W̃ c

r (Figure 3). Observing Equation 9 and Equation

16 we see that tφ(φ0, φ1, · · · , φr) is in fact the norm of the |φ0〉〈φr| block of Tr. For a

specific |φr〉 = S|0km〉 for some S, we could evaluate ‖OS,r‖2 by summing over the weight

tφ of all sequences in Wr(0
km, φr). We partition the set Wr(0

km, φr) into equivalence

classes as discussed before and each equivalence class is associated with an element in

Wc
r (c0, cr) with c0, cr being the configurations of |0mk〉 and S|0mk〉 respectively. We

could evaluate the weight tc of a configuration sequence (c0, c1, · · · , cr) ∈ Wc
r as the

sum of the weights of all the elements in the equivalent class in Wr associated with it.

Specifically, starting with any sequence (φ0, · · · , φr) in the equivalence class, we could

calculate the weight tc by summing over all the local permutations ζ that produces the

elements in the class:

tc(c0, c1, · · · , cr) =
∑
ζ

tφ(ζ(φ0), ζ(φ1), · · · , ζ(φr)). (30)

At each step of a sequence in Wr going from φi−1 to φi, suppose the number of |1〉
ancilla qubits in the register pi changes from xi to yi. To evaluate Equation 30, we need

to sum over all possible ways in which a k-qubit state with Hamming weight xi can make

a transition to a state with Hamming weight yi through the action of the perturbation

V . Because local permutations do not change the weight of the sequence (φ0, · · · , φr),
the weight tc(c0, · · · , cr) differs from tφ(φ0, · · · , φr) by a multiplicative factor. With the
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specific construction of V in Equation 5, such multiplicative factor can be calculated

using Mij in Equation 21. Let Ωi = Mxiyi , which is the number of possible ways for an

ancilla register to go from a state with xi qubits in |1〉 to one with yi qubits in |1〉. Then

we have

tc(c0, c1, · · · , cr) =

(
r∏
i=1

Ωi

)
tφ(φ0, φ1, · · · , φr) (31)

with (φ0, φ1, · · · , φr) being any sequence with the configuration of φi being ci. Similar

to Equation 30, we could also evaluate the weight of a sequence of reduced configuration

by summing over all permutations of m registers:

t̃c(c̃0, c̃1, · · · , c̃r) =
∑

π:[m] 7→[m]

tc(π(c0), π(c1), · · · , π(cr))

=

r−1∏
i=1

1

|z − E(c̃i)|

r∏
i=1

Ωi
∑

π:[m] 7→[m]

λπ(p1)λπ(p2) · · ·λπ(pr)︸ ︷︷ ︸
(∗)

. (32)

Here the term (∗) is essentially a monomial symmstric polynomial over the variables

λ = (λ1, λ2, · · · , λm). We can rewrite it as mbr (λ) with br being the partition of the

symmetric polynomial that keeps track of “how many registers have been acted on by

how many times”. For example, if there are three registers that are acted on (i.e. have

one or more bits flipped in them) once and one register acted on twice, in which case the

order of perturbation theory is r = 3 × 1 + 1 × 2 = 5, then br = (2, 1, 1, 1). In general

one could compute br for a reduced configuration sequence in W̃c
r .

From the arguments so far, it should be clear that Algorithm 1 computes t̃c correctly.

Because for any S of the form in Equation 12, S|0km〉 is the only state with its configura-

tion and reduced configuration, summing the weights of all sequences (0km, φ1, · · · , φr)
with |φr〉 = S|0km〉 in Wr is equivalent to summing the weights of all sequences of re-

duced configurations with c̃ = (0, 0, · · · , 0) and c̃r = (k, · · · , k, 0, · · · , 0) with the number

of elements equal to k being the number of registers that S acts on. Therefore Equation

29 holds and the main statement of the theorem is proven. �

5 Potential improvement using Schrieffer-Wolff transformation

Theorem 2 presented in Section 4.3 shows the sharpness of the bounds provided by our

algorithm for difference in norm ‖Σ−(z) − Heff‖2 between the self-energy Σ−(z) and

the effective Hamiltonian Heff in Equation 6. However, the quantity ‖Σ−(z)−Heff‖2 is

itself an upper bound to the actual spectral difference between the gadget and target

