
Connecting bright and dark states through accidental degeneracy caused by lack of
symmetry
Zixuan Hu, Gregory S. Engel, and Sabre Kais

Citation: The Journal of Chemical Physics 148, 204307 (2018); doi: 10.1063/1.5026116
View online: https://doi.org/10.1063/1.5026116
View Table of Contents: http://aip.scitation.org/toc/jcp/148/20
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1742681036/x01/AIP-PT/MB_JCPArticleDL_WP_042518/large-banner.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Hu%2C+Zixuan
http://aip.scitation.org/author/Engel%2C+Gregory+S
http://aip.scitation.org/author/Kais%2C+Sabre
/loi/jcp
https://doi.org/10.1063/1.5026116
http://aip.scitation.org/toc/jcp/148/20
http://aip.scitation.org/publisher/


THE JOURNAL OF CHEMICAL PHYSICS 148, 204307 (2018)

Connecting bright and dark states through accidental degeneracy
caused by lack of symmetry

Zixuan Hu,1,2 Gregory S. Engel,3 and Sabre Kais1,a)
1Department of Chemistry, Department of Physics, and Birck Nanotechnology Center, Purdue University,
West Lafayette, Indiana 47907, USA
2Qatar Environment and Energy Research Institute, College of Science and Engineering, HBKU, Doha, Qatar
3Department of Chemistry, James Franck Institute and the Institute for Biophysical Dynamics,
University of Chicago, Chicago, Illinois 60637, USA

(Received 15 February 2018; accepted 15 May 2018; published online 31 May 2018)

Coupled excitonic structures are found in natural and artificial light harvesting systems where optical
transitions link different excitation manifolds. In systems with symmetry, some optical transitions are
allowed, while others are forbidden. Here we examine an excitonic ring structure and identify an acci-
dental degeneracy between two categories of double-excitation eigenstates with distinct symmetries
and optical transition properties. To understand the accidental degeneracy, a complete selection rule
between two arbitrary excitation manifolds is derived with a physically motivated proof. Remarkably,
symmetry analysis shows that the lack of certain symmetry elements in the Hamiltonian is responsible
for this degeneracy, which is unique to rings with size N = 4l + 2 (l being an integer). Published by
AIP Publishing. https://doi.org/10.1063/1.5026116

I. INTRODUCTION

Symmetry of the Hamiltonian leads to degeneracy in its
eigenspace. In simple chemical systems such as molecules,
degeneracies can often be assigned to geometrical symme-
tries and characterized by symmetry groups of the molecular
Hamiltonian. Other types of symmetries, e.g., time rever-
sal symmetry and translational symmetry, can also produce
degenerate eigenstates. However, not every degeneracy can be
explained by simple symmetries of the Hamiltonian. Acciden-
tal degeneracy is commonly associated with some unidentified
hidden symmetry of the system. Notable examples of acci-
dental degeneracy include the bound state degeneracy in a
hydrogen atom,1 the degeneracy in an infinite square potential
well,2 and the Landau level degeneracy in cyclotron motion.3

Accidental degeneracy, in addition to theoretical interest,4 has
potential applications in material design.5–7 In this study, we
examine an accidental degeneracy found in a coupled exci-
tonic ring structure. Coupled excitonic structures are found
in natural and artificial light harvesting systems, in which
delocalized quantum states are extensively studied for their
potential effect on energy transfer efficiency.8–23 These quan-
tum states have selection rules determined by symmetry which,
for the single-excitation manifold, separate the optically active
bright state from the optically inactive dark states. The dark
states are of particular interest because they can potentially
reduce radiative recombination and enhance excitation trans-
port efficiency.24–26 Since the dark states cannot be accessed
optically, they are usually populated through phononic dis-
sipation from the bright state. In this work, we show the
possibility of connecting the bright and dark states with

a)Email: kais@purdue.edu

optical transitions. In a ring structure made of identical local
two-level systems, the boundary coupling condition is depen-
dent on the parity of the number of excitations on the ring.
Therefore, the double-excitation manifold is related to the
single-excitation manifold in a unique way. Below, we show
that the double-excitation manifold of an excitonic ring has an
accidental degeneracy between two categories of eigenstates
with distinct symmetries such that the first category only cou-
ples to the bright state, while the second category only couples
to the dark state through optical transitions. These degener-
ate eigenstates may potentially mix without additional energy
cost, producing hybrid eigenstates that optically connect to
both the bright and dark states. This could have an important
implication in the dynamics of exciton transfer on the ring
structure, as it adds a channel in addition to phononic dis-
sipation for the dark states to be populated. The accidental
degeneracy is unique to a ring with N = 4l + 2 (l being an inte-
ger) sites. Analysis of the relationship between the geometry of
the ring and the eigenstates reveals that the accidental degen-
eracy is due to the absence of certain symmetry elements in the
Hamiltonian.

II. THEORY

In this study, we consider a ring structure composed of
identical local exciton-supporting sites. Excitons are hardcore
bosons that cannot occupy the same quantum state. The cre-
ation and annihilation operators a†j and ak of hardcore bosons

observe the bosonic commutation relation
[
a†j , ak

]
= 0 when

j , k, but when j = k, they observe the fermionic anticom-
mutation relation

{
a†j , aj

}
= 0. Obviously, the Pauli raising

and lowering operators satisfy these conditions if we identify
a†j with σ+

j and ak with σ−k . The Hamiltonian of the ring is
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then

H = ω
N∑

i=1

σ+
i σ
−
i + S

N∑
i=1

(σ+
i σ
−
i+1 + σ+

i+1σ
−
i ), (1)

where ~ = 1, ω is the site energy, S is the coupling strength,
and σ±N+1 = σ

±
1 . Under the Jordan-Wigner transformation, the

Hamiltonian becomes

HJW = ωn̂ + S
N−1∑
j=1

(
c†j cj+1 + c†j+1cj

)
−S

(
c†N c1 + c†1cN

)
eiπn̂, (2)

where n̂ is the number operator for the total number of excita-
tions on the ring and c†j and cj are the transformed fermionic
creation and annihilation operators, respectively. Note that
here we are only considering the nearest-neighbor interac-
tions. When long-range couplings (beyond tight-binding) are
present, the Jordan-Wigner transformation would produce

non-local terms27 such as c†i exp

(
iπ

j−1∑
n=i

c†ncn

)
cj, creating a

Hamiltonian whose solution remains an open problem. On the
other hand, for an excitonic system, the coupling is usually
dipole-dipole interaction in nature and scales with the third
power of the distance. Consequently a next-nearest-neighbor
interaction is about 23 = 8 smaller than a nearest-neighbor
interaction and is reasonably negligible. The solution to Eq. (2)
is dependent on the parity of the excitation number due to the
eiπn̂ term in the boundary condition. For a given excitation
number n, we first find the creation operators for the sin-
gle excitation component states (referred to as the component
states thereafter),

C+
k =

1
√

N

N∑
j=1

ei kπ
N jc†j if n is odd,

C+
k =

1
√

N

N∑
j=1

ei (k+1)π
N jc†j if n is even,

(3)

where k is an even number from 0 to 2N − 2. We then con-
struct the n-excitation eigenstates by selecting n number of
C+

k operators to operate successively on the ground state,

��ψk1k2...kn

〉
= C+

k1
C+

k2
...C+

kn
|0〉, (4)

where k1 , k2 , · · · , kn. The energies of the n-excitation

eigenstates are given by Ek1k2 ...kn =
n∑

i=1

(
ω + 2S cos kiπ

N

)
if n is

odd and Ek1k2 ...kn =
n∑

i=1

(
ω + 2S cos (ki+1)π

N

)
if n is even, where

the total energy is the sum of the energies of the individual com-
ponent states. For example, the single-excitation eigenstates
are

|ψk〉 =
1
√

N

N∑
j=1

ei kπ
N jc†j |0〉, (5)

where each |ψk〉 has the energy E(k) = ω+2S cos kπ
N . The com-

ponent states that are building blocks for the double-excitation
states have the expression

|φk〉 =
1
√

N

N∑
j=1

ei (k+1)π
N jc†j |0〉, (6)

where the energy of an individual |φk〉 is ε(k) = ω
+ 2S cos (k+1)π

N and the double-excitation state formed by ��φk1

〉
and ��φk2

〉
has the energy E(k1,k2) = ε(k1) + ε(k2). With-

out loss of generality, in the following discussion, we set
ω = 0.