Hamiltonian (see Theorem 1 as well as numerics in Section 6) because ‖Σ−(z)−Heff‖2 ≤ ε
is only a sufficient condition that guatantees that the spectral difference is small, namely

maxj |λj(H̃) − λj(Htarg)| ≤ ε with λj(H) being the j-th lowest eigenvalue of H. In

practice one typically is more concerned about the spectral difference between the target

and gadget Hamiltonian than ‖Σ−(z)−Heff‖2. Therefore to obtain a tighter upper bound

to the actual spectral error than the norm difference ‖Σ−(z)−Heff‖2 based on Feynman-

Dyson (FD) series, we need to adopt a different formalism of perturbation theory. Here

we consider using the Schrieffer-Wolff (SW) transformation. As we will prove in this

section, the SW series generates all the terms in the FD series but also includes more

terms that are beyond FD. In Section 6 we numerically show an improved bound for the

spectral error based on the SW transformation over ‖Σ−(z)−Heff‖2.

The Schrieffer-Wolff transformation is a formalism of degenerate perturbation the-

ory where the low energy effective Hamiltonian Heff is obtained from the perturbed

Hamiltonian by a unitary transformation that makes the perturbed Hamiltonian block

diagonal with respect to low and high energy subspaces [32]. Using the same setting

as Section 2, we consider a perturbed Hamiltonian H̃ = H + V which is a sum of

some unperturbed Hamiltonian H that is diagonal in the basis we are assuming and a
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perturbation V = Vd + Vod that contains both diagonal Vd and off-diagonal Vod com-

ponents. The basic idea of SW transformation is to find an anti-Hermitian operator R

such that eR(H + V )e−R is block diagonal with respect to the high energy subspace

L+ and the low energy subspace L−. The effective low energy Hamiltonian is then

Heff = Π−e
R(H + V )e−RΠ− with Π− being the projector to L−.

We denote the adjoint operation of an operator Y on X as Ŷ (X) = [Y,X]. Let O be

a super operator that extracts the off-diagonal component of an operator. For example

Vod = O(V ). Let K be a super operator such that

K(X) =
∑
i,j

〈i|O(X)|j〉
Ei − Ej

|i〉〈j| (33)

where the |i〉, |j〉 states are the eigenstates of H and the summation is over any i, j such

that either |i〉 ∈ L−, |j〉 ∈ L+, or |i〉 ∈ L+, |j〉 ∈ L−.

The anti-Hermitian operator R admits an expansion R =
∑∞
n=1 Rn. To ensure that

the transformed Hamiltonian eR̂(H + V ) = eR(H + V )e−R is block diagonal, the Rn

terms are given byc

R1 = K(Vod)

R2 = K(R̂1Vd)

Rn = −KV̂d(Rn−1) +
∑
j≥1 a2jKR̂2j(Vod)n−1

(34)

where am = 2m

m!
Bm, Bm being the m-th Bernoulli number and

R̂k(Vod)m =
∑

n1+···+nk=m
n1,··· ,nk≥1

R̂n1R̂n2 · · · R̂nk (Vod). (35)

The effective Hamiltonian Heff,SW is then given by

Heff,SW = H− + V− +

∞∑
r=2

∑
j≥1

b2j−1Π−R̂
2j−1(Vod)r−1Π−︸ ︷︷ ︸

Heff,r

(36)

where the coefficients bn = 2(22n−1)
(2n)!

B2n. Note that the summation in Heff,r over j ≥ 1

is not infinite, because from Equation 35 we see that R̂k(Vod)m = 0 if k > m. From the

definition of Heff,r it is clear that for any r, the r-th order effective Hamiltonian Heff,r

must contain a term of the form

− b1Π−V̂od(−KV̂d)r−2R1Π−. (37)

There are of course other terms appearing at any order r and in [32] the authors have

created an elegant diagrammatic technique for enumerating the terms. However, here we

focus on the terms of the form in (37) (which correspond to tree diagrams that are simply

a linear chain of nodes) and show that at any order n, in some sense (37) is equivalent to

the entire r-th order term Tr in the FD series (Equations 1 and 2). We state it precisely

in the following theorem.