The single-excitation states can be classified by their
symmetry group representations which determine their opti-
cal transition possibilities. Here, we categorize the single-
excitation states according to the possibility that they will
optically transition to the ground state via the optical cou-

pling operator J+ =
N∑

i=1
σ+

i . In this way, we can easily connect

the theoretical model to its practical application in excitonic
systems. By simple algebraic evaluation of Eq. (5), only the

|ψ0〉 =
1√
N

N∑
j=1

c†j |0〉 state has finite coupling to the ground

through optical transitions: the optical transition dipole is

Γkg =
�����
〈ψk |

N∑
i=1
σ+

i |0〉
�����

2

= Nδk0, where δk0 is the Kronecker

delta. |ψ0〉 is therefore the bright state and all other |ψk〉

are dark states. Similarly, the double-excitation states can
also be categorized according to how they optically connect
to the single-excitation states. The first category of double-
excitation states are those optically coupled to the bright
state but not the dark states; the second category of double-
excitation states are those optically coupled to the dark states
but not the bright state. To identify each double-excitation
state by its category, we invoke a complete selection rule
between the n-excitation manifold and the (n + 1)-excitation
manifold.

If an n-excitation state is ��ψt1t2 ...tn
〉
= C+

t1 C+
t2 . . .C

+
tn |0〉,

where the component states C+
ti ’s have quantum num-

bers ti’s, and an (n + 1)-excitation state is ��ψs1s2 ...sn+1

〉
= C+

s1
C+

s2
. . .C+

sn+1
|0〉, where the component states C+

si
’s have

quantum numbers si’s, then ��ψt1t2 ...tn
〉

is optically coupled to
��ψs1s2 ...sn+1

〉
if∑

i

ti −
∑

i

si = 2mN , m = 0,±1,±2 . . . . (7)

Note that here the quantum numbers ti’s and si’s are slightly
different from the ki’s in Eqs. (3) and (4), in which each ki is
always even, but when it enters the exponent of C+

ki
, it becomes

(ki + 1) when n is even and remains ki when n is odd. In C+
ti

or C+
si

, each ti or si enters the exponent as itself, but the parity
of ti or si can change depending on the parity of n. If n is odd,
then ti’s are even and si’s are odd; if n is even, then ti’s are odd
and si’s are even.

Equation (7) can be extracted from pure algebraic cal-
culations,28 but here we emphasize that the selection rule
is a consequence of the rotational symmetry of the ring.
For a ring consisting of N identical local sites with the
same coupling strength, a physical equivalence exists among
different sites because there is no fundamental difference
between one site and another. In the supplementary material,
we prove in detail that the selection rule is indeed a phase
matching condition imposed by the physical equivalence
among local sites, thus giving Eq. (7) a physically motivated
explanation.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-020821
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FIG. 1. Energy ladder structure of the
single-excitation and double-excitation
eigenstates for rings with N = 3 to N = 6
sites. Single-excitation and double-
excitation states are shown below and
above the dashed line, respectively. The
bright states and their optically con-
nected double-excitation states are in
orange (first category); the dark states
and their optically connected double-
excitation states are in blue (second
category). The red box highlights the
degeneracy between the two categories
that is unique to the 6-sited ring.

Applying Eq. (7) to the single-excitation manifold and
the double-excitation manifold, we identify each double-
excitation state by its category on the energy ladder in
Fig. 1.

In Fig. 1, we see that the double-excitation manifold can
be partitioned into two categories: (1) states optically cou-
pled to the bright state and (2) states optically coupled to
the dark states. For rings with 3–5 sites, the first category
double-excitation states are non-degenerate, while the sec-
ond category double-excitation states are evenly degenerate.
For the 6-sited ring, however, there is a level on the double-
excitation manifold with degeneracy five that contains states
from both categories. This is an important property of the
energy ladder because degeneracy may potentially allow states
with different symmetries and optical transition properties to
mix, producing hybrid eigenstates without additional energy
cost. For example, if the degenerate states in the red box in
Fig. 1 are allowed to mix, the hybrid states would be able
to mediate optical connection between the bright state and
the dark states, which is otherwise forbidden due to symme-
try mismatch. Note if only optical transition is possible, the
bright state would first be populated, then select the state with
the bright-matching symmetry from the degenerate level, and
there will be no coherent mixing with the state of the other

category. However, if there is any other mechanism that can
cause dephasing among the degenerate states, then coher-
ent mixing is possible. For example, phononic dephas-
ing could be the mechanism that enables such coherent
mixing because it does not observe the optical symme-
try rules. Note there is only one basis representation—the
one favored by optical transition—that forbids the coher-
ent mixing between the double-excitation states with dis-
tinct symmetries. Any other basis representation would allow
the optical connection between the bright and dark states,
and when a dephasing mechanism is present, the coher-
ent mixing of the degenerate states should be entropically
favorable.

To find out how the states from two categories are degener-
ate for the 6-sited ring, we consider how the double-excitation
states are formed from the component states as defined in
Eq. (6). The energy ladder structure of the component states
is shown in Fig. 2.

Figure 2 clearly shows how the two categories of double-
excitation states are separated. The first category states are
formed by component states of the same energy and are non-
degenerate for rings with 3–5 sites. These states can optically
couple to the bright states, but not the dark states, because
their symmetry only allows phase matching with the bright

FIG. 2. Energy ladder structure show-
ing how the double-excitation states are
formed by the component states. Below
the dashed line, the component states are
labeled by single numbers correspond-
ing to the (k + 1) values in Eq. (6).
Above the dashed line, the double-
excitation states are labeled by double
numbers corresponding to their respec-
tive component states. The special level
of degeneracy five is enclosed in the red
box. Double-excitation states in the first
category (orange) are formed by compo-
nent states of the same energy; double-
excitation states in the second category
(blue) are formed by component states
of different energies.
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states (see the supplementary material). On the other hand, the
second category states are formed by component states of dif-
ferent energies and are evenly degenerate for rings with 3–5
sites. These states can optically couple to the dark states, but
not the bright states, because their symmetry only allows phase
matching with the dark states (see the supplementary material).
For the 6-sited ring, however, there is an accidental degeneracy
between states of the two different categories which cannot be
accounted for by simple symmetry of the Hamiltonian. Before
we consider a symmetry argument responsible for the acciden-
tal degeneracy, notice that the accidental degeneracy happens
because three energy levels in the 6-sited ring are evenly spaced
in the component energy ladder such that the sum of the ener-
gies of |1〉 and |7〉 is equal to the sum of the energies of |3〉 and
|9〉. In the supplementary material, we prove with mathemat-
ical rigor that this scenario is possible if, and only if, the size
of the ring N satisfies

N = 4l + 2 l = 1, 2, 3, . . . . (8)

Therefore, the 6-sited ring is the first case of the accidental
degeneracy—the next case would be the 10-sited ring. For
a ring with an even number of sites, energy levels always
equally split around zero due to the sublattice symmetry of the
Hamiltonian. Sublattice symmetry is immune to changes in
the coupling strength S; therefore, the equal splitting behavior
applies to both the single-excitation eigenstates and the com-
ponent states, as can be seen from the energy diagrams below
the dashed line in both Figs. 1 and 2. In Fig. 2, for both the
4-sited ring and the 6-sited ring, the equally split pairs of com-
ponent states combine to give zero energy double-excitation
states of the second category. The unique accidental degener-
acy is brought to the 6-sited ring by the zero energy component
states, such as |3〉 and |9〉. These zero energy component states
combine to give zero energy double-excitation states of the
first category, which are only available when the size of the
ring is N = 4l + 2. In Fig. 3, for N = 4, 6, 8, we present both
the single-excitation eigenstates and the component states in