Theorem 3 If H has a unique eigenvalue E0 that is below the cutoff between low

and high energy subspaces L− and L+, then for any r ≥ 2

Tr(E0) = −b1Π−V̂od(−KV̂d)r−2R1Π−. (38)

Here we write Tr explicitly as a function of z, namely Tr(z) = V−+(G+(z)V+)r−2G+V+−.

cIn [32] the authors consider a setting where H̃ = H + εV and R is a Taylor expansion R =
∑∞
n=1Rnε

n. Here we absorb
the ε parameter into V and replace ε with 1.
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For simplicity, we denote the eigenstates of H as |i〉 with H|i〉 = Ei|i〉. To prove the

statement we first show that for any r ≥ 1,

(KV̂d)rR1 =
∑
i∈L−

∑
j1∈L+

· · ·
∑

jr+1∈L+

〈i|V |j1〉
1

Ei − Ej1
〈j1|V |j2〉 · · ·

· · · 〈jr|V |jr+1〉
(

1

Ejr+1 − Ei
|jr+1〉〈i|+

1

Ei − Ejr+1

|i〉〈jr+1|
)
.

(39)

We prove (39) inductively on r. The base case is r = 1, By straightforward calculation

KV̂dR1 =
∑
i∈L−

∑
j∈L+

∑
k∈L+

〈i|V |j〉 1

Ei − Ej
〈j|V |k〉

(
1

Ek − Ei
|k〉〈i|+ 1

Ei − Ek
|i〉〈k|

)
.

(40)
The case for general k can be proved by similar calculations using the definitions of K
and Vd.

Proof of Theorem 3. Rewriting the projected operators V−+, G+ etc into a summation

over |i〉〈j| blocks, we have for example

V−+ =
∑
i∈L−

∑
j∈L+

〈i|V |j〉|i〉〈j|, G+(z) =
∑
i∈L+

1

z − Ei
|i〉〈i| (41)

and similar for V+ and V+−. Hence we could rewrite Tr(z) as

V−+(G+(z)V+)r−2G+(z)V+− =
∑
i∈L−

∑
j1∈L+

· · ·
∑

jr−1∈L+

∑
`∈L−

〈i|V |j1〉
1

z − Ej1
〈j1|V |j2〉 · · ·

· · · 1

z − Ejr−1

〈jr−1|V |`〉|i〉〈`|.

(42)
Using Equation 39 and Π− =

∑
i∈L− |i〉〈i|, we have

−b1Π−V̂od(−KV̂d)r−2R1Π− =
1

2

∑
i∈L−

∑
j1∈L+

· · ·
∑

jr−1∈L+

∑
`∈L−

〈i|V |j1〉
1

Ei − Ej1
〈j1|V |j2〉 · · ·

· · · 1

Ei − Ejr−1

(|`〉〈i|+ |i〉〈`|).

(43)
Comparing Equations 43 with 42 and the main equation (38) follows. �

6 Numerical example

6.1 PERTURBBOUND vs. Simple upper bound

Here we compare the tightness of bounds obtained by PerturbBound and simple upper

bounds (from the right hand side of Equation 7). Consider applying the gadget construc-

tion in Section 2 on the 3-body target Hamiltonian is Heff = α1X1X2X3 + α2X2Y4Z5

where α1 and α2 are real coefficients (Figure 4b). The resulting gadget Hamiltonian is

described in Figure 4a, which can be expressed in form of the general setting H̃ = H+V .

Here the unperturbed Hamiltonian H and perturbation V are defined as

H = H(1) +H(2), H(1) =
∆

4
(3I− Zu1Zu2 + Zu2Zu3 + Zu1Zu3)

H(2) =
∆

4
(3I− Zv1Zv2 + Zv2Zv3 + Zv1Zv3)

V = V (1) + V (2), V (1) = µ1(X1Xu1 +X2Xu2 +X3Xu3)

V (2) = µ2(Y4Xv1 +X2Xv2 + Z5Xv3)

(44)

where spins with ui and vi labels belong to the two unperturbed subsystems. Here we

let ∆ be orders of magnitude larger than µ1 and µ2 and keep the coefficients µ1 and µ2

as

µ1 =

(
α1∆2

6

)1/3

, µ2 =

(
α2∆2

6

)1/3

(45)
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where α1 and α2 are parameters related to the low energy effective Hamiltonian (see

Equation 49). In Figure 4c we explicitly partition the Hamiltonian in terms of H and V .

The low-energy subspace of the total Hamiltonian H̃ is then L− = L(1)
− ⊗ L

(2)
− .