Eqs. (5) and (6) on the complex number plane by represent-
ing each state with the factor in the coefficient: ei kπ

N for the

single-excitation eigenstates and ei (k+1)π
N for the component

states.
In Fig. 3, the single-excitation eigenstates form a shape

corresponding to the physical geometry of the ring struc-
tures, while the component states form the same shape with
a π

N rotation. Because the energies of these states are calcu-
lated with the cosine function, degenerate states with energy
ε fall on the same vertical line of x = ε. The y-axis is, there-
fore, the zero energy line with x = 0. Figure 3 shows that
if there are zero energy states on the single-excitation mani-
fold, there will be no zero energy component states. On the
other hand, if there are zero energy component states, there
will be no zero energy single-excitation state. The π

N rota-
tion between the single-excitation manifold and the component
state manifold guarantees that the zero energy degeneracy is
only present in one of the two manifolds. When N = 4l, the
zero energy degeneracy is in the single-excitation manifold.
When N = 4l + 2, the zero energy degeneracy is in the compo-
nent state manifold. The accidental degeneracy between two
categories of double-excitation states relies on the existence
of degenerate zero energy component states for N = 4l + 2,
which implies that there are no degenerate zero energy single-
excitation states. There is a crucial difference between the
single-excitation manifold and the component state manifold.
The single-excitation states are actual eigenstates of the Hamil-
tonian such that a degeneracy among them reflects a symmetry
element of the Hamiltonian. On the contrary, the component
states are not actual eigenstates of the Hamiltonian, and a
degeneracy among them is not a symmetry element of the
Hamiltonian. Consequently the lack of zero energy degener-
acy in the single-excitation manifold, which is the requirement
for the accidental degeneracy, can be interpreted as the lack of
certain symmetry in the Hamiltonian. What exactly is the miss-
ing symmetry element in the N = 4l + 2 rings? In Fig. 3, for all
three geometries, there are two single-excitation states, |ψk=0〉

FIG. 3. States are plotted on the complex plane. The ei kπ
N points represent the single-excitation states (purple circles labeled by even numbers). The ei (k+1)π

N

points represent the component states (green diamonds labeled by odd numbers). The x-axis is the energy axis and the zero energy states fall on the y-axis. The
single-excitation states form a shape corresponding to the physical geometry of the ring structures, and the component states form the same shape with a π

N
rotation. For the square and octagonal cases, zero energy states are in the single-excitation manifold and are missing from the component state manifold. For the
hexagonal case, zero energy states are in the component state manifold and are missing from the single-excitation manifold.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-020821
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-020821
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and |ψk=N 〉, on the x-axis, which correspond to the A1 and B1

representations, respectively, in the DN symmetry groups (DNh

to be precise, but we do not mind the difference between ger-
ade and ungerade here). For the N = 4l rings, there are also two
single-excitation states, ��ψk=N/2

〉
and ��ψk=3N/2

〉
, on the y-axis,

which result in a symmetry on the state diagram in Fig. 3 such
that if we rotate the shape formed by the single-excitation man-
ifold by π

2 , we get exactly the original shape back. Since the
shape on the state diagram is the same as the physical geom-
etry of the ring structures, we can relate this π

2 rotation to the
C4 symmetry elements in the DN =4l groups. Indeed, the C4

symmetry elements are missing from the DN =4l+2 groups. It
is remarkable that the absence of certain symmetry elements,
not the presence of one, leads to the accidental degeneracy
between two categories of double-excitation states of distinct
optical transition patterns.

To move from theory to application, the accidental degen-
eracy on the double-excitation manifold needs to be preserved
under two types of disorder: the coupling strength disorder
and the site energy disorder. Under disorder in the coupling
strength S, the accidental degeneracy is exactly preserved for
N = 4l + 2 with any arbitrary choice of the individual S values.
This remarkable preservation of the accidental degeneracy is
guaranteed by the sublattice symmetry. Because the ring is con-
nected through nearest-neighbor couplings, we can separate
the Hamiltonian for the component states into two identical
blocks with one block containing the odd sites and the other
block containing the even sites. This treatment guarantees
that each block is disconnected within itself. The coupling
between the two blocks then ensures that the energy levels
are equally split around zero, which is called the sublattice
symmetry. Since the accidental degeneracy is caused by the
component states’ energy equally split around zero, we see
that this condition, and therefore the degeneracy, is preserved
by the sublattice symmetry. The sublattice symmetry is itself
immune to arbitrary coupling strength disorder because the two
blocks remain identical and disconnected within each block.
In addition to the sublattice symmetry argument, an alternative
analytic proof directly working with the Hamiltonian is given
in the supplementary material. When there is a disorder in the
site energy ω, the perturbation to the Hamiltonian in Eq. (2)

is V =
N∑

j=1
δjc+

j c−j . The unperturbed component states for the

double-excitation states of the second category are a pair of
��Ck1

〉
and ��Ck2

〉
of opposite energies. Without loss of general-

ity, we consider the pair k1 = 0 and k2 = N − 2. Both ��Ck1

〉
and

��Ck2

〉
have their own degenerate counterparts and, to find the

first order perturbation energy, we need to use the degenerate
perturbation theory and diagonalize PkiVPki, where Pki is the
projector into the degenerate space of ��Cki

〉
. The result is a first-

order correction of α ±
√
| β |2 for both the ��Ck1

〉
and the ��Ck2

〉
degenerate spaces, where α = 1

N

N∑
j=1

δj and β = 1
N

N∑
j=1

δjei 2π j
N .

Hence, by picking the eigenstate of energy εk1 + α +
√
| β |2

from the ��Ck1

〉
degenerate space and the eigenstate of energy

εk2 + α −

√
| β |2 from the ��Ck2

〉
degenerate space, we can

form a double-excitation state of the second category with the

first-order energy correction E(1)
I = εk1 + εk2 + 2α. The unper-

turbed component states for the double-excitation states of the
first category are a pair of ��Ck3

〉
and ��Ck4

〉
of the same energy

with (k3+1)π
N = π

2 and (k4+1)π
N = 3π

2 . Again, we use the pertur-
bation theory for degenerate states and diagonalize Pk3 VPk3 .

The result is an energy shift of α ± γ, where γ = 1
N

N∑
j=1

δj(−1)j;

therefore, the double-excitation state formed by the eigen-
states of Pk3 VPk3 has the first-order energy correction of
E(1)

II = 2εk3 + 2α. Because 2εk3 = εk1 + εk2 , E(1)
I = E(1)

II ,
indeed the accidental degeneracy is preserved up to first order
of site energy disorder.

III. CONCLUSION

In this work, we have identified and investigated an acci-
dental degeneracy on the double-excitation manifold of a cou-
pled excitonic ring structure. The accidental degeneracy occurs
between two categories of double-excitation eigenstates which
possess distinct symmetries and optical transition patterns
to the single-excitation manifold. The accidental degeneracy
has been proven to exist if, and only if, the size of the ring
is N = 4l + 2. Using a state diagram relating the geometries
formed by the single-excitation manifold and the component
state manifold on the complex plane to the actual geometry
of the ring, we have shown that, remarkably, the absence of
certain symmetry elements is responsible for the accidental
degeneracy. Finally the accidental degeneracy is preserved
up to first-order site energy disorder and arbitrary coupling
strength disorder.

SUPPLEMENTARY MATERIAL

See supplementary material for technical details of theo-
retical discussions, which supports the discussion in the main
text.
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