Inspecting the expressions H(1) and H(2) gives the low energy subspaces for each subsys-

tem: L(1)
− = span{|000〉u1u2u3 , |111〉u1u2u3} and L(2)

− = span{|000〉v1v2v3 , |111〉v1v2v3}.
For each subsystem i ∈ {1, 2}, the subspaces of H(i) and their corresponding energies

are

P0 = span{|000〉}, E0 = 0
P1 = span{|001〉, |010〉, |100〉}, E1 = ∆
P2 = span{|011〉, |101〉, |110〉}, E2 = ∆
P3 = span{|111〉}, E3 = 0.

(46)

In Figure 4d we show the spectrum of each subsystem. The matrix M defined in

Equation 21 is also involved in the computation of the upper bound to ‖Tr‖. We could

interpret M from Figure 4d. One could regard Mij as the maximum, over all eigenstates

of H in Pi, number of possible transitions from a particular |u〉 ∈ Pi to an eigenstate in

Pj . Precisely,

Mij = max
|u〉∈Pi

Card{|v〉 ∈ Pj |‖〈v|V |u〉‖ 6= 0} (47)

where Card{·} stands for cardinality (number of distinct elements) of a set. We could

then determine that

M =


P0 P1 P2 P3

P0 3
P1 1 2
P2 2 1
P3 3

 (48)

where the row and column indices start from 0 because the subspaces P0, P1, · · · , have

indices that start from 0.

From Figure 4a and 4c we can see that the unperturbed system H essentially consists

of two identical 4-level systems with energy levels E0, E1, E2 and E3. This gives rise to

in total 9 possible energy combinations.

With the matrix M worked out as in Equation 48, we could use the algorithm Walk-

Bound in Section 4.2 to find a tight upper bound for ‖Tr‖∞ at any order r. After a

certain order p, when the upper bound becomes less than the tolerance 10−8, we use

Equation 7 to bound the terms from p+ 1 to infinity.

Using the perturbation series in Equation (1) we could show that if we truncate the

series at the 3rd order, namely Σ−(z) = Heff +T4 +T5 + · · · , we have the effective 3-body

Hamiltonian

Heff = α1X1X2X3 + α2X2Y4Z5 + γI (49)

with γ being the magnitude of the spectral shift. Here we let α1 = 0.1 and α2 = 0.2.

Then the entire Hamiltonian H̃ = H + V in Equation 44 is only dependent on a free

parameter ∆. In order to test our algorithm for bounding perturbative terms, we treat

terms from 4th order onward as errors in the perturbation series. This amounts to

estimating ‖Σ−(z)−Heff‖2. We could compute this value by explicitly computing Σ−(z)

by its definition zI − (G̃−(z))−1 and then evaluating ‖Σ−(z) −Heff‖2. This method is

inefficient since it requires inverting an exponentially large matrix with respect to system

size, but yields an accurate estimation for the error ‖Σ−(z) −Heff‖2. We will use it as

a benchmark for comparison with the upper bound computed by the new algorithm

developed here. As shown Figure 5, the upper bounds computed by PerturbBound

are tight with respect to the exact calculation. For the purpose of comparison we also

compute the error bound due to triangle inequality (see Equation 7). We explicitly

computed ‖V ‖2 (while in practice one may use some upper bound for ‖V ‖2 which could

loosen the bound further but here for comparison we use the exact value) and bounded

‖G+‖2 from above by 1/E1. Hence the simple bound of error terms from a certain order
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Fig. 4. A numerical example for demonstrating our algorithm estimating the perturbative error. (a) The 11-spin
gadget Hamiltonian. Each node corresponds to a spin-1/2 particle and each edge represents an interaction term
in the Hamiltonian between two spins. (b) The target 3-body Hamiltonian Heff = α1X1X2X3 + α2X2Y4Z5.
(c) Rearranging and partitioning the system in (a) according to the setting of perturbation theory used. Here each
unperturbed system H(i) consists of three ferromagnetically interacting spins. (d) Spectrum of each subsystem
H(i) in (a), i ∈ {1, 2}. Here each node represents an eigenstate of H(i). Nodes on a same horizontal dashed
line belong to the same energy subspace Pj . There is an edge (φ1, φ2) iff ‖〈φ1|V |φ2〉‖ 6= 0. For example, if
we consider this diagram as representing H(1), since V (1)|001〉u1u2u3 ∝ (|101〉+ |011〉+ |000〉)u1u2u3 we
connect the |001〉 with the nodes representing |101〉, |011〉 and |000〉.

to infinity based on Equation 7 becomes
∑∞
r=4 ‖V ‖

r
2/E

r−1
1 = ‖V ‖42/(E2

1(E1 − ‖V ‖2)).

When implementing our algorithm for the numerical example concerned in this section,

we compute τr = PerturbBound(r,λ,M) for r from 4 to a value p such that τp ≤ 10−20.

Then we resort to Equation 7 for computing an upper bound to ‖Tp+1 + Tp+2 + · · · ‖2.

The ultimate purpose for finding tight error bound in the perturbation theory is to

find lower assignments to ∆ while maintaining the spectral error between the target and

the gadget Hamiltonian within ε. As mentioned in Section 3, with an algorithm for

computing an upper bound to the spectral error we could find the optimal ∆ assignment

based on this algorithm by using binary search to find a ∆ such that the error bound is

ε. In Figure 6 we show the result of implementing such binary search for three means for

estimating the spectral error: 1) crude upper bound based on geometric series described

in Equation 7; 2) upper bound computed using the algorithms presented in Section 4.2;

3) brute-force diagonalization of both the target and gadget Hamiltonian to get the exact

eigenvalues. The third option is impractical for general quantum systems of many qubits



20 Efficient optimization of perturbative gadgets

0 0.2 0.4 0.6 0.8 1
·104

10−3

10−2

10−1

100

Spectral gap ∆

Er
ro
r

Heff = 0.1X1X2X3 + 0.2X2Y4Z5

PerturbBound

Brute-force calculation of ‖Σ−(z)− Heff‖2

Simple upper bound
∑∞

r=4 ‖V ‖r/Er−1
1

Spectral difference between Heff and H̃

Fig. 5. Comparison between the upper bounds computed using the PERTURBBOUND and the norm computed us-
ing (inefficient) explicit matrix-matrix multiplication. The “actual spectral error” in this plot shows the maximum
difference between the eigenvalues of Heff and their counterparts in H̃ , which are the energies of its 2N lowest
eigenstates with N = 5 being the number of particles that Heff acts on (Figure 4b). The actual spectral error
is always lower than the error computed based on ‖Σ−(z) − Heff‖2 because ‖Σ−(z) − Heff‖2 ≤ ε is only a
sufficient condition that guarantees the spectral difference between H̃ and Heff being within ε (see [29, Theorem
1]).

due to the exponential size of the Hilbert space, though it provides the exact spectral

error. The first option is computationally trivial but yields extremely large assignments

of ∆ (Figure 6). Our algorithm strikes a balance between the two cases by avoiding

intense computation while generating ∆ assignments that are orders of magnitude more

practical than the first alternative.

6.2 Error bounds based on Feynman-Dyson (FD) and Schrieffer-Wolff (SW) series

In Section 5 we showed that the Schrieffer-Wolff expansion includes more terms than

Feynman-Dyson series. Could one potentially improve estimation on the spectral error by

adopting Schrieffer-Wolff instead of Feynman-Dyson formalism? Here we show numerical

evidence that one indeed could signaficantly improve the error bound. Consider an

example where the target Hamiltonian is Htarg = αX1X2X3 with α = 0.1 and the

gadget Hamiltonian H̃ = H+V is constructed by adding three ancilla qubits u1, u2 and

u3 and defining the Hamiltonians as the following:

H =
∆

4
(3I− Zu1Zu2 − Zu1Zu3 − Zu2Zu3)

V = µ(X1Xu1 +X2Xu2 +X3Xu3).
(50)

where µ =
(
α∆2

6

)1/3

. Because Htarg is 3-body our effective Hamiltonian is truncated at

the third order and the remaining terms in the expansion are considered as error:

Σ−(z) =
3µ2

z −∆
Π− +

∆2

(z −∆)2
αX1X2X3 ⊗ (|000〉〈111|u1u2u3 + |111〉〈000|u1u2u3)︸ ︷︷ ︸

Heff=T1(z)+T2(z)+T3(z)

+ T4(z) + T5(z) + · · · .
(51)
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Fig. 6. Comparison between the optimized ∆ based on crude error bounds using geometric series (“simple upper
bound” in Figure 5), the optimized ∆ based on the PERTURBBOUND algorithm presented in Section 4.2 and
optimized ∆ based on spectral error between the target and the gadget Hamiltonian computed by brute-force
diagonalizing both Hamiltonians. Here we use the target Hamiltonian in Figure 4b with α2 = 0.2 fixed and α1

varying from 0.1 to 0.6. It can be observed that our algorithm significantly improves the assignments for ∆. The
gap between the brute force case and the PERTURBBOUND case is due to the fact that ‖Σ−(z)−Heff‖2 ≤ ε is
only a sufficient condition that guarantees the spectral error to be within ε.

Applying Schrieffer-Wolff transformation to the gadget Hamiltonian yields the low-energy

effective Hamiltonian

Heff,SW = b1Π−R̂1(Vod)Π−︸ ︷︷ ︸
2nd order

+ b1Π−R̂2(Vod)Π−︸ ︷︷ ︸
3rd order

+ b1Π−R̂3(Vod)Π− + b3Π−R̂
3
1(Vod)Π−︸ ︷︷ ︸

4th order

+ · · · .

(52)
Because the ground state energy of the unperturbed Hamiltonian is 0, the zeroth order

term in the expansion (52) vanishes. From Equation 50 the projection of V in the low

energy subspace L− is 0, thus the first order term also vanishes. The second order term

could be rearranged as −b1Π−V̂odR1Π−, which according to Theorem 3 is equivalent to

the second order term in the Feynman-Dyson series in Equation 51 for z → 0. At third

order, Schrieffer-Wolff expansion gives b1Π−V̂odKV̂dR1Π−. Applying Theorem 3 with

r = 3 we see that this is equivalent to the third order term in the Feynman-Dyson series.

Hence up to third order, both formalisms of perturbation theory match up. However,

at the fourth order, which is the leading term for the error, difference between the two

formalisms starts to show. From the recursive relationship for Rn in Equation 34 we

see that R3 contains a term −KV̂d(R2). So the fourth order term in Equation 52 must

contain a term

− b1Π−V̂od(−KV̂d(R2))Π− = −b1Π−V̂od(−KV̂d)2R1Π−, (53)

which is equivalent to the entire fourth-order term of the Feynman-Dyson series (The-

orem 3 with r = 4). The other terms at the fourth order in Equation 52 are beyond

Feynman-Dyson series. For example the second term at the fourth order b3Π−R̂
3
1(Vod)Π−

corresponds to virtual transitions that switches between L− and L+ multiple times. This

violates conditions 1 and 3 in Section 4.1 for sequences (φ0, · · · , φr) that contribute non-

trivially to Tr, which results in such terms being excluded from the Feynman-Dyson

series.
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Fig. 7. Comparison between the error bounds computed based on Feynman-Dyson series (Section 4) and
Schrieffer-Wolff transformation (Section 5). Here we also show the maximum difference between the lowest
23 = 8 energy levels of the gadget Hamiltonian and the corresponding level of the target Hamiltonian.

For varying values of ∆, we calculate the error estimates based on both formula-

tions of perturbation theory and compare them in Figure 7. We have also explicitly

diagonalized the target and gadget Hamiltonian and plotted the difference between the

low-lying energy levels. The results in Figure 7 shows that Schrieffer-Wolff perturba-

tion theory clearly yields tighter error bounds. The error bounds using Schrieffer-Wolff

transformation in Figure 7 are computed by explicit enumeration and evaluation of the

terms in the perturbative expansion following Section 5, which is clearly not scalable

due to the exponential size of the Hilbert space. The algorithms that we have developed

in Section 4.2 could efficiently bound only a subset of the terms in the Schrieffer-Wolff

series, namely those of the form in Theorem 3. Bounding the remaining terms in the

Schrieffer-Wolff series with similar effectiveness as our algorithms for Feynman-Dyson

series requires additional insight and is beyond the scope of our present study.

7 Summary and conclusion

Perturbative gadgets are the only technique available (as of now and as far as the authors

are concerned) for reducing arbitrary many-body Hamiltonian to two-body ones. One of

the disadvantages of this technique is the large energy gap ∆ needed in the construction of

the gadget Hamiltonian, rendering it unnatural in the context of physical systems. Here

we address this issue by considering the optimization problem of finding the minimum

value of ∆ that yields error no greater than a prescribed threshold ε (Figure 1). A crucial

component of this optimization program is to find tight upper bounds to error terms

arising at arbitrary order perturbation theory. In this sense our work is a generalization

of [24] to include the gadget constructions in [18, 21].

The problem of computing the error exactly is hard in general because of the exponen-

tial size of the Hilbert space. Alternatively, crude upper bounds are trivially attainable

via for instance submultiplicativity of operators (‖AB‖ ≤ ‖A‖ · ‖B‖). These bounds are

hardly useful for the purpose of optimizing the gadget parameters. However, by exploit-

ing the structure of the Hamiltonian we are able to find error bounds that are both orders

of magnitude tighter than the crude alternatives (Section 6.1) and efficiently computable
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(Section 4.2). Each term in the perturbative expansion at a given order is a summation

of exponentially many terms. We start from reducing the size of the set of summation

from exponential to polynomial in the number of ancilla registers by taking advantage

of the structure in the perturbation. We show that there is a hierarchy of equivalence

classes (Section 4.1) that allows us to accomplish the reduction. The algorithms for

computing the error bounds presented in Section 4.2 take advantage of such hierarchical

structure. In the special case where the target terms Htarg,i pairwise commute, we show

that our error bounds are sharp (Section 4.3).

However, a gap still exists (Figure 6) between the output of our algorithm and the

result of brute-force optimization. This gap is due to the machinery of perturbation

theory that we use (illustrated in Figure 5), which is based on the Feynman-Dyson series.

In Section 6.2 we observe numerically that using the Schrieffer-Wolff transformation

[33, 32] instead may enable one to get closer to the brute-force results (Figure 7). This

improvement may be explained by Theorem 3 which says that a specific class of terms in

the Schrieffer-Wolff series already captures all of the terms in the Feynman-Dyson series

(Section 5). It is tempting to consider whether our technique can be applied to obtain

efficient error bounds for Schrieffer-Wolff series. One challenge in this regard is that our

efficient algorithm is built on the observation that the terms at each order is essentially

a summation of walks in the eigenspace of the unperturbed Hamiltonian, per Equation

9. This combinatorial picture of summing over walks comes from the matrix product

structure of the self-energy expansion (Equation 1). Whether this same structure exists

in Schrieffer-Wolff transformation (and other formalisms of perturbation theory) remains

to be assessed.
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recursion fm` = fm−1,` + fm−1,`−1 + · · ·+ fm−1,1 with boundary condition fk1 = 1 for any
k ∈ {1, · · · ,m} and f1k = k for any k ∈ {0, 1, · · · , `−1}. Hence fm` = fm−1,`+fm,`−1 =
1 +

∑m
i=1 fi,`−1. Starting from fm1 = 1, we have fm2 = 1 + f11 + f21 + · · · + fm1 ≤

1 +mfm1 = 1 +m and fm3 = 1 + f12 + f22 + · · ·+ fm2 ≤ 1 +m+m2. Applying this to
fm`, we have fm` ≤ 1+fm,`−1 ≤ 1+m(1+mfm,`−2) ≤ · · · ≤ 1+m+ · · ·+m`−1 ≤ m`.

Appendix A: An example for illustrating notions introduced in Section 4.1

This example is essentially the one considered in Section 6 but here we abstract out

only the revelant aspects of the example without going into full detail. Suppose our

target Hamiltonian Htarg is a sum of two 3-local terms that need to be reduced to 2-local

using the gadget construction (Section 2). Our gadget Hamiltonian H̃ = H + V has the

unperturbed part H = H(1)+H(2) acting on two registers of three ancilla qubits (because

the target terms are 3-local). The perturbation V couples to each register of ancillas with

interaction strengths λ1 and λ2 (as a reminder, see Equation 5 and the restriction that

λi,j = λi introduced at the beginning of Section 4.1). Hence m = 2 and k = 3 in this

example and the low energy level of H satisfies E(φ) = E(1)(j1)+E(2)(j2) = 0 with j1, j2

being either 0 or 3. At second order, from previous discussion we see that the sequences

of reduced configurations that contribute non-trivially to T2 are

c̃0 =

(
0
0

)
→ c̃1 =

(
0
1

)
→ c̃2 =

(
0
0

)
c̃0 =

(
0
3

)
→ c̃1 =

(
1
3

)
→ c̃2 =

(
0
3

)
c̃0 =

(
0
3

)
→ c̃1 =

(
0
2

)
→ c̃2 =

(
0
3

)
c̃0 =

(
3
3

)
→ c̃1 =

(
2
3

)
→ c̃2 =

(
3
3

)
.

(A.1)

Accordingly, the set Wc
2 consists of the following sequences of configurations

c0 =

(
0
0

)
→ c1 =

(
1
0

)
→ c2 =

(
0
0

)
; c0 =

(
0
0

)
→ c1 =

(
0
1

)
→ c2 =

(
0
0

)
;

c0 =

(
0
3

)
→ c1 =

(
1
3

)
→ c2 =

(
0
3

)
; c0 =

(
3
0

)
→ c1 =

(
3
1

)
→ c2 =

(
3
0

)
;

c0 =

(
0
3

)
→ c1 =

(
0
2

)
→ c2 =

(
0
3

)
; c0 =

(
3
0

)
→ c1 =

(
2
0

)
→ c2 =

(
3
0

)
;

c0 =

(
3
3

)
→ c1 =

(
2
3

)
→ c2 =

(
3
3

)
; c0 =

(
3
3

)
→ c1 =

(
3
2

)
→ c2 =

(
3
3

)
.

(A.2)
Note that the configuration sequences on each row of (A.2) is formed by permuting

elements of the reduced configuration sequence on the corresponding row in (A.1). Finally,

each configuration sequence in (A.2) can be replaced with sequences of states, forming

the set W2 which consists of the following sequences of states φ0 → φ1 → φ2 (Here

| separates the two ancilla registers and each block of 3 sequences corresponds to the
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configuration sequence in the associated row and position in (A.2)):

000|000→ 100|000→ 000|000 000|000→ 000|100→ 000|000
000|000→ 010|000→ 000|000 000|000→ 000|010→ 000|000
000|000→ 001|000→ 000|000 000|000→ 000|001→ 000|000

000|111→ 100|111→ 000|111 111|000→ 111|100→ 111|000
000|111→ 010|111→ 000|111 111|000→ 111|010→ 111|000
000|111→ 001|111→ 000|111 111|000→ 111|001→ 111|000

000|111→ 000|011→ 000|111 111|000→ 011|000→ 111|000
000|111→ 000|101→ 000|111 111|000→ 101|000→ 111|000
000|111→ 000|110→ 000|111 111|000→ 110|000→ 111|000

111|111→ 011|111→ 111|111 111|111→ 111|011→ 111|111
111|111→ 101|111→ 111|111 111|111→ 111|101→ 111|111
111|111→ 110|111→ 111|111 111|111→ 111|110→ 111|111

(A.3)

We observe that the first (top left) block of three sequences in (A.3) sums up to a term

3λ2
1 · 1

z−E1
|000〉〈000|, with each sequence contributing a term λ1 · 1

|z−E1|
· λ1 in the final

upper bound (Equation 18). Similarly we see that the top right block of (A.3) sums up

to 3λ2
2 · 1

z−E1
|000〉〈000|. Recall that Π− is the projector onto the low energy subspace

L− = L(1)
− ⊗ L

(2)
− with each L(i)

− = span{|000〉, |111〉}. Adding up the terms in all the

sequences in (A.3) gives a term 3(λ2
1 + λ2

2) · 1
z−E1

Π−, which is symmetric with respect to

the permutation of registers.

Also observe that we are able to calculate the coefficient 3(λ2
1 +λ2

2) · 1
z−E1

in the sum

over all blocks of sequences in (A.3) by only inspecting the first row, gleaning two terms

with coefficients 3λ2
1 · 1

z−E1
and 3λ2

2 · 1
z−E1

. This is because the set Wr is invariant with

respect to the operation of flipping all the bits of any set of registers (recall discussion

prior to Equation 15). Examining A.3 one could find that for instance flipping all the

bits in the first register of the top left block yields the block on the right of third row.

Flipping all the bits in the second register of the top left block yields the block on the

left of the second row. Flipping all the bits in both registers yields the bottom right

block, etc. Therefore in order to find the coefficients to T2 it suffices to focus on only the

sequences φ0 → φ1 → φ2 where φ0 = 000|000 (Equation 15).
